Proof of Theorem i1fima2
Step | Hyp | Ref
| Expression |
1 | | i1fima 23786 |
. . . 4
⊢ (𝐹 ∈ dom ∫1
→ (◡𝐹 “ 𝐴) ∈ dom vol) |
2 | 1 | adantr 473 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ ¬ 0 ∈ 𝐴)
→ (◡𝐹 “ 𝐴) ∈ dom vol) |
3 | | mblvol 23638 |
. . 3
⊢ ((◡𝐹 “ 𝐴) ∈ dom vol → (vol‘(◡𝐹 “ 𝐴)) = (vol*‘(◡𝐹 “ 𝐴))) |
4 | 2, 3 | syl 17 |
. 2
⊢ ((𝐹 ∈ dom ∫1
∧ ¬ 0 ∈ 𝐴)
→ (vol‘(◡𝐹 “ 𝐴)) = (vol*‘(◡𝐹 “ 𝐴))) |
5 | | i1ff 23784 |
. . . . . . 7
⊢ (𝐹 ∈ dom ∫1
→ 𝐹:ℝ⟶ℝ) |
6 | 5 | adantr 473 |
. . . . . 6
⊢ ((𝐹 ∈ dom ∫1
∧ ¬ 0 ∈ 𝐴)
→ 𝐹:ℝ⟶ℝ) |
7 | | ffun 6259 |
. . . . . 6
⊢ (𝐹:ℝ⟶ℝ →
Fun 𝐹) |
8 | | inpreima 6568 |
. . . . . 6
⊢ (Fun
𝐹 → (◡𝐹 “ (𝐴 ∩ ran 𝐹)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ ran 𝐹))) |
9 | 6, 7, 8 | 3syl 18 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ ¬ 0 ∈ 𝐴)
→ (◡𝐹 “ (𝐴 ∩ ran 𝐹)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ ran 𝐹))) |
10 | | cnvimass 5702 |
. . . . . . 7
⊢ (◡𝐹 “ 𝐴) ⊆ dom 𝐹 |
11 | | cnvimarndm 5703 |
. . . . . . 7
⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 |
12 | 10, 11 | sseqtr4i 3834 |
. . . . . 6
⊢ (◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ ran 𝐹) |
13 | | df-ss 3783 |
. . . . . 6
⊢ ((◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ ran 𝐹) ↔ ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ ran 𝐹)) = (◡𝐹 “ 𝐴)) |
14 | 12, 13 | mpbi 222 |
. . . . 5
⊢ ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ ran 𝐹)) = (◡𝐹 “ 𝐴) |
15 | 9, 14 | syl6req 2850 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ ¬ 0 ∈ 𝐴)
→ (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) |
16 | | inss1 4028 |
. . . . . . . . . 10
⊢ (𝐴 ∩ ran 𝐹) ⊆ 𝐴 |
17 | 16 | sseli 3794 |
. . . . . . . . 9
⊢ (0 ∈
(𝐴 ∩ ran 𝐹) → 0 ∈ 𝐴) |
18 | 17 | con3i 152 |
. . . . . . . 8
⊢ (¬ 0
∈ 𝐴 → ¬ 0
∈ (𝐴 ∩ ran 𝐹)) |
19 | 18 | adantl 474 |
. . . . . . 7
⊢ ((𝐹 ∈ dom ∫1
∧ ¬ 0 ∈ 𝐴)
→ ¬ 0 ∈ (𝐴
∩ ran 𝐹)) |
20 | | disjsn 4436 |
. . . . . . 7
⊢ (((𝐴 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ ¬ 0 ∈
(𝐴 ∩ ran 𝐹)) |
21 | 19, 20 | sylibr 226 |
. . . . . 6
⊢ ((𝐹 ∈ dom ∫1
∧ ¬ 0 ∈ 𝐴)
→ ((𝐴 ∩ ran 𝐹) ∩ {0}) =
∅) |
22 | | inss2 4029 |
. . . . . . . . 9
⊢ (𝐴 ∩ ran 𝐹) ⊆ ran 𝐹 |
23 | 5 | frnd 6263 |
. . . . . . . . 9
⊢ (𝐹 ∈ dom ∫1
→ ran 𝐹 ⊆
ℝ) |
24 | 22, 23 | syl5ss 3809 |
. . . . . . . 8
⊢ (𝐹 ∈ dom ∫1
→ (𝐴 ∩ ran 𝐹) ⊆
ℝ) |
25 | 24 | adantr 473 |
. . . . . . 7
⊢ ((𝐹 ∈ dom ∫1
∧ ¬ 0 ∈ 𝐴)
→ (𝐴 ∩ ran 𝐹) ⊆
ℝ) |
26 | | reldisj 4215 |
. . . . . . 7
⊢ ((𝐴 ∩ ran 𝐹) ⊆ ℝ → (((𝐴 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ (𝐴 ∩ ran 𝐹) ⊆ (ℝ ∖
{0}))) |
27 | 25, 26 | syl 17 |
. . . . . 6
⊢ ((𝐹 ∈ dom ∫1
∧ ¬ 0 ∈ 𝐴)
→ (((𝐴 ∩ ran 𝐹) ∩ {0}) = ∅ ↔
(𝐴 ∩ ran 𝐹) ⊆ (ℝ ∖
{0}))) |
28 | 21, 27 | mpbid 224 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ ¬ 0 ∈ 𝐴)
→ (𝐴 ∩ ran 𝐹) ⊆ (ℝ ∖
{0})) |
29 | | imass2 5718 |
. . . . 5
⊢ ((𝐴 ∩ ran 𝐹) ⊆ (ℝ ∖ {0}) →
(◡𝐹 “ (𝐴 ∩ ran 𝐹)) ⊆ (◡𝐹 “ (ℝ ∖
{0}))) |
30 | 28, 29 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ ¬ 0 ∈ 𝐴)
→ (◡𝐹 “ (𝐴 ∩ ran 𝐹)) ⊆ (◡𝐹 “ (ℝ ∖
{0}))) |
31 | 15, 30 | eqsstrd 3835 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ ¬ 0 ∈ 𝐴)
→ (◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ (ℝ ∖
{0}))) |
32 | | i1fima 23786 |
. . . . 5
⊢ (𝐹 ∈ dom ∫1
→ (◡𝐹 “ (ℝ ∖ {0})) ∈ dom
vol) |
33 | 32 | adantr 473 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ ¬ 0 ∈ 𝐴)
→ (◡𝐹 “ (ℝ ∖ {0})) ∈ dom
vol) |
34 | | mblss 23639 |
. . . 4
⊢ ((◡𝐹 “ (ℝ ∖ {0})) ∈ dom
vol → (◡𝐹 “ (ℝ ∖ {0})) ⊆
ℝ) |
35 | 33, 34 | syl 17 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ ¬ 0 ∈ 𝐴)
→ (◡𝐹 “ (ℝ ∖ {0})) ⊆
ℝ) |
36 | | mblvol 23638 |
. . . . 5
⊢ ((◡𝐹 “ (ℝ ∖ {0})) ∈ dom
vol → (vol‘(◡𝐹 “ (ℝ ∖ {0})))
= (vol*‘(◡𝐹 “ (ℝ ∖
{0})))) |
37 | 33, 36 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ ¬ 0 ∈ 𝐴)
→ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) =
(vol*‘(◡𝐹 “ (ℝ ∖
{0})))) |
38 | | isi1f 23782 |
. . . . . . 7
⊢ (𝐹 ∈ dom ∫1
↔ (𝐹 ∈ MblFn
∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧
(vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈
ℝ))) |
39 | 38 | simprbi 491 |
. . . . . 6
⊢ (𝐹 ∈ dom ∫1
→ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧
(vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈
ℝ)) |
40 | 39 | simp3d 1175 |
. . . . 5
⊢ (𝐹 ∈ dom ∫1
→ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈
ℝ) |
41 | 40 | adantr 473 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ ¬ 0 ∈ 𝐴)
→ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈
ℝ) |
42 | 37, 41 | eqeltrrd 2879 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ ¬ 0 ∈ 𝐴)
→ (vol*‘(◡𝐹 “ (ℝ ∖ {0}))) ∈
ℝ) |
43 | | ovolsscl 23594 |
. . 3
⊢ (((◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ (ℝ ∖ {0})) ∧ (◡𝐹 “ (ℝ ∖ {0})) ⊆
ℝ ∧ (vol*‘(◡𝐹 “ (ℝ ∖ {0})))
∈ ℝ) → (vol*‘(◡𝐹 “ 𝐴)) ∈ ℝ) |
44 | 31, 35, 42, 43 | syl3anc 1491 |
. 2
⊢ ((𝐹 ∈ dom ∫1
∧ ¬ 0 ∈ 𝐴)
→ (vol*‘(◡𝐹 “ 𝐴)) ∈ ℝ) |
45 | 4, 44 | eqeltrd 2878 |
1
⊢ ((𝐹 ∈ dom ∫1
∧ ¬ 0 ∈ 𝐴)
→ (vol‘(◡𝐹 “ 𝐴)) ∈ ℝ) |