MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dlwwlknondlwlknonf1olem1 Structured version   Visualization version   GIF version

Theorem dlwwlknondlwlknonf1olem1 28728
Description: Lemma 1 for dlwwlknondlwlknonf1o 28729. (Contributed by AV, 29-May-2022.) (Revised by AV, 1-Nov-2022.)
Assertion
Ref Expression
dlwwlknondlwlknonf1olem1 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))

Proof of Theorem dlwwlknondlwlknonf1olem1
StepHypRef Expression
1 clwlkwlk 28143 . . . . 5 (𝑐 ∈ (ClWalks‘𝐺) → 𝑐 ∈ (Walks‘𝐺))
2 wlkcpr 27996 . . . . 5 (𝑐 ∈ (Walks‘𝐺) ↔ (1st𝑐)(Walks‘𝐺)(2nd𝑐))
31, 2sylib 217 . . . 4 (𝑐 ∈ (ClWalks‘𝐺) → (1st𝑐)(Walks‘𝐺)(2nd𝑐))
4 eqid 2738 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
54wlkpwrd 27984 . . . 4 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
63, 5syl 17 . . 3 (𝑐 ∈ (ClWalks‘𝐺) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
763ad2ant2 1133 . 2 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
8 eluzge2nn0 12627 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
983ad2ant3 1134 . . . . . 6 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℕ0)
10 eleq1 2826 . . . . . . 7 ((♯‘(1st𝑐)) = 𝑁 → ((♯‘(1st𝑐)) ∈ ℕ0𝑁 ∈ ℕ0))
11103ad2ant1 1132 . . . . . 6 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → ((♯‘(1st𝑐)) ∈ ℕ0𝑁 ∈ ℕ0))
129, 11mpbird 256 . . . . 5 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(1st𝑐)) ∈ ℕ0)
13 nn0fz0 13354 . . . . 5 ((♯‘(1st𝑐)) ∈ ℕ0 ↔ (♯‘(1st𝑐)) ∈ (0...(♯‘(1st𝑐))))
1412, 13sylib 217 . . . 4 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(1st𝑐)) ∈ (0...(♯‘(1st𝑐))))
15 fzelp1 13308 . . . 4 ((♯‘(1st𝑐)) ∈ (0...(♯‘(1st𝑐))) → (♯‘(1st𝑐)) ∈ (0...((♯‘(1st𝑐)) + 1)))
1614, 15syl 17 . . 3 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(1st𝑐)) ∈ (0...((♯‘(1st𝑐)) + 1)))
17 wlklenvp1 27985 . . . . . . . 8 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (♯‘(2nd𝑐)) = ((♯‘(1st𝑐)) + 1))
1817eqcomd 2744 . . . . . . 7 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → ((♯‘(1st𝑐)) + 1) = (♯‘(2nd𝑐)))
193, 18syl 17 . . . . . 6 (𝑐 ∈ (ClWalks‘𝐺) → ((♯‘(1st𝑐)) + 1) = (♯‘(2nd𝑐)))
2019oveq2d 7291 . . . . 5 (𝑐 ∈ (ClWalks‘𝐺) → (0...((♯‘(1st𝑐)) + 1)) = (0...(♯‘(2nd𝑐))))
2120eleq2d 2824 . . . 4 (𝑐 ∈ (ClWalks‘𝐺) → ((♯‘(1st𝑐)) ∈ (0...((♯‘(1st𝑐)) + 1)) ↔ (♯‘(1st𝑐)) ∈ (0...(♯‘(2nd𝑐)))))
22213ad2ant2 1133 . . 3 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → ((♯‘(1st𝑐)) ∈ (0...((♯‘(1st𝑐)) + 1)) ↔ (♯‘(1st𝑐)) ∈ (0...(♯‘(2nd𝑐)))))
2316, 22mpbid 231 . 2 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(1st𝑐)) ∈ (0...(♯‘(2nd𝑐))))
24 2nn 12046 . . . . . . 7 2 ∈ ℕ
2524a1i 11 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ)
26 eluz2nn 12624 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
27 eluzle 12595 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
28 elfz1b 13325 . . . . . 6 (2 ∈ (1...𝑁) ↔ (2 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 2 ≤ 𝑁))
2925, 26, 27, 28syl3anbrc 1342 . . . . 5 (𝑁 ∈ (ℤ‘2) → 2 ∈ (1...𝑁))
30 ubmelfzo 13452 . . . . 5 (2 ∈ (1...𝑁) → (𝑁 − 2) ∈ (0..^𝑁))
3129, 30syl 17 . . . 4 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ (0..^𝑁))
32313ad2ant3 1134 . . 3 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 2) ∈ (0..^𝑁))
33 oveq2 7283 . . . . 5 ((♯‘(1st𝑐)) = 𝑁 → (0..^(♯‘(1st𝑐))) = (0..^𝑁))
3433eleq2d 2824 . . . 4 ((♯‘(1st𝑐)) = 𝑁 → ((𝑁 − 2) ∈ (0..^(♯‘(1st𝑐))) ↔ (𝑁 − 2) ∈ (0..^𝑁)))
35343ad2ant1 1132 . . 3 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 − 2) ∈ (0..^(♯‘(1st𝑐))) ↔ (𝑁 − 2) ∈ (0..^𝑁)))
3632, 35mpbird 256 . 2 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 2) ∈ (0..^(♯‘(1st𝑐))))
37 pfxfv 14395 . 2 (((2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ (♯‘(1st𝑐)) ∈ (0...(♯‘(2nd𝑐))) ∧ (𝑁 − 2) ∈ (0..^(♯‘(1st𝑐)))) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
387, 23, 36, 37syl3anc 1370 1 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  0cc0 10871  1c1 10872   + caddc 10874  cle 11010  cmin 11205  cn 11973  2c2 12028  0cn0 12233  cuz 12582  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217   prefix cpfx 14383  Vtxcvtx 27366  Walkscwlks 27963  ClWalkscclwlks 28138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-substr 14354  df-pfx 14384  df-wlks 27966  df-clwlks 28139
This theorem is referenced by:  dlwwlknondlwlknonf1o  28729
  Copyright terms: Public domain W3C validator