Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supppreima Structured version   Visualization version   GIF version

Theorem supppreima 32382
Description: Express the support of a function as the preimage of its range except zero. (Contributed by Thierry Arnoux, 24-Jun-2024.)
Assertion
Ref Expression
supppreima ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (ran 𝐹 ∖ {𝑍})))

Proof of Theorem supppreima
StepHypRef Expression
1 cnvimarndm 6071 . . . 4 (𝐹 “ ran 𝐹) = dom 𝐹
21a1i 11 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 “ ran 𝐹) = dom 𝐹)
32difeq1d 4113 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → ((𝐹 “ ran 𝐹) ∖ (𝐹 “ {𝑍})) = (dom 𝐹 ∖ (𝐹 “ {𝑍})))
4 difpreima 7056 . . 3 (Fun 𝐹 → (𝐹 “ (ran 𝐹 ∖ {𝑍})) = ((𝐹 “ ran 𝐹) ∖ (𝐹 “ {𝑍})))
543ad2ant1 1130 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 “ (ran 𝐹 ∖ {𝑍})) = ((𝐹 “ ran 𝐹) ∖ (𝐹 “ {𝑍})))
6 suppssdm 8156 . . . 4 (𝐹 supp 𝑍) ⊆ dom 𝐹
7 dfss4 4250 . . . 4 ((𝐹 supp 𝑍) ⊆ dom 𝐹 ↔ (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍))
86, 7mpbi 229 . . 3 (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍)
9 suppiniseg 32377 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (𝐹 “ {𝑍}))
109difeq2d 4114 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (dom 𝐹 ∖ (𝐹 “ {𝑍})))
118, 10eqtr3id 2778 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (dom 𝐹 ∖ (𝐹 “ {𝑍})))
123, 5, 113eqtr4rd 2775 1 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (ran 𝐹 ∖ {𝑍})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  cdif 3937  wss 3940  {csn 4620  ccnv 5665  dom cdm 5666  ran crn 5667  cima 5669  Fun wfun 6527  (class class class)co 7401   supp csupp 8140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-supp 8141
This theorem is referenced by:  mptiffisupp  32384  gsumhashmul  32676
  Copyright terms: Public domain W3C validator