Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > supppreima | Structured version Visualization version GIF version |
Description: Express the support of a function as the preimage of its range except zero. (Contributed by Thierry Arnoux, 24-Jun-2024.) |
Ref | Expression |
---|---|
supppreima | ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (ran 𝐹 ∖ {𝑍}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvimarndm 5990 | . . . 4 ⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 | |
2 | 1 | a1i 11 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝐹 “ ran 𝐹) = dom 𝐹) |
3 | 2 | difeq1d 4056 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((◡𝐹 “ ran 𝐹) ∖ (◡𝐹 “ {𝑍})) = (dom 𝐹 ∖ (◡𝐹 “ {𝑍}))) |
4 | difpreima 6942 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ (ran 𝐹 ∖ {𝑍})) = ((◡𝐹 “ ran 𝐹) ∖ (◡𝐹 “ {𝑍}))) | |
5 | 4 | 3ad2ant1 1132 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝐹 “ (ran 𝐹 ∖ {𝑍})) = ((◡𝐹 “ ran 𝐹) ∖ (◡𝐹 “ {𝑍}))) |
6 | suppssdm 7993 | . . . 4 ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 | |
7 | dfss4 4192 | . . . 4 ⊢ ((𝐹 supp 𝑍) ⊆ dom 𝐹 ↔ (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍)) | |
8 | 6, 7 | mpbi 229 | . . 3 ⊢ (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍) |
9 | suppiniseg 31020 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (◡𝐹 “ {𝑍})) | |
10 | 9 | difeq2d 4057 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (dom 𝐹 ∖ (◡𝐹 “ {𝑍}))) |
11 | 8, 10 | eqtr3id 2792 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (dom 𝐹 ∖ (◡𝐹 “ {𝑍}))) |
12 | 3, 5, 11 | 3eqtr4rd 2789 | 1 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (ran 𝐹 ∖ {𝑍}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ⊆ wss 3887 {csn 4561 ◡ccnv 5588 dom cdm 5589 ran crn 5590 “ cima 5592 Fun wfun 6427 (class class class)co 7275 supp csupp 7977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-supp 7978 |
This theorem is referenced by: gsumhashmul 31316 |
Copyright terms: Public domain | W3C validator |