![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > supppreima | Structured version Visualization version GIF version |
Description: Express the support of a function as the preimage of its range except zero. (Contributed by Thierry Arnoux, 24-Jun-2024.) |
Ref | Expression |
---|---|
supppreima | ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (ran 𝐹 ∖ {𝑍}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvimarndm 6103 | . . . 4 ⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 | |
2 | 1 | a1i 11 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝐹 “ ran 𝐹) = dom 𝐹) |
3 | 2 | difeq1d 4135 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((◡𝐹 “ ran 𝐹) ∖ (◡𝐹 “ {𝑍})) = (dom 𝐹 ∖ (◡𝐹 “ {𝑍}))) |
4 | difpreima 7085 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ (ran 𝐹 ∖ {𝑍})) = ((◡𝐹 “ ran 𝐹) ∖ (◡𝐹 “ {𝑍}))) | |
5 | 4 | 3ad2ant1 1132 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝐹 “ (ran 𝐹 ∖ {𝑍})) = ((◡𝐹 “ ran 𝐹) ∖ (◡𝐹 “ {𝑍}))) |
6 | suppssdm 8201 | . . . 4 ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 | |
7 | dfss4 4275 | . . . 4 ⊢ ((𝐹 supp 𝑍) ⊆ dom 𝐹 ↔ (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍)) | |
8 | 6, 7 | mpbi 230 | . . 3 ⊢ (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍) |
9 | suppiniseg 32701 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (◡𝐹 “ {𝑍})) | |
10 | 9 | difeq2d 4136 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (dom 𝐹 ∖ (◡𝐹 “ {𝑍}))) |
11 | 8, 10 | eqtr3id 2789 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (dom 𝐹 ∖ (◡𝐹 “ {𝑍}))) |
12 | 3, 5, 11 | 3eqtr4rd 2786 | 1 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (ran 𝐹 ∖ {𝑍}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∖ cdif 3960 ⊆ wss 3963 {csn 4631 ◡ccnv 5688 dom cdm 5689 ran crn 5690 “ cima 5692 Fun wfun 6557 (class class class)co 7431 supp csupp 8184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-supp 8185 |
This theorem is referenced by: mptiffisupp 32708 gsumhashmul 33047 |
Copyright terms: Public domain | W3C validator |