MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dlwwlknondlwlknonf1olem1 Structured version   Visualization version   GIF version

Theorem dlwwlknondlwlknonf1olem1 28143
Description: Lemma 1 for dlwwlknondlwlknonf1o 28144. (Contributed by AV, 29-May-2022.) (Revised by AV, 1-Nov-2022.)
Assertion
Ref Expression
dlwwlknondlwlknonf1olem1 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))

Proof of Theorem dlwwlknondlwlknonf1olem1
StepHypRef Expression
1 clwlkwlk 27556 . . . . 5 (𝑐 ∈ (ClWalks‘𝐺) → 𝑐 ∈ (Walks‘𝐺))
2 wlkcpr 27410 . . . . 5 (𝑐 ∈ (Walks‘𝐺) ↔ (1st𝑐)(Walks‘𝐺)(2nd𝑐))
31, 2sylib 220 . . . 4 (𝑐 ∈ (ClWalks‘𝐺) → (1st𝑐)(Walks‘𝐺)(2nd𝑐))
4 eqid 2821 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
54wlkpwrd 27399 . . . 4 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
63, 5syl 17 . . 3 (𝑐 ∈ (ClWalks‘𝐺) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
763ad2ant2 1130 . 2 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
8 eluzge2nn0 12288 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
983ad2ant3 1131 . . . . . 6 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℕ0)
10 eleq1 2900 . . . . . . 7 ((♯‘(1st𝑐)) = 𝑁 → ((♯‘(1st𝑐)) ∈ ℕ0𝑁 ∈ ℕ0))
11103ad2ant1 1129 . . . . . 6 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → ((♯‘(1st𝑐)) ∈ ℕ0𝑁 ∈ ℕ0))
129, 11mpbird 259 . . . . 5 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(1st𝑐)) ∈ ℕ0)
13 nn0fz0 13006 . . . . 5 ((♯‘(1st𝑐)) ∈ ℕ0 ↔ (♯‘(1st𝑐)) ∈ (0...(♯‘(1st𝑐))))
1412, 13sylib 220 . . . 4 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(1st𝑐)) ∈ (0...(♯‘(1st𝑐))))
15 fzelp1 12960 . . . 4 ((♯‘(1st𝑐)) ∈ (0...(♯‘(1st𝑐))) → (♯‘(1st𝑐)) ∈ (0...((♯‘(1st𝑐)) + 1)))
1614, 15syl 17 . . 3 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(1st𝑐)) ∈ (0...((♯‘(1st𝑐)) + 1)))
17 wlklenvp1 27400 . . . . . . . 8 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (♯‘(2nd𝑐)) = ((♯‘(1st𝑐)) + 1))
1817eqcomd 2827 . . . . . . 7 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → ((♯‘(1st𝑐)) + 1) = (♯‘(2nd𝑐)))
193, 18syl 17 . . . . . 6 (𝑐 ∈ (ClWalks‘𝐺) → ((♯‘(1st𝑐)) + 1) = (♯‘(2nd𝑐)))
2019oveq2d 7172 . . . . 5 (𝑐 ∈ (ClWalks‘𝐺) → (0...((♯‘(1st𝑐)) + 1)) = (0...(♯‘(2nd𝑐))))
2120eleq2d 2898 . . . 4 (𝑐 ∈ (ClWalks‘𝐺) → ((♯‘(1st𝑐)) ∈ (0...((♯‘(1st𝑐)) + 1)) ↔ (♯‘(1st𝑐)) ∈ (0...(♯‘(2nd𝑐)))))
22213ad2ant2 1130 . . 3 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → ((♯‘(1st𝑐)) ∈ (0...((♯‘(1st𝑐)) + 1)) ↔ (♯‘(1st𝑐)) ∈ (0...(♯‘(2nd𝑐)))))
2316, 22mpbid 234 . 2 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(1st𝑐)) ∈ (0...(♯‘(2nd𝑐))))
24 2nn 11711 . . . . . . 7 2 ∈ ℕ
2524a1i 11 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ)
26 eluz2nn 12285 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
27 eluzle 12257 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
28 elfz1b 12977 . . . . . 6 (2 ∈ (1...𝑁) ↔ (2 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 2 ≤ 𝑁))
2925, 26, 27, 28syl3anbrc 1339 . . . . 5 (𝑁 ∈ (ℤ‘2) → 2 ∈ (1...𝑁))
30 ubmelfzo 13103 . . . . 5 (2 ∈ (1...𝑁) → (𝑁 − 2) ∈ (0..^𝑁))
3129, 30syl 17 . . . 4 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ (0..^𝑁))
32313ad2ant3 1131 . . 3 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 2) ∈ (0..^𝑁))
33 oveq2 7164 . . . . 5 ((♯‘(1st𝑐)) = 𝑁 → (0..^(♯‘(1st𝑐))) = (0..^𝑁))
3433eleq2d 2898 . . . 4 ((♯‘(1st𝑐)) = 𝑁 → ((𝑁 − 2) ∈ (0..^(♯‘(1st𝑐))) ↔ (𝑁 − 2) ∈ (0..^𝑁)))
35343ad2ant1 1129 . . 3 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 − 2) ∈ (0..^(♯‘(1st𝑐))) ↔ (𝑁 − 2) ∈ (0..^𝑁)))
3632, 35mpbird 259 . 2 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 2) ∈ (0..^(♯‘(1st𝑐))))
37 pfxfv 14044 . 2 (((2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ (♯‘(1st𝑐)) ∈ (0...(♯‘(2nd𝑐))) ∧ (𝑁 − 2) ∈ (0..^(♯‘(1st𝑐)))) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
387, 23, 36, 37syl3anc 1367 1 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5066  cfv 6355  (class class class)co 7156  1st c1st 7687  2nd c2nd 7688  0cc0 10537  1c1 10538   + caddc 10540  cle 10676  cmin 10870  cn 11638  2c2 11693  0cn0 11898  cuz 12244  ...cfz 12893  ..^cfzo 13034  chash 13691  Word cword 13862   prefix cpfx 14032  Vtxcvtx 26781  Walkscwlks 27378  ClWalkscclwlks 27551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-substr 14003  df-pfx 14033  df-wlks 27381  df-clwlks 27552
This theorem is referenced by:  dlwwlknondlwlknonf1o  28144
  Copyright terms: Public domain W3C validator