MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fima2 Structured version   Visualization version   GIF version

Theorem i1fima2 24843
Description: Any preimage of a simple function not containing zero has finite measure. (Contributed by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
i1fima2 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(𝐹𝐴)) ∈ ℝ)

Proof of Theorem i1fima2
StepHypRef Expression
1 i1fima 24842 . . . 4 (𝐹 ∈ dom ∫1 → (𝐹𝐴) ∈ dom vol)
21adantr 481 . . 3 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹𝐴) ∈ dom vol)
3 mblvol 24694 . . 3 ((𝐹𝐴) ∈ dom vol → (vol‘(𝐹𝐴)) = (vol*‘(𝐹𝐴)))
42, 3syl 17 . 2 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(𝐹𝐴)) = (vol*‘(𝐹𝐴)))
5 i1ff 24840 . . . . . . 7 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
65adantr 481 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → 𝐹:ℝ⟶ℝ)
7 ffun 6603 . . . . . 6 (𝐹:ℝ⟶ℝ → Fun 𝐹)
8 inpreima 6941 . . . . . 6 (Fun 𝐹 → (𝐹 “ (𝐴 ∩ ran 𝐹)) = ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)))
96, 7, 83syl 18 . . . . 5 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹 “ (𝐴 ∩ ran 𝐹)) = ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)))
10 cnvimass 5989 . . . . . . 7 (𝐹𝐴) ⊆ dom 𝐹
11 cnvimarndm 5990 . . . . . . 7 (𝐹 “ ran 𝐹) = dom 𝐹
1210, 11sseqtrri 3958 . . . . . 6 (𝐹𝐴) ⊆ (𝐹 “ ran 𝐹)
13 df-ss 3904 . . . . . 6 ((𝐹𝐴) ⊆ (𝐹 “ ran 𝐹) ↔ ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴))
1412, 13mpbi 229 . . . . 5 ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴)
159, 14eqtr2di 2795 . . . 4 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹𝐴) = (𝐹 “ (𝐴 ∩ ran 𝐹)))
16 elinel1 4129 . . . . . . . . 9 (0 ∈ (𝐴 ∩ ran 𝐹) → 0 ∈ 𝐴)
1716con3i 154 . . . . . . . 8 (¬ 0 ∈ 𝐴 → ¬ 0 ∈ (𝐴 ∩ ran 𝐹))
1817adantl 482 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → ¬ 0 ∈ (𝐴 ∩ ran 𝐹))
19 disjsn 4647 . . . . . . 7 (((𝐴 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ ¬ 0 ∈ (𝐴 ∩ ran 𝐹))
2018, 19sylibr 233 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → ((𝐴 ∩ ran 𝐹) ∩ {0}) = ∅)
21 inss2 4163 . . . . . . . . 9 (𝐴 ∩ ran 𝐹) ⊆ ran 𝐹
225frnd 6608 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ran 𝐹 ⊆ ℝ)
2321, 22sstrid 3932 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝐴 ∩ ran 𝐹) ⊆ ℝ)
2423adantr 481 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐴 ∩ ran 𝐹) ⊆ ℝ)
25 reldisj 4385 . . . . . . 7 ((𝐴 ∩ ran 𝐹) ⊆ ℝ → (((𝐴 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ (𝐴 ∩ ran 𝐹) ⊆ (ℝ ∖ {0})))
2624, 25syl 17 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (((𝐴 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ (𝐴 ∩ ran 𝐹) ⊆ (ℝ ∖ {0})))
2720, 26mpbid 231 . . . . 5 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐴 ∩ ran 𝐹) ⊆ (ℝ ∖ {0}))
28 imass2 6010 . . . . 5 ((𝐴 ∩ ran 𝐹) ⊆ (ℝ ∖ {0}) → (𝐹 “ (𝐴 ∩ ran 𝐹)) ⊆ (𝐹 “ (ℝ ∖ {0})))
2927, 28syl 17 . . . 4 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹 “ (𝐴 ∩ ran 𝐹)) ⊆ (𝐹 “ (ℝ ∖ {0})))
3015, 29eqsstrd 3959 . . 3 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹𝐴) ⊆ (𝐹 “ (ℝ ∖ {0})))
31 i1fima 24842 . . . . 5 (𝐹 ∈ dom ∫1 → (𝐹 “ (ℝ ∖ {0})) ∈ dom vol)
3231adantr 481 . . . 4 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹 “ (ℝ ∖ {0})) ∈ dom vol)
33 mblss 24695 . . . 4 ((𝐹 “ (ℝ ∖ {0})) ∈ dom vol → (𝐹 “ (ℝ ∖ {0})) ⊆ ℝ)
3432, 33syl 17 . . 3 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹 “ (ℝ ∖ {0})) ⊆ ℝ)
35 mblvol 24694 . . . . 5 ((𝐹 “ (ℝ ∖ {0})) ∈ dom vol → (vol‘(𝐹 “ (ℝ ∖ {0}))) = (vol*‘(𝐹 “ (ℝ ∖ {0}))))
3632, 35syl 17 . . . 4 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(𝐹 “ (ℝ ∖ {0}))) = (vol*‘(𝐹 “ (ℝ ∖ {0}))))
37 isi1f 24838 . . . . . . 7 (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)))
3837simprbi 497 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))
3938simp3d 1143 . . . . 5 (𝐹 ∈ dom ∫1 → (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)
4039adantr 481 . . . 4 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)
4136, 40eqeltrrd 2840 . . 3 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol*‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)
42 ovolsscl 24650 . . 3 (((𝐹𝐴) ⊆ (𝐹 “ (ℝ ∖ {0})) ∧ (𝐹 “ (ℝ ∖ {0})) ⊆ ℝ ∧ (vol*‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ) → (vol*‘(𝐹𝐴)) ∈ ℝ)
4330, 34, 41, 42syl3anc 1370 . 2 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol*‘(𝐹𝐴)) ∈ ℝ)
444, 43eqeltrd 2839 1 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(𝐹𝐴)) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  cdif 3884  cin 3886  wss 3887  c0 4256  {csn 4561  ccnv 5588  dom cdm 5589  ran crn 5590  cima 5592  Fun wfun 6427  wf 6429  cfv 6433  Fincfn 8733  cr 10870  0cc0 10871  vol*covol 24626  volcvol 24627  MblFncmbf 24778  1citg1 24779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xadd 12849  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-xmet 20590  df-met 20591  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784
This theorem is referenced by:  i1fima2sn  24844  i1f0rn  24846  itg2addnclem  35828  itg2addnclem2  35829  ftc1anclem3  35852
  Copyright terms: Public domain W3C validator