Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supppreima Structured version   Visualization version   GIF version

Theorem supppreima 32614
Description: Express the support of a function as the preimage of its range except zero. (Contributed by Thierry Arnoux, 24-Jun-2024.)
Assertion
Ref Expression
supppreima ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (ran 𝐹 ∖ {𝑍})))

Proof of Theorem supppreima
StepHypRef Expression
1 cnvimarndm 6054 . . . 4 (𝐹 “ ran 𝐹) = dom 𝐹
21a1i 11 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 “ ran 𝐹) = dom 𝐹)
32difeq1d 4088 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → ((𝐹 “ ran 𝐹) ∖ (𝐹 “ {𝑍})) = (dom 𝐹 ∖ (𝐹 “ {𝑍})))
4 difpreima 7037 . . 3 (Fun 𝐹 → (𝐹 “ (ran 𝐹 ∖ {𝑍})) = ((𝐹 “ ran 𝐹) ∖ (𝐹 “ {𝑍})))
543ad2ant1 1133 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 “ (ran 𝐹 ∖ {𝑍})) = ((𝐹 “ ran 𝐹) ∖ (𝐹 “ {𝑍})))
6 suppssdm 8156 . . . 4 (𝐹 supp 𝑍) ⊆ dom 𝐹
7 dfss4 4232 . . . 4 ((𝐹 supp 𝑍) ⊆ dom 𝐹 ↔ (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍))
86, 7mpbi 230 . . 3 (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍)
9 suppiniseg 32609 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (𝐹 “ {𝑍}))
109difeq2d 4089 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (dom 𝐹 ∖ (𝐹 “ {𝑍})))
118, 10eqtr3id 2778 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (dom 𝐹 ∖ (𝐹 “ {𝑍})))
123, 5, 113eqtr4rd 2775 1 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (ran 𝐹 ∖ {𝑍})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cdif 3911  wss 3914  {csn 4589  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641  Fun wfun 6505  (class class class)co 7387   supp csupp 8139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-supp 8140
This theorem is referenced by:  mptiffisupp  32616  gsumhashmul  33001
  Copyright terms: Public domain W3C validator