Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > supppreima | Structured version Visualization version GIF version |
Description: Express the support of a function as the preimage of its range except zero. (Contributed by Thierry Arnoux, 24-Jun-2024.) |
Ref | Expression |
---|---|
supppreima | ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (ran 𝐹 ∖ {𝑍}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvimarndm 6014 | . . . 4 ⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 | |
2 | 1 | a1i 11 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝐹 “ ran 𝐹) = dom 𝐹) |
3 | 2 | difeq1d 4067 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((◡𝐹 “ ran 𝐹) ∖ (◡𝐹 “ {𝑍})) = (dom 𝐹 ∖ (◡𝐹 “ {𝑍}))) |
4 | difpreima 6992 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ (ran 𝐹 ∖ {𝑍})) = ((◡𝐹 “ ran 𝐹) ∖ (◡𝐹 “ {𝑍}))) | |
5 | 4 | 3ad2ant1 1132 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝐹 “ (ran 𝐹 ∖ {𝑍})) = ((◡𝐹 “ ran 𝐹) ∖ (◡𝐹 “ {𝑍}))) |
6 | suppssdm 8055 | . . . 4 ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 | |
7 | dfss4 4204 | . . . 4 ⊢ ((𝐹 supp 𝑍) ⊆ dom 𝐹 ↔ (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍)) | |
8 | 6, 7 | mpbi 229 | . . 3 ⊢ (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍) |
9 | suppiniseg 31220 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (◡𝐹 “ {𝑍})) | |
10 | 9 | difeq2d 4068 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (dom 𝐹 ∖ (◡𝐹 “ {𝑍}))) |
11 | 8, 10 | eqtr3id 2790 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (dom 𝐹 ∖ (◡𝐹 “ {𝑍}))) |
12 | 3, 5, 11 | 3eqtr4rd 2787 | 1 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (ran 𝐹 ∖ {𝑍}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∖ cdif 3894 ⊆ wss 3897 {csn 4572 ◡ccnv 5613 dom cdm 5614 ran crn 5615 “ cima 5617 Fun wfun 6467 (class class class)co 7329 supp csupp 8039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-supp 8040 |
This theorem is referenced by: gsumhashmul 31516 |
Copyright terms: Public domain | W3C validator |