Proof of Theorem dlwwlknondlwlknonf1olem1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | clwlkwlk 29795 | . . . . 5
⊢ (𝑐 ∈ (ClWalks‘𝐺) → 𝑐 ∈ (Walks‘𝐺)) | 
| 2 |  | wlkcpr 29647 | . . . . 5
⊢ (𝑐 ∈ (Walks‘𝐺) ↔ (1st
‘𝑐)(Walks‘𝐺)(2nd ‘𝑐)) | 
| 3 | 1, 2 | sylib 218 | . . . 4
⊢ (𝑐 ∈ (ClWalks‘𝐺) → (1st
‘𝑐)(Walks‘𝐺)(2nd ‘𝑐)) | 
| 4 |  | eqid 2737 | . . . . 5
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) | 
| 5 | 4 | wlkpwrd 29635 | . . . 4
⊢
((1st ‘𝑐)(Walks‘𝐺)(2nd ‘𝑐) → (2nd ‘𝑐) ∈ Word (Vtx‘𝐺)) | 
| 6 | 3, 5 | syl 17 | . . 3
⊢ (𝑐 ∈ (ClWalks‘𝐺) → (2nd
‘𝑐) ∈ Word
(Vtx‘𝐺)) | 
| 7 | 6 | 3ad2ant2 1135 | . 2
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (2nd ‘𝑐) ∈ Word (Vtx‘𝐺)) | 
| 8 |  | eluzge2nn0 12929 | . . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ∈
ℕ0) | 
| 9 | 8 | 3ad2ant3 1136 | . . . . . 6
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ 𝑁 ∈
ℕ0) | 
| 10 |  | eleq1 2829 | . . . . . . 7
⊢
((♯‘(1st ‘𝑐)) = 𝑁 → ((♯‘(1st
‘𝑐)) ∈
ℕ0 ↔ 𝑁 ∈
ℕ0)) | 
| 11 | 10 | 3ad2ant1 1134 | . . . . . 6
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ ((♯‘(1st ‘𝑐)) ∈ ℕ0 ↔ 𝑁 ∈
ℕ0)) | 
| 12 | 9, 11 | mpbird 257 | . . . . 5
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (♯‘(1st ‘𝑐)) ∈
ℕ0) | 
| 13 |  | nn0fz0 13665 | . . . . 5
⊢
((♯‘(1st ‘𝑐)) ∈ ℕ0 ↔
(♯‘(1st ‘𝑐)) ∈ (0...(♯‘(1st
‘𝑐)))) | 
| 14 | 12, 13 | sylib 218 | . . . 4
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (♯‘(1st ‘𝑐)) ∈ (0...(♯‘(1st
‘𝑐)))) | 
| 15 |  | fzelp1 13616 | . . . 4
⊢
((♯‘(1st ‘𝑐)) ∈ (0...(♯‘(1st
‘𝑐))) →
(♯‘(1st ‘𝑐)) ∈
(0...((♯‘(1st ‘𝑐)) + 1))) | 
| 16 | 14, 15 | syl 17 | . . 3
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (♯‘(1st ‘𝑐)) ∈
(0...((♯‘(1st ‘𝑐)) + 1))) | 
| 17 |  | wlklenvp1 29636 | . . . . . . . 8
⊢
((1st ‘𝑐)(Walks‘𝐺)(2nd ‘𝑐) → (♯‘(2nd
‘𝑐)) =
((♯‘(1st ‘𝑐)) + 1)) | 
| 18 | 17 | eqcomd 2743 | . . . . . . 7
⊢
((1st ‘𝑐)(Walks‘𝐺)(2nd ‘𝑐) → ((♯‘(1st
‘𝑐)) + 1) =
(♯‘(2nd ‘𝑐))) | 
| 19 | 3, 18 | syl 17 | . . . . . 6
⊢ (𝑐 ∈ (ClWalks‘𝐺) →
((♯‘(1st ‘𝑐)) + 1) = (♯‘(2nd
‘𝑐))) | 
| 20 | 19 | oveq2d 7447 | . . . . 5
⊢ (𝑐 ∈ (ClWalks‘𝐺) →
(0...((♯‘(1st ‘𝑐)) + 1)) =
(0...(♯‘(2nd ‘𝑐)))) | 
| 21 | 20 | eleq2d 2827 | . . . 4
⊢ (𝑐 ∈ (ClWalks‘𝐺) →
((♯‘(1st ‘𝑐)) ∈
(0...((♯‘(1st ‘𝑐)) + 1)) ↔
(♯‘(1st ‘𝑐)) ∈ (0...(♯‘(2nd
‘𝑐))))) | 
| 22 | 21 | 3ad2ant2 1135 | . . 3
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ ((♯‘(1st ‘𝑐)) ∈
(0...((♯‘(1st ‘𝑐)) + 1)) ↔
(♯‘(1st ‘𝑐)) ∈ (0...(♯‘(2nd
‘𝑐))))) | 
| 23 | 16, 22 | mpbid 232 | . 2
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (♯‘(1st ‘𝑐)) ∈ (0...(♯‘(2nd
‘𝑐)))) | 
| 24 |  | 2nn 12339 | . . . . . . 7
⊢ 2 ∈
ℕ | 
| 25 | 24 | a1i 11 | . . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘2) → 2 ∈ ℕ) | 
| 26 |  | eluz2nn 12924 | . . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ∈ ℕ) | 
| 27 |  | eluzle 12891 | . . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘2) → 2 ≤ 𝑁) | 
| 28 |  | elfz1b 13633 | . . . . . 6
⊢ (2 ∈
(1...𝑁) ↔ (2 ∈
ℕ ∧ 𝑁 ∈
ℕ ∧ 2 ≤ 𝑁)) | 
| 29 | 25, 26, 27, 28 | syl3anbrc 1344 | . . . . 5
⊢ (𝑁 ∈
(ℤ≥‘2) → 2 ∈ (1...𝑁)) | 
| 30 |  | ubmelfzo 13769 | . . . . 5
⊢ (2 ∈
(1...𝑁) → (𝑁 − 2) ∈ (0..^𝑁)) | 
| 31 | 29, 30 | syl 17 | . . . 4
⊢ (𝑁 ∈
(ℤ≥‘2) → (𝑁 − 2) ∈ (0..^𝑁)) | 
| 32 | 31 | 3ad2ant3 1136 | . . 3
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑁 − 2) ∈
(0..^𝑁)) | 
| 33 |  | oveq2 7439 | . . . . 5
⊢
((♯‘(1st ‘𝑐)) = 𝑁 → (0..^(♯‘(1st
‘𝑐))) = (0..^𝑁)) | 
| 34 | 33 | eleq2d 2827 | . . . 4
⊢
((♯‘(1st ‘𝑐)) = 𝑁 → ((𝑁 − 2) ∈
(0..^(♯‘(1st ‘𝑐))) ↔ (𝑁 − 2) ∈ (0..^𝑁))) | 
| 35 | 34 | 3ad2ant1 1134 | . . 3
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ ((𝑁 − 2)
∈ (0..^(♯‘(1st ‘𝑐))) ↔ (𝑁 − 2) ∈ (0..^𝑁))) | 
| 36 | 32, 35 | mpbird 257 | . 2
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑁 − 2) ∈
(0..^(♯‘(1st ‘𝑐)))) | 
| 37 |  | pfxfv 14720 | . 2
⊢
(((2nd ‘𝑐) ∈ Word (Vtx‘𝐺) ∧ (♯‘(1st
‘𝑐)) ∈
(0...(♯‘(2nd ‘𝑐))) ∧ (𝑁 − 2) ∈
(0..^(♯‘(1st ‘𝑐)))) → (((2nd ‘𝑐) prefix
(♯‘(1st ‘𝑐)))‘(𝑁 − 2)) = ((2nd ‘𝑐)‘(𝑁 − 2))) | 
| 38 | 7, 23, 36, 37 | syl3anc 1373 | 1
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (((2nd ‘𝑐) prefix (♯‘(1st
‘𝑐)))‘(𝑁 − 2)) = ((2nd
‘𝑐)‘(𝑁 − 2))) |