MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dlwwlknondlwlknonf1olem1 Structured version   Visualization version   GIF version

Theorem dlwwlknondlwlknonf1olem1 28629
Description: Lemma 1 for dlwwlknondlwlknonf1o 28630. (Contributed by AV, 29-May-2022.) (Revised by AV, 1-Nov-2022.)
Assertion
Ref Expression
dlwwlknondlwlknonf1olem1 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))

Proof of Theorem dlwwlknondlwlknonf1olem1
StepHypRef Expression
1 clwlkwlk 28044 . . . . 5 (𝑐 ∈ (ClWalks‘𝐺) → 𝑐 ∈ (Walks‘𝐺))
2 wlkcpr 27898 . . . . 5 (𝑐 ∈ (Walks‘𝐺) ↔ (1st𝑐)(Walks‘𝐺)(2nd𝑐))
31, 2sylib 217 . . . 4 (𝑐 ∈ (ClWalks‘𝐺) → (1st𝑐)(Walks‘𝐺)(2nd𝑐))
4 eqid 2738 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
54wlkpwrd 27887 . . . 4 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
63, 5syl 17 . . 3 (𝑐 ∈ (ClWalks‘𝐺) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
763ad2ant2 1132 . 2 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
8 eluzge2nn0 12556 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
983ad2ant3 1133 . . . . . 6 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℕ0)
10 eleq1 2826 . . . . . . 7 ((♯‘(1st𝑐)) = 𝑁 → ((♯‘(1st𝑐)) ∈ ℕ0𝑁 ∈ ℕ0))
11103ad2ant1 1131 . . . . . 6 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → ((♯‘(1st𝑐)) ∈ ℕ0𝑁 ∈ ℕ0))
129, 11mpbird 256 . . . . 5 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(1st𝑐)) ∈ ℕ0)
13 nn0fz0 13283 . . . . 5 ((♯‘(1st𝑐)) ∈ ℕ0 ↔ (♯‘(1st𝑐)) ∈ (0...(♯‘(1st𝑐))))
1412, 13sylib 217 . . . 4 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(1st𝑐)) ∈ (0...(♯‘(1st𝑐))))
15 fzelp1 13237 . . . 4 ((♯‘(1st𝑐)) ∈ (0...(♯‘(1st𝑐))) → (♯‘(1st𝑐)) ∈ (0...((♯‘(1st𝑐)) + 1)))
1614, 15syl 17 . . 3 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(1st𝑐)) ∈ (0...((♯‘(1st𝑐)) + 1)))
17 wlklenvp1 27888 . . . . . . . 8 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (♯‘(2nd𝑐)) = ((♯‘(1st𝑐)) + 1))
1817eqcomd 2744 . . . . . . 7 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → ((♯‘(1st𝑐)) + 1) = (♯‘(2nd𝑐)))
193, 18syl 17 . . . . . 6 (𝑐 ∈ (ClWalks‘𝐺) → ((♯‘(1st𝑐)) + 1) = (♯‘(2nd𝑐)))
2019oveq2d 7271 . . . . 5 (𝑐 ∈ (ClWalks‘𝐺) → (0...((♯‘(1st𝑐)) + 1)) = (0...(♯‘(2nd𝑐))))
2120eleq2d 2824 . . . 4 (𝑐 ∈ (ClWalks‘𝐺) → ((♯‘(1st𝑐)) ∈ (0...((♯‘(1st𝑐)) + 1)) ↔ (♯‘(1st𝑐)) ∈ (0...(♯‘(2nd𝑐)))))
22213ad2ant2 1132 . . 3 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → ((♯‘(1st𝑐)) ∈ (0...((♯‘(1st𝑐)) + 1)) ↔ (♯‘(1st𝑐)) ∈ (0...(♯‘(2nd𝑐)))))
2316, 22mpbid 231 . 2 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(1st𝑐)) ∈ (0...(♯‘(2nd𝑐))))
24 2nn 11976 . . . . . . 7 2 ∈ ℕ
2524a1i 11 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ)
26 eluz2nn 12553 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
27 eluzle 12524 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
28 elfz1b 13254 . . . . . 6 (2 ∈ (1...𝑁) ↔ (2 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 2 ≤ 𝑁))
2925, 26, 27, 28syl3anbrc 1341 . . . . 5 (𝑁 ∈ (ℤ‘2) → 2 ∈ (1...𝑁))
30 ubmelfzo 13380 . . . . 5 (2 ∈ (1...𝑁) → (𝑁 − 2) ∈ (0..^𝑁))
3129, 30syl 17 . . . 4 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ (0..^𝑁))
32313ad2ant3 1133 . . 3 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 2) ∈ (0..^𝑁))
33 oveq2 7263 . . . . 5 ((♯‘(1st𝑐)) = 𝑁 → (0..^(♯‘(1st𝑐))) = (0..^𝑁))
3433eleq2d 2824 . . . 4 ((♯‘(1st𝑐)) = 𝑁 → ((𝑁 − 2) ∈ (0..^(♯‘(1st𝑐))) ↔ (𝑁 − 2) ∈ (0..^𝑁)))
35343ad2ant1 1131 . . 3 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 − 2) ∈ (0..^(♯‘(1st𝑐))) ↔ (𝑁 − 2) ∈ (0..^𝑁)))
3632, 35mpbird 256 . 2 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 2) ∈ (0..^(♯‘(1st𝑐))))
37 pfxfv 14323 . 2 (((2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ (♯‘(1st𝑐)) ∈ (0...(♯‘(2nd𝑐))) ∧ (𝑁 − 2) ∈ (0..^(♯‘(1st𝑐)))) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
387, 23, 36, 37syl3anc 1369 1 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  0cc0 10802  1c1 10803   + caddc 10805  cle 10941  cmin 11135  cn 11903  2c2 11958  0cn0 12163  cuz 12511  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145   prefix cpfx 14311  Vtxcvtx 27269  Walkscwlks 27866  ClWalkscclwlks 28039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-substr 14282  df-pfx 14312  df-wlks 27869  df-clwlks 28040
This theorem is referenced by:  dlwwlknondlwlknonf1o  28630
  Copyright terms: Public domain W3C validator