Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supppreima Structured version   Visualization version   GIF version

Theorem supppreima 30927
Description: Express the support of a function as the preimage of its range except zero. (Contributed by Thierry Arnoux, 24-Jun-2024.)
Assertion
Ref Expression
supppreima ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (ran 𝐹 ∖ {𝑍})))

Proof of Theorem supppreima
StepHypRef Expression
1 cnvimarndm 5979 . . . 4 (𝐹 “ ran 𝐹) = dom 𝐹
21a1i 11 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 “ ran 𝐹) = dom 𝐹)
32difeq1d 4052 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → ((𝐹 “ ran 𝐹) ∖ (𝐹 “ {𝑍})) = (dom 𝐹 ∖ (𝐹 “ {𝑍})))
4 difpreima 6924 . . 3 (Fun 𝐹 → (𝐹 “ (ran 𝐹 ∖ {𝑍})) = ((𝐹 “ ran 𝐹) ∖ (𝐹 “ {𝑍})))
543ad2ant1 1131 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 “ (ran 𝐹 ∖ {𝑍})) = ((𝐹 “ ran 𝐹) ∖ (𝐹 “ {𝑍})))
6 suppssdm 7964 . . . 4 (𝐹 supp 𝑍) ⊆ dom 𝐹
7 dfss4 4189 . . . 4 ((𝐹 supp 𝑍) ⊆ dom 𝐹 ↔ (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍))
86, 7mpbi 229 . . 3 (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍)
9 suppiniseg 30922 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (𝐹 “ {𝑍}))
109difeq2d 4053 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (dom 𝐹 ∖ (𝐹 “ {𝑍})))
118, 10eqtr3id 2793 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (dom 𝐹 ∖ (𝐹 “ {𝑍})))
123, 5, 113eqtr4rd 2789 1 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (ran 𝐹 ∖ {𝑍})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  cdif 3880  wss 3883  {csn 4558  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583  Fun wfun 6412  (class class class)co 7255   supp csupp 7948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-supp 7949
This theorem is referenced by:  gsumhashmul  31218
  Copyright terms: Public domain W3C validator