MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwnnlem1 Structured version   Visualization version   GIF version

Theorem vdwnnlem1 17033
Description: Corollary of vdw 17032, and lemma for vdwnn 17036. If 𝐹 is a coloring of the integers, then there are arbitrarily long monochromatic APs in 𝐹. (Contributed by Mario Carneiro, 13-Sep-2014.)
Assertion
Ref Expression
vdwnnlem1 ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
Distinct variable groups:   𝑎,𝑑,𝑚,𝑐,𝐾   𝑅,𝑎,𝑐,𝑑   𝐹,𝑎,𝑐,𝑑,𝑚
Allowed substitution hint:   𝑅(𝑚)

Proof of Theorem vdwnnlem1
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdw 17032 . . 3 ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}))
213adant2 1132 . 2 ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}))
3 simpl2 1193 . . . . . . 7 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → 𝐹:ℕ⟶𝑅)
4 fz1ssnn 13595 . . . . . . 7 (1...𝑛) ⊆ ℕ
5 fssres 6774 . . . . . . 7 ((𝐹:ℕ⟶𝑅 ∧ (1...𝑛) ⊆ ℕ) → (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶𝑅)
63, 4, 5sylancl 586 . . . . . 6 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶𝑅)
7 simpl1 1192 . . . . . . 7 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → 𝑅 ∈ Fin)
8 ovex 7464 . . . . . . 7 (1...𝑛) ∈ V
9 elmapg 8879 . . . . . . 7 ((𝑅 ∈ Fin ∧ (1...𝑛) ∈ V) → ((𝐹 ↾ (1...𝑛)) ∈ (𝑅m (1...𝑛)) ↔ (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶𝑅))
107, 8, 9sylancl 586 . . . . . 6 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → ((𝐹 ↾ (1...𝑛)) ∈ (𝑅m (1...𝑛)) ↔ (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶𝑅))
116, 10mpbird 257 . . . . 5 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (𝐹 ↾ (1...𝑛)) ∈ (𝑅m (1...𝑛)))
12 cnveq 5884 . . . . . . . . . . 11 (𝑓 = (𝐹 ↾ (1...𝑛)) → 𝑓 = (𝐹 ↾ (1...𝑛)))
1312imaeq1d 6077 . . . . . . . . . 10 (𝑓 = (𝐹 ↾ (1...𝑛)) → (𝑓 “ {𝑐}) = ((𝐹 ↾ (1...𝑛)) “ {𝑐}))
1413eleq2d 2827 . . . . . . . . 9 (𝑓 = (𝐹 ↾ (1...𝑛)) → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) ↔ (𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
1514ralbidv 3178 . . . . . . . 8 (𝑓 = (𝐹 ↾ (1...𝑛)) → (∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
16152rexbidv 3222 . . . . . . 7 (𝑓 = (𝐹 ↾ (1...𝑛)) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
1716rexbidv 3179 . . . . . 6 (𝑓 = (𝐹 ↾ (1...𝑛)) → (∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
1817rspcv 3618 . . . . 5 ((𝐹 ↾ (1...𝑛)) ∈ (𝑅m (1...𝑛)) → (∀𝑓 ∈ (𝑅m (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
1911, 18syl 17 . . . 4 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (∀𝑓 ∈ (𝑅m (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
20 resss 6019 . . . . . . . . . 10 (𝐹 ↾ (1...𝑛)) ⊆ 𝐹
21 cnvss 5883 . . . . . . . . . 10 ((𝐹 ↾ (1...𝑛)) ⊆ 𝐹(𝐹 ↾ (1...𝑛)) ⊆ 𝐹)
22 imass1 6119 . . . . . . . . . 10 ((𝐹 ↾ (1...𝑛)) ⊆ 𝐹 → ((𝐹 ↾ (1...𝑛)) “ {𝑐}) ⊆ (𝐹 “ {𝑐}))
2320, 21, 22mp2b 10 . . . . . . . . 9 ((𝐹 ↾ (1...𝑛)) “ {𝑐}) ⊆ (𝐹 “ {𝑐})
2423sseli 3979 . . . . . . . 8 ((𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐}) → (𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
2524ralimi 3083 . . . . . . 7 (∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐}) → ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
2625reximi 3084 . . . . . 6 (∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐}) → ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
2726reximi 3084 . . . . 5 (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐}) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
2827reximi 3084 . . . 4 (∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐}) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
2919, 28syl6 35 . . 3 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (∀𝑓 ∈ (𝑅m (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3029rexlimdva 3155 . 2 ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
312, 30mpd 15 1 ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  wss 3951  {csn 4626  ccnv 5684  cres 5687  cima 5688  wf 6557  (class class class)co 7431  m cmap 8866  Fincfn 8985  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492  cn 12266  0cn0 12526  ...cfz 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-hash 14370  df-vdwap 17006  df-vdwmc 17007  df-vdwpc 17008
This theorem is referenced by:  vdwnnlem3  17035
  Copyright terms: Public domain W3C validator