Proof of Theorem dlwwlknondlwlknonf1olem1
Step | Hyp | Ref
| Expression |
1 | | clwlkwlk 28044 |
. . . . 5
⊢ (𝑐 ∈ (ClWalks‘𝐺) → 𝑐 ∈ (Walks‘𝐺)) |
2 | | wlkcpr 27898 |
. . . . 5
⊢ (𝑐 ∈ (Walks‘𝐺) ↔ (1st
‘𝑐)(Walks‘𝐺)(2nd ‘𝑐)) |
3 | 1, 2 | sylib 217 |
. . . 4
⊢ (𝑐 ∈ (ClWalks‘𝐺) → (1st
‘𝑐)(Walks‘𝐺)(2nd ‘𝑐)) |
4 | | eqid 2738 |
. . . . 5
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
5 | 4 | wlkpwrd 27887 |
. . . 4
⊢
((1st ‘𝑐)(Walks‘𝐺)(2nd ‘𝑐) → (2nd ‘𝑐) ∈ Word (Vtx‘𝐺)) |
6 | 3, 5 | syl 17 |
. . 3
⊢ (𝑐 ∈ (ClWalks‘𝐺) → (2nd
‘𝑐) ∈ Word
(Vtx‘𝐺)) |
7 | 6 | 3ad2ant2 1132 |
. 2
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (2nd ‘𝑐) ∈ Word (Vtx‘𝐺)) |
8 | | eluzge2nn0 12556 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ∈
ℕ0) |
9 | 8 | 3ad2ant3 1133 |
. . . . . 6
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ 𝑁 ∈
ℕ0) |
10 | | eleq1 2826 |
. . . . . . 7
⊢
((♯‘(1st ‘𝑐)) = 𝑁 → ((♯‘(1st
‘𝑐)) ∈
ℕ0 ↔ 𝑁 ∈
ℕ0)) |
11 | 10 | 3ad2ant1 1131 |
. . . . . 6
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ ((♯‘(1st ‘𝑐)) ∈ ℕ0 ↔ 𝑁 ∈
ℕ0)) |
12 | 9, 11 | mpbird 256 |
. . . . 5
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (♯‘(1st ‘𝑐)) ∈
ℕ0) |
13 | | nn0fz0 13283 |
. . . . 5
⊢
((♯‘(1st ‘𝑐)) ∈ ℕ0 ↔
(♯‘(1st ‘𝑐)) ∈ (0...(♯‘(1st
‘𝑐)))) |
14 | 12, 13 | sylib 217 |
. . . 4
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (♯‘(1st ‘𝑐)) ∈ (0...(♯‘(1st
‘𝑐)))) |
15 | | fzelp1 13237 |
. . . 4
⊢
((♯‘(1st ‘𝑐)) ∈ (0...(♯‘(1st
‘𝑐))) →
(♯‘(1st ‘𝑐)) ∈
(0...((♯‘(1st ‘𝑐)) + 1))) |
16 | 14, 15 | syl 17 |
. . 3
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (♯‘(1st ‘𝑐)) ∈
(0...((♯‘(1st ‘𝑐)) + 1))) |
17 | | wlklenvp1 27888 |
. . . . . . . 8
⊢
((1st ‘𝑐)(Walks‘𝐺)(2nd ‘𝑐) → (♯‘(2nd
‘𝑐)) =
((♯‘(1st ‘𝑐)) + 1)) |
18 | 17 | eqcomd 2744 |
. . . . . . 7
⊢
((1st ‘𝑐)(Walks‘𝐺)(2nd ‘𝑐) → ((♯‘(1st
‘𝑐)) + 1) =
(♯‘(2nd ‘𝑐))) |
19 | 3, 18 | syl 17 |
. . . . . 6
⊢ (𝑐 ∈ (ClWalks‘𝐺) →
((♯‘(1st ‘𝑐)) + 1) = (♯‘(2nd
‘𝑐))) |
20 | 19 | oveq2d 7271 |
. . . . 5
⊢ (𝑐 ∈ (ClWalks‘𝐺) →
(0...((♯‘(1st ‘𝑐)) + 1)) =
(0...(♯‘(2nd ‘𝑐)))) |
21 | 20 | eleq2d 2824 |
. . . 4
⊢ (𝑐 ∈ (ClWalks‘𝐺) →
((♯‘(1st ‘𝑐)) ∈
(0...((♯‘(1st ‘𝑐)) + 1)) ↔
(♯‘(1st ‘𝑐)) ∈ (0...(♯‘(2nd
‘𝑐))))) |
22 | 21 | 3ad2ant2 1132 |
. . 3
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ ((♯‘(1st ‘𝑐)) ∈
(0...((♯‘(1st ‘𝑐)) + 1)) ↔
(♯‘(1st ‘𝑐)) ∈ (0...(♯‘(2nd
‘𝑐))))) |
23 | 16, 22 | mpbid 231 |
. 2
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (♯‘(1st ‘𝑐)) ∈ (0...(♯‘(2nd
‘𝑐)))) |
24 | | 2nn 11976 |
. . . . . . 7
⊢ 2 ∈
ℕ |
25 | 24 | a1i 11 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘2) → 2 ∈ ℕ) |
26 | | eluz2nn 12553 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ∈ ℕ) |
27 | | eluzle 12524 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘2) → 2 ≤ 𝑁) |
28 | | elfz1b 13254 |
. . . . . 6
⊢ (2 ∈
(1...𝑁) ↔ (2 ∈
ℕ ∧ 𝑁 ∈
ℕ ∧ 2 ≤ 𝑁)) |
29 | 25, 26, 27, 28 | syl3anbrc 1341 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘2) → 2 ∈ (1...𝑁)) |
30 | | ubmelfzo 13380 |
. . . . 5
⊢ (2 ∈
(1...𝑁) → (𝑁 − 2) ∈ (0..^𝑁)) |
31 | 29, 30 | syl 17 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘2) → (𝑁 − 2) ∈ (0..^𝑁)) |
32 | 31 | 3ad2ant3 1133 |
. . 3
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑁 − 2) ∈
(0..^𝑁)) |
33 | | oveq2 7263 |
. . . . 5
⊢
((♯‘(1st ‘𝑐)) = 𝑁 → (0..^(♯‘(1st
‘𝑐))) = (0..^𝑁)) |
34 | 33 | eleq2d 2824 |
. . . 4
⊢
((♯‘(1st ‘𝑐)) = 𝑁 → ((𝑁 − 2) ∈
(0..^(♯‘(1st ‘𝑐))) ↔ (𝑁 − 2) ∈ (0..^𝑁))) |
35 | 34 | 3ad2ant1 1131 |
. . 3
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ ((𝑁 − 2)
∈ (0..^(♯‘(1st ‘𝑐))) ↔ (𝑁 − 2) ∈ (0..^𝑁))) |
36 | 32, 35 | mpbird 256 |
. 2
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑁 − 2) ∈
(0..^(♯‘(1st ‘𝑐)))) |
37 | | pfxfv 14323 |
. 2
⊢
(((2nd ‘𝑐) ∈ Word (Vtx‘𝐺) ∧ (♯‘(1st
‘𝑐)) ∈
(0...(♯‘(2nd ‘𝑐))) ∧ (𝑁 − 2) ∈
(0..^(♯‘(1st ‘𝑐)))) → (((2nd ‘𝑐) prefix
(♯‘(1st ‘𝑐)))‘(𝑁 − 2)) = ((2nd ‘𝑐)‘(𝑁 − 2))) |
38 | 7, 23, 36, 37 | syl3anc 1369 |
1
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (((2nd ‘𝑐) prefix (♯‘(1st
‘𝑐)))‘(𝑁 − 2)) = ((2nd
‘𝑐)‘(𝑁 − 2))) |