MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fima2 Structured version   Visualization version   GIF version

Theorem i1fima2 24283
Description: Any preimage of a simple function not containing zero has finite measure. (Contributed by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
i1fima2 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(𝐹𝐴)) ∈ ℝ)

Proof of Theorem i1fima2
StepHypRef Expression
1 i1fima 24282 . . . 4 (𝐹 ∈ dom ∫1 → (𝐹𝐴) ∈ dom vol)
21adantr 484 . . 3 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹𝐴) ∈ dom vol)
3 mblvol 24134 . . 3 ((𝐹𝐴) ∈ dom vol → (vol‘(𝐹𝐴)) = (vol*‘(𝐹𝐴)))
42, 3syl 17 . 2 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(𝐹𝐴)) = (vol*‘(𝐹𝐴)))
5 i1ff 24280 . . . . . . 7 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
65adantr 484 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → 𝐹:ℝ⟶ℝ)
7 ffun 6490 . . . . . 6 (𝐹:ℝ⟶ℝ → Fun 𝐹)
8 inpreima 6811 . . . . . 6 (Fun 𝐹 → (𝐹 “ (𝐴 ∩ ran 𝐹)) = ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)))
96, 7, 83syl 18 . . . . 5 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹 “ (𝐴 ∩ ran 𝐹)) = ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)))
10 cnvimass 5916 . . . . . . 7 (𝐹𝐴) ⊆ dom 𝐹
11 cnvimarndm 5917 . . . . . . 7 (𝐹 “ ran 𝐹) = dom 𝐹
1210, 11sseqtrri 3952 . . . . . 6 (𝐹𝐴) ⊆ (𝐹 “ ran 𝐹)
13 df-ss 3898 . . . . . 6 ((𝐹𝐴) ⊆ (𝐹 “ ran 𝐹) ↔ ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴))
1412, 13mpbi 233 . . . . 5 ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴)
159, 14eqtr2di 2850 . . . 4 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹𝐴) = (𝐹 “ (𝐴 ∩ ran 𝐹)))
16 elinel1 4122 . . . . . . . . 9 (0 ∈ (𝐴 ∩ ran 𝐹) → 0 ∈ 𝐴)
1716con3i 157 . . . . . . . 8 (¬ 0 ∈ 𝐴 → ¬ 0 ∈ (𝐴 ∩ ran 𝐹))
1817adantl 485 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → ¬ 0 ∈ (𝐴 ∩ ran 𝐹))
19 disjsn 4607 . . . . . . 7 (((𝐴 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ ¬ 0 ∈ (𝐴 ∩ ran 𝐹))
2018, 19sylibr 237 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → ((𝐴 ∩ ran 𝐹) ∩ {0}) = ∅)
21 inss2 4156 . . . . . . . . 9 (𝐴 ∩ ran 𝐹) ⊆ ran 𝐹
225frnd 6494 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ran 𝐹 ⊆ ℝ)
2321, 22sstrid 3926 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝐴 ∩ ran 𝐹) ⊆ ℝ)
2423adantr 484 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐴 ∩ ran 𝐹) ⊆ ℝ)
25 reldisj 4359 . . . . . . 7 ((𝐴 ∩ ran 𝐹) ⊆ ℝ → (((𝐴 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ (𝐴 ∩ ran 𝐹) ⊆ (ℝ ∖ {0})))
2624, 25syl 17 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (((𝐴 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ (𝐴 ∩ ran 𝐹) ⊆ (ℝ ∖ {0})))
2720, 26mpbid 235 . . . . 5 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐴 ∩ ran 𝐹) ⊆ (ℝ ∖ {0}))
28 imass2 5932 . . . . 5 ((𝐴 ∩ ran 𝐹) ⊆ (ℝ ∖ {0}) → (𝐹 “ (𝐴 ∩ ran 𝐹)) ⊆ (𝐹 “ (ℝ ∖ {0})))
2927, 28syl 17 . . . 4 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹 “ (𝐴 ∩ ran 𝐹)) ⊆ (𝐹 “ (ℝ ∖ {0})))
3015, 29eqsstrd 3953 . . 3 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹𝐴) ⊆ (𝐹 “ (ℝ ∖ {0})))
31 i1fima 24282 . . . . 5 (𝐹 ∈ dom ∫1 → (𝐹 “ (ℝ ∖ {0})) ∈ dom vol)
3231adantr 484 . . . 4 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹 “ (ℝ ∖ {0})) ∈ dom vol)
33 mblss 24135 . . . 4 ((𝐹 “ (ℝ ∖ {0})) ∈ dom vol → (𝐹 “ (ℝ ∖ {0})) ⊆ ℝ)
3432, 33syl 17 . . 3 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹 “ (ℝ ∖ {0})) ⊆ ℝ)
35 mblvol 24134 . . . . 5 ((𝐹 “ (ℝ ∖ {0})) ∈ dom vol → (vol‘(𝐹 “ (ℝ ∖ {0}))) = (vol*‘(𝐹 “ (ℝ ∖ {0}))))
3632, 35syl 17 . . . 4 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(𝐹 “ (ℝ ∖ {0}))) = (vol*‘(𝐹 “ (ℝ ∖ {0}))))
37 isi1f 24278 . . . . . . 7 (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)))
3837simprbi 500 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))
3938simp3d 1141 . . . . 5 (𝐹 ∈ dom ∫1 → (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)
4039adantr 484 . . . 4 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)
4136, 40eqeltrrd 2891 . . 3 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol*‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)
42 ovolsscl 24090 . . 3 (((𝐹𝐴) ⊆ (𝐹 “ (ℝ ∖ {0})) ∧ (𝐹 “ (ℝ ∖ {0})) ⊆ ℝ ∧ (vol*‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ) → (vol*‘(𝐹𝐴)) ∈ ℝ)
4330, 34, 41, 42syl3anc 1368 . 2 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol*‘(𝐹𝐴)) ∈ ℝ)
444, 43eqeltrd 2890 1 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(𝐹𝐴)) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  cdif 3878  cin 3880  wss 3881  c0 4243  {csn 4525  ccnv 5518  dom cdm 5519  ran crn 5520  cima 5522  Fun wfun 6318  wf 6320  cfv 6324  Fincfn 8492  cr 10525  0cc0 10526  vol*covol 24066  volcvol 24067  MblFncmbf 24218  1citg1 24219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xadd 12496  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-xmet 20084  df-met 20085  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224
This theorem is referenced by:  i1fima2sn  24284  i1f0rn  24286  itg2addnclem  35108  itg2addnclem2  35109  ftc1anclem3  35132
  Copyright terms: Public domain W3C validator