Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supppreima Structured version   Visualization version   GIF version

Theorem supppreima 32706
Description: Express the support of a function as the preimage of its range except zero. (Contributed by Thierry Arnoux, 24-Jun-2024.)
Assertion
Ref Expression
supppreima ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (ran 𝐹 ∖ {𝑍})))

Proof of Theorem supppreima
StepHypRef Expression
1 cnvimarndm 6103 . . . 4 (𝐹 “ ran 𝐹) = dom 𝐹
21a1i 11 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 “ ran 𝐹) = dom 𝐹)
32difeq1d 4135 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → ((𝐹 “ ran 𝐹) ∖ (𝐹 “ {𝑍})) = (dom 𝐹 ∖ (𝐹 “ {𝑍})))
4 difpreima 7085 . . 3 (Fun 𝐹 → (𝐹 “ (ran 𝐹 ∖ {𝑍})) = ((𝐹 “ ran 𝐹) ∖ (𝐹 “ {𝑍})))
543ad2ant1 1132 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 “ (ran 𝐹 ∖ {𝑍})) = ((𝐹 “ ran 𝐹) ∖ (𝐹 “ {𝑍})))
6 suppssdm 8201 . . . 4 (𝐹 supp 𝑍) ⊆ dom 𝐹
7 dfss4 4275 . . . 4 ((𝐹 supp 𝑍) ⊆ dom 𝐹 ↔ (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍))
86, 7mpbi 230 . . 3 (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍)
9 suppiniseg 32701 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (𝐹 “ {𝑍}))
109difeq2d 4136 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (dom 𝐹 ∖ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (dom 𝐹 ∖ (𝐹 “ {𝑍})))
118, 10eqtr3id 2789 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (dom 𝐹 ∖ (𝐹 “ {𝑍})))
123, 5, 113eqtr4rd 2786 1 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (ran 𝐹 ∖ {𝑍})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  cdif 3960  wss 3963  {csn 4631  ccnv 5688  dom cdm 5689  ran crn 5690  cima 5692  Fun wfun 6557  (class class class)co 7431   supp csupp 8184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-supp 8185
This theorem is referenced by:  mptiffisupp  32708  gsumhashmul  33047
  Copyright terms: Public domain W3C validator