MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrclwlkcompim Structured version   Visualization version   GIF version

Theorem upgrclwlkcompim 27662
Description: Implications for the properties of the components of a closed walk in a pseudograph. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 2-May-2021.)
Hypotheses
Ref Expression
isclwlke.v 𝑉 = (Vtx‘𝐺)
isclwlke.i 𝐼 = (iEdg‘𝐺)
clwlkcomp.1 𝐹 = (1st𝑊)
clwlkcomp.2 𝑃 = (2nd𝑊)
Assertion
Ref Expression
upgrclwlkcompim ((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (ClWalks‘𝐺)) → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑃,𝑘   𝑘,𝐼   𝑘,𝑉
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem upgrclwlkcompim
StepHypRef Expression
1 isclwlke.v . . . 4 𝑉 = (Vtx‘𝐺)
2 isclwlke.i . . . 4 𝐼 = (iEdg‘𝐺)
3 clwlkcomp.1 . . . 4 𝐹 = (1st𝑊)
4 clwlkcomp.2 . . . 4 𝑃 = (2nd𝑊)
51, 2, 3, 4clwlkcompim 27661 . . 3 (𝑊 ∈ (ClWalks‘𝐺) → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))
65adantl 486 . 2 ((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (ClWalks‘𝐺)) → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))
7 simprl 771 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (ClWalks‘𝐺)) ∧ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))) → (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉))
8 clwlkwlk 27656 . . . . 5 (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 ∈ (Walks‘𝐺))
91, 2, 3, 4upgrwlkcompim 27524 . . . . . 6 ((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) → (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
109simp3d 1142 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
118, 10sylan2 596 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (ClWalks‘𝐺)) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
1211adantr 485 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (ClWalks‘𝐺)) ∧ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
13 simprrr 782 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (ClWalks‘𝐺)) ∧ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))) → (𝑃‘0) = (𝑃‘(♯‘𝐹)))
147, 12, 133jca 1126 . 2 (((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (ClWalks‘𝐺)) ∧ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))) → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
156, 14mpdan 687 1 ((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (ClWalks‘𝐺)) → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400  if-wif 1059  w3a 1085   = wceq 1539  wcel 2112  wral 3071  wss 3859  {csn 4523  {cpr 4525  dom cdm 5525  wf 6332  cfv 6336  (class class class)co 7151  1st c1st 7692  2nd c2nd 7693  0cc0 10568  1c1 10569   + caddc 10571  ...cfz 12932  ..^cfzo 13075  chash 13733  Word cword 13906  Vtxcvtx 26881  iEdgciedg 26882  UPGraphcupgr 26965  Walkscwlks 27478  ClWalkscclwlks 27651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-2o 8114  df-oadd 8117  df-er 8300  df-map 8419  df-pm 8420  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-dju 9356  df-card 9394  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-nn 11668  df-2 11730  df-n0 11928  df-xnn0 12000  df-z 12014  df-uz 12276  df-fz 12933  df-fzo 13076  df-hash 13734  df-word 13907  df-edg 26933  df-uhgr 26943  df-upgr 26967  df-wlks 27481  df-clwlks 27652
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator