| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > supppreima | Structured version Visualization version GIF version | ||
| Description: Express the support of a function as the preimage of its range except zero. (Contributed by Thierry Arnoux, 24-Jun-2024.) |
| Ref | Expression |
|---|---|
| supppreima | ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (ran 𝐹 ∖ {𝑍}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvimarndm 6075 | . . . 4 ⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝐹 “ ran 𝐹) = dom 𝐹) |
| 3 | 2 | difeq1d 4105 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((◡𝐹 “ ran 𝐹) ∖ (◡𝐹 “ {𝑍})) = (dom 𝐹 ∖ (◡𝐹 “ {𝑍}))) |
| 4 | difpreima 7060 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ (ran 𝐹 ∖ {𝑍})) = ((◡𝐹 “ ran 𝐹) ∖ (◡𝐹 “ {𝑍}))) | |
| 5 | 4 | 3ad2ant1 1133 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝐹 “ (ran 𝐹 ∖ {𝑍})) = ((◡𝐹 “ ran 𝐹) ∖ (◡𝐹 “ {𝑍}))) |
| 6 | suppssdm 8181 | . . . 4 ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 | |
| 7 | dfss4 4249 | . . . 4 ⊢ ((𝐹 supp 𝑍) ⊆ dom 𝐹 ↔ (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍)) | |
| 8 | 6, 7 | mpbi 230 | . . 3 ⊢ (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍) |
| 9 | suppiniseg 32668 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (◡𝐹 “ {𝑍})) | |
| 10 | 9 | difeq2d 4106 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (dom 𝐹 ∖ (◡𝐹 “ {𝑍}))) |
| 11 | 8, 10 | eqtr3id 2785 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (dom 𝐹 ∖ (◡𝐹 “ {𝑍}))) |
| 12 | 3, 5, 11 | 3eqtr4rd 2782 | 1 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (ran 𝐹 ∖ {𝑍}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∖ cdif 3928 ⊆ wss 3931 {csn 4606 ◡ccnv 5658 dom cdm 5659 ran crn 5660 “ cima 5662 Fun wfun 6530 (class class class)co 7410 supp csupp 8164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-supp 8165 |
| This theorem is referenced by: mptiffisupp 32675 gsumhashmul 33060 |
| Copyright terms: Public domain | W3C validator |