MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwnnlem1 Structured version   Visualization version   GIF version

Theorem vdwnnlem1 15980
Description: Corollary of vdw 15979, and lemma for vdwnn 15983. If 𝐹 is a coloring of the integers, then there are arbitrarily long monochromatic APs in 𝐹. (Contributed by Mario Carneiro, 13-Sep-2014.)
Assertion
Ref Expression
vdwnnlem1 ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
Distinct variable groups:   𝑎,𝑑,𝑚,𝑐,𝐾   𝑅,𝑎,𝑐,𝑑   𝐹,𝑎,𝑐,𝑑,𝑚
Allowed substitution hint:   𝑅(𝑚)

Proof of Theorem vdwnnlem1
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdw 15979 . . 3 ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}))
213adant2 1161 . 2 ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}))
3 simpl2 1244 . . . . . . 7 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → 𝐹:ℕ⟶𝑅)
4 fzssuz 12589 . . . . . . . 8 (1...𝑛) ⊆ (ℤ‘1)
5 nnuz 11923 . . . . . . . 8 ℕ = (ℤ‘1)
64, 5sseqtr4i 3798 . . . . . . 7 (1...𝑛) ⊆ ℕ
7 fssres 6252 . . . . . . 7 ((𝐹:ℕ⟶𝑅 ∧ (1...𝑛) ⊆ ℕ) → (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶𝑅)
83, 6, 7sylancl 580 . . . . . 6 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶𝑅)
9 simpl1 1242 . . . . . . 7 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → 𝑅 ∈ Fin)
10 ovex 6874 . . . . . . 7 (1...𝑛) ∈ V
11 elmapg 8073 . . . . . . 7 ((𝑅 ∈ Fin ∧ (1...𝑛) ∈ V) → ((𝐹 ↾ (1...𝑛)) ∈ (𝑅𝑚 (1...𝑛)) ↔ (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶𝑅))
129, 10, 11sylancl 580 . . . . . 6 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → ((𝐹 ↾ (1...𝑛)) ∈ (𝑅𝑚 (1...𝑛)) ↔ (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶𝑅))
138, 12mpbird 248 . . . . 5 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (𝐹 ↾ (1...𝑛)) ∈ (𝑅𝑚 (1...𝑛)))
14 cnveq 5464 . . . . . . . . . . 11 (𝑓 = (𝐹 ↾ (1...𝑛)) → 𝑓 = (𝐹 ↾ (1...𝑛)))
1514imaeq1d 5647 . . . . . . . . . 10 (𝑓 = (𝐹 ↾ (1...𝑛)) → (𝑓 “ {𝑐}) = ((𝐹 ↾ (1...𝑛)) “ {𝑐}))
1615eleq2d 2830 . . . . . . . . 9 (𝑓 = (𝐹 ↾ (1...𝑛)) → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) ↔ (𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
1716ralbidv 3133 . . . . . . . 8 (𝑓 = (𝐹 ↾ (1...𝑛)) → (∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
18172rexbidv 3204 . . . . . . 7 (𝑓 = (𝐹 ↾ (1...𝑛)) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
1918rexbidv 3199 . . . . . 6 (𝑓 = (𝐹 ↾ (1...𝑛)) → (∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
2019rspcv 3457 . . . . 5 ((𝐹 ↾ (1...𝑛)) ∈ (𝑅𝑚 (1...𝑛)) → (∀𝑓 ∈ (𝑅𝑚 (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
2113, 20syl 17 . . . 4 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (∀𝑓 ∈ (𝑅𝑚 (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
22 resss 5597 . . . . . . . . . 10 (𝐹 ↾ (1...𝑛)) ⊆ 𝐹
23 cnvss 5463 . . . . . . . . . 10 ((𝐹 ↾ (1...𝑛)) ⊆ 𝐹(𝐹 ↾ (1...𝑛)) ⊆ 𝐹)
24 imass1 5682 . . . . . . . . . 10 ((𝐹 ↾ (1...𝑛)) ⊆ 𝐹 → ((𝐹 ↾ (1...𝑛)) “ {𝑐}) ⊆ (𝐹 “ {𝑐}))
2522, 23, 24mp2b 10 . . . . . . . . 9 ((𝐹 ↾ (1...𝑛)) “ {𝑐}) ⊆ (𝐹 “ {𝑐})
2625sseli 3757 . . . . . . . 8 ((𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐}) → (𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
2726ralimi 3099 . . . . . . 7 (∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐}) → ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
2827reximi 3157 . . . . . 6 (∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐}) → ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
2928reximi 3157 . . . . 5 (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐}) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
3029reximi 3157 . . . 4 (∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐}) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
3121, 30syl6 35 . . 3 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (∀𝑓 ∈ (𝑅𝑚 (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3231rexlimdva 3178 . 2 ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
332, 32mpd 15 1 ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wral 3055  wrex 3056  Vcvv 3350  wss 3732  {csn 4334  ccnv 5276  cres 5279  cima 5280  wf 6064  cfv 6068  (class class class)co 6842  𝑚 cmap 8060  Fincfn 8160  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194  cmin 10520  cn 11274  0cn0 11538  cuz 11886  ...cfz 12533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-n0 11539  df-xnn0 11611  df-z 11625  df-uz 11887  df-rp 12029  df-fz 12534  df-hash 13322  df-vdwap 15953  df-vdwmc 15954  df-vdwpc 15955
This theorem is referenced by:  vdwnnlem3  15982
  Copyright terms: Public domain W3C validator