MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fima2 Structured version   Visualization version   GIF version

Theorem i1fima2 24282
Description: Any preimage of a simple function not containing zero has finite measure. (Contributed by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
i1fima2 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(𝐹𝐴)) ∈ ℝ)

Proof of Theorem i1fima2
StepHypRef Expression
1 i1fima 24281 . . . 4 (𝐹 ∈ dom ∫1 → (𝐹𝐴) ∈ dom vol)
21adantr 483 . . 3 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹𝐴) ∈ dom vol)
3 mblvol 24133 . . 3 ((𝐹𝐴) ∈ dom vol → (vol‘(𝐹𝐴)) = (vol*‘(𝐹𝐴)))
42, 3syl 17 . 2 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(𝐹𝐴)) = (vol*‘(𝐹𝐴)))
5 i1ff 24279 . . . . . . 7 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
65adantr 483 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → 𝐹:ℝ⟶ℝ)
7 ffun 6519 . . . . . 6 (𝐹:ℝ⟶ℝ → Fun 𝐹)
8 inpreima 6836 . . . . . 6 (Fun 𝐹 → (𝐹 “ (𝐴 ∩ ran 𝐹)) = ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)))
96, 7, 83syl 18 . . . . 5 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹 “ (𝐴 ∩ ran 𝐹)) = ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)))
10 cnvimass 5951 . . . . . . 7 (𝐹𝐴) ⊆ dom 𝐹
11 cnvimarndm 5952 . . . . . . 7 (𝐹 “ ran 𝐹) = dom 𝐹
1210, 11sseqtrri 4006 . . . . . 6 (𝐹𝐴) ⊆ (𝐹 “ ran 𝐹)
13 df-ss 3954 . . . . . 6 ((𝐹𝐴) ⊆ (𝐹 “ ran 𝐹) ↔ ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴))
1412, 13mpbi 232 . . . . 5 ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴)
159, 14syl6req 2875 . . . 4 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹𝐴) = (𝐹 “ (𝐴 ∩ ran 𝐹)))
16 elinel1 4174 . . . . . . . . 9 (0 ∈ (𝐴 ∩ ran 𝐹) → 0 ∈ 𝐴)
1716con3i 157 . . . . . . . 8 (¬ 0 ∈ 𝐴 → ¬ 0 ∈ (𝐴 ∩ ran 𝐹))
1817adantl 484 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → ¬ 0 ∈ (𝐴 ∩ ran 𝐹))
19 disjsn 4649 . . . . . . 7 (((𝐴 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ ¬ 0 ∈ (𝐴 ∩ ran 𝐹))
2018, 19sylibr 236 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → ((𝐴 ∩ ran 𝐹) ∩ {0}) = ∅)
21 inss2 4208 . . . . . . . . 9 (𝐴 ∩ ran 𝐹) ⊆ ran 𝐹
225frnd 6523 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ran 𝐹 ⊆ ℝ)
2321, 22sstrid 3980 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝐴 ∩ ran 𝐹) ⊆ ℝ)
2423adantr 483 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐴 ∩ ran 𝐹) ⊆ ℝ)
25 reldisj 4404 . . . . . . 7 ((𝐴 ∩ ran 𝐹) ⊆ ℝ → (((𝐴 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ (𝐴 ∩ ran 𝐹) ⊆ (ℝ ∖ {0})))
2624, 25syl 17 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (((𝐴 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ (𝐴 ∩ ran 𝐹) ⊆ (ℝ ∖ {0})))
2720, 26mpbid 234 . . . . 5 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐴 ∩ ran 𝐹) ⊆ (ℝ ∖ {0}))
28 imass2 5967 . . . . 5 ((𝐴 ∩ ran 𝐹) ⊆ (ℝ ∖ {0}) → (𝐹 “ (𝐴 ∩ ran 𝐹)) ⊆ (𝐹 “ (ℝ ∖ {0})))
2927, 28syl 17 . . . 4 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹 “ (𝐴 ∩ ran 𝐹)) ⊆ (𝐹 “ (ℝ ∖ {0})))
3015, 29eqsstrd 4007 . . 3 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹𝐴) ⊆ (𝐹 “ (ℝ ∖ {0})))
31 i1fima 24281 . . . . 5 (𝐹 ∈ dom ∫1 → (𝐹 “ (ℝ ∖ {0})) ∈ dom vol)
3231adantr 483 . . . 4 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹 “ (ℝ ∖ {0})) ∈ dom vol)
33 mblss 24134 . . . 4 ((𝐹 “ (ℝ ∖ {0})) ∈ dom vol → (𝐹 “ (ℝ ∖ {0})) ⊆ ℝ)
3432, 33syl 17 . . 3 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹 “ (ℝ ∖ {0})) ⊆ ℝ)
35 mblvol 24133 . . . . 5 ((𝐹 “ (ℝ ∖ {0})) ∈ dom vol → (vol‘(𝐹 “ (ℝ ∖ {0}))) = (vol*‘(𝐹 “ (ℝ ∖ {0}))))
3632, 35syl 17 . . . 4 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(𝐹 “ (ℝ ∖ {0}))) = (vol*‘(𝐹 “ (ℝ ∖ {0}))))
37 isi1f 24277 . . . . . . 7 (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)))
3837simprbi 499 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))
3938simp3d 1140 . . . . 5 (𝐹 ∈ dom ∫1 → (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)
4039adantr 483 . . . 4 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)
4136, 40eqeltrrd 2916 . . 3 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol*‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)
42 ovolsscl 24089 . . 3 (((𝐹𝐴) ⊆ (𝐹 “ (ℝ ∖ {0})) ∧ (𝐹 “ (ℝ ∖ {0})) ⊆ ℝ ∧ (vol*‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ) → (vol*‘(𝐹𝐴)) ∈ ℝ)
4330, 34, 41, 42syl3anc 1367 . 2 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol*‘(𝐹𝐴)) ∈ ℝ)
444, 43eqeltrd 2915 1 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(𝐹𝐴)) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  cdif 3935  cin 3937  wss 3938  c0 4293  {csn 4569  ccnv 5556  dom cdm 5557  ran crn 5558  cima 5560  Fun wfun 6351  wf 6353  cfv 6357  Fincfn 8511  cr 10538  0cc0 10539  vol*covol 24065  volcvol 24066  MblFncmbf 24217  1citg1 24218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xadd 12511  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-xmet 20540  df-met 20541  df-ovol 24067  df-vol 24068  df-mbf 24222  df-itg1 24223
This theorem is referenced by:  i1fima2sn  24283  i1f0rn  24285  itg2addnclem  34945  itg2addnclem2  34946  ftc1anclem3  34971
  Copyright terms: Public domain W3C validator