MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dlwwlknondlwlknonf1olem1 Structured version   Visualization version   GIF version

Theorem dlwwlknondlwlknonf1olem1 30308
Description: Lemma 1 for dlwwlknondlwlknonf1o 30309. (Contributed by AV, 29-May-2022.) (Revised by AV, 1-Nov-2022.)
Assertion
Ref Expression
dlwwlknondlwlknonf1olem1 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))

Proof of Theorem dlwwlknondlwlknonf1olem1
StepHypRef Expression
1 clwlkwlk 29720 . . . . 5 (𝑐 ∈ (ClWalks‘𝐺) → 𝑐 ∈ (Walks‘𝐺))
2 wlkcpr 29574 . . . . 5 (𝑐 ∈ (Walks‘𝐺) ↔ (1st𝑐)(Walks‘𝐺)(2nd𝑐))
31, 2sylib 218 . . . 4 (𝑐 ∈ (ClWalks‘𝐺) → (1st𝑐)(Walks‘𝐺)(2nd𝑐))
4 eqid 2729 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
54wlkpwrd 29563 . . . 4 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
63, 5syl 17 . . 3 (𝑐 ∈ (ClWalks‘𝐺) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
763ad2ant2 1134 . 2 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
8 eluzge2nn0 12793 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
983ad2ant3 1135 . . . . . 6 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℕ0)
10 eleq1 2816 . . . . . . 7 ((♯‘(1st𝑐)) = 𝑁 → ((♯‘(1st𝑐)) ∈ ℕ0𝑁 ∈ ℕ0))
11103ad2ant1 1133 . . . . . 6 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → ((♯‘(1st𝑐)) ∈ ℕ0𝑁 ∈ ℕ0))
129, 11mpbird 257 . . . . 5 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(1st𝑐)) ∈ ℕ0)
13 nn0fz0 13528 . . . . 5 ((♯‘(1st𝑐)) ∈ ℕ0 ↔ (♯‘(1st𝑐)) ∈ (0...(♯‘(1st𝑐))))
1412, 13sylib 218 . . . 4 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(1st𝑐)) ∈ (0...(♯‘(1st𝑐))))
15 fzelp1 13479 . . . 4 ((♯‘(1st𝑐)) ∈ (0...(♯‘(1st𝑐))) → (♯‘(1st𝑐)) ∈ (0...((♯‘(1st𝑐)) + 1)))
1614, 15syl 17 . . 3 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(1st𝑐)) ∈ (0...((♯‘(1st𝑐)) + 1)))
17 wlklenvp1 29564 . . . . . . . 8 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (♯‘(2nd𝑐)) = ((♯‘(1st𝑐)) + 1))
1817eqcomd 2735 . . . . . . 7 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → ((♯‘(1st𝑐)) + 1) = (♯‘(2nd𝑐)))
193, 18syl 17 . . . . . 6 (𝑐 ∈ (ClWalks‘𝐺) → ((♯‘(1st𝑐)) + 1) = (♯‘(2nd𝑐)))
2019oveq2d 7365 . . . . 5 (𝑐 ∈ (ClWalks‘𝐺) → (0...((♯‘(1st𝑐)) + 1)) = (0...(♯‘(2nd𝑐))))
2120eleq2d 2814 . . . 4 (𝑐 ∈ (ClWalks‘𝐺) → ((♯‘(1st𝑐)) ∈ (0...((♯‘(1st𝑐)) + 1)) ↔ (♯‘(1st𝑐)) ∈ (0...(♯‘(2nd𝑐)))))
22213ad2ant2 1134 . . 3 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → ((♯‘(1st𝑐)) ∈ (0...((♯‘(1st𝑐)) + 1)) ↔ (♯‘(1st𝑐)) ∈ (0...(♯‘(2nd𝑐)))))
2316, 22mpbid 232 . 2 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(1st𝑐)) ∈ (0...(♯‘(2nd𝑐))))
24 2nn 12201 . . . . . . 7 2 ∈ ℕ
2524a1i 11 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ)
26 eluz2nn 12789 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
27 eluzle 12748 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
28 elfz1b 13496 . . . . . 6 (2 ∈ (1...𝑁) ↔ (2 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 2 ≤ 𝑁))
2925, 26, 27, 28syl3anbrc 1344 . . . . 5 (𝑁 ∈ (ℤ‘2) → 2 ∈ (1...𝑁))
30 ubmelfzo 13633 . . . . 5 (2 ∈ (1...𝑁) → (𝑁 − 2) ∈ (0..^𝑁))
3129, 30syl 17 . . . 4 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ (0..^𝑁))
32313ad2ant3 1135 . . 3 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 2) ∈ (0..^𝑁))
33 oveq2 7357 . . . . 5 ((♯‘(1st𝑐)) = 𝑁 → (0..^(♯‘(1st𝑐))) = (0..^𝑁))
3433eleq2d 2814 . . . 4 ((♯‘(1st𝑐)) = 𝑁 → ((𝑁 − 2) ∈ (0..^(♯‘(1st𝑐))) ↔ (𝑁 − 2) ∈ (0..^𝑁)))
35343ad2ant1 1133 . . 3 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 − 2) ∈ (0..^(♯‘(1st𝑐))) ↔ (𝑁 − 2) ∈ (0..^𝑁)))
3632, 35mpbird 257 . 2 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 2) ∈ (0..^(♯‘(1st𝑐))))
37 pfxfv 14589 . 2 (((2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ (♯‘(1st𝑐)) ∈ (0...(♯‘(2nd𝑐))) ∧ (𝑁 − 2) ∈ (0..^(♯‘(1st𝑐)))) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
387, 23, 36, 37syl3anc 1373 1 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5092  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  0cc0 11009  1c1 11010   + caddc 11012  cle 11150  cmin 11347  cn 12128  2c2 12183  0cn0 12384  cuz 12735  ...cfz 13410  ..^cfzo 13557  chash 14237  Word cword 14420   prefix cpfx 14577  Vtxcvtx 28941  Walkscwlks 29542  ClWalkscclwlks 29715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-substr 14548  df-pfx 14578  df-wlks 29545  df-clwlks 29716
This theorem is referenced by:  dlwwlknondlwlknonf1o  30309
  Copyright terms: Public domain W3C validator