![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > supppreima | Structured version Visualization version GIF version |
Description: Express the support of a function as the preimage of its range except zero. (Contributed by Thierry Arnoux, 24-Jun-2024.) |
Ref | Expression |
---|---|
supppreima | ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (ran 𝐹 ∖ {𝑍}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvimarndm 6071 | . . . 4 ⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 | |
2 | 1 | a1i 11 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝐹 “ ran 𝐹) = dom 𝐹) |
3 | 2 | difeq1d 4113 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((◡𝐹 “ ran 𝐹) ∖ (◡𝐹 “ {𝑍})) = (dom 𝐹 ∖ (◡𝐹 “ {𝑍}))) |
4 | difpreima 7056 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ (ran 𝐹 ∖ {𝑍})) = ((◡𝐹 “ ran 𝐹) ∖ (◡𝐹 “ {𝑍}))) | |
5 | 4 | 3ad2ant1 1130 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝐹 “ (ran 𝐹 ∖ {𝑍})) = ((◡𝐹 “ ran 𝐹) ∖ (◡𝐹 “ {𝑍}))) |
6 | suppssdm 8156 | . . . 4 ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 | |
7 | dfss4 4250 | . . . 4 ⊢ ((𝐹 supp 𝑍) ⊆ dom 𝐹 ↔ (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍)) | |
8 | 6, 7 | mpbi 229 | . . 3 ⊢ (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍) |
9 | suppiniseg 32377 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (◡𝐹 “ {𝑍})) | |
10 | 9 | difeq2d 4114 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (dom 𝐹 ∖ (◡𝐹 “ {𝑍}))) |
11 | 8, 10 | eqtr3id 2778 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (dom 𝐹 ∖ (◡𝐹 “ {𝑍}))) |
12 | 3, 5, 11 | 3eqtr4rd 2775 | 1 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (ran 𝐹 ∖ {𝑍}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∖ cdif 3937 ⊆ wss 3940 {csn 4620 ◡ccnv 5665 dom cdm 5666 ran crn 5667 “ cima 5669 Fun wfun 6527 (class class class)co 7401 supp csupp 8140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-supp 8141 |
This theorem is referenced by: mptiffisupp 32384 gsumhashmul 32676 |
Copyright terms: Public domain | W3C validator |