MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwnnlem1 Structured version   Visualization version   GIF version

Theorem vdwnnlem1 16910
Description: Corollary of vdw 16909, and lemma for vdwnn 16913. If 𝐹 is a coloring of the integers, then there are arbitrarily long monochromatic APs in 𝐹. (Contributed by Mario Carneiro, 13-Sep-2014.)
Assertion
Ref Expression
vdwnnlem1 ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
Distinct variable groups:   𝑎,𝑑,𝑚,𝑐,𝐾   𝑅,𝑎,𝑐,𝑑   𝐹,𝑎,𝑐,𝑑,𝑚
Allowed substitution hint:   𝑅(𝑚)

Proof of Theorem vdwnnlem1
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdw 16909 . . 3 ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}))
213adant2 1131 . 2 ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}))
3 simpl2 1192 . . . . . . 7 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → 𝐹:ℕ⟶𝑅)
4 fz1ssnn 13514 . . . . . . 7 (1...𝑛) ⊆ ℕ
5 fssres 6744 . . . . . . 7 ((𝐹:ℕ⟶𝑅 ∧ (1...𝑛) ⊆ ℕ) → (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶𝑅)
63, 4, 5sylancl 586 . . . . . 6 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶𝑅)
7 simpl1 1191 . . . . . . 7 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → 𝑅 ∈ Fin)
8 ovex 7426 . . . . . . 7 (1...𝑛) ∈ V
9 elmapg 8816 . . . . . . 7 ((𝑅 ∈ Fin ∧ (1...𝑛) ∈ V) → ((𝐹 ↾ (1...𝑛)) ∈ (𝑅m (1...𝑛)) ↔ (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶𝑅))
107, 8, 9sylancl 586 . . . . . 6 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → ((𝐹 ↾ (1...𝑛)) ∈ (𝑅m (1...𝑛)) ↔ (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶𝑅))
116, 10mpbird 256 . . . . 5 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (𝐹 ↾ (1...𝑛)) ∈ (𝑅m (1...𝑛)))
12 cnveq 5865 . . . . . . . . . . 11 (𝑓 = (𝐹 ↾ (1...𝑛)) → 𝑓 = (𝐹 ↾ (1...𝑛)))
1312imaeq1d 6048 . . . . . . . . . 10 (𝑓 = (𝐹 ↾ (1...𝑛)) → (𝑓 “ {𝑐}) = ((𝐹 ↾ (1...𝑛)) “ {𝑐}))
1413eleq2d 2818 . . . . . . . . 9 (𝑓 = (𝐹 ↾ (1...𝑛)) → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) ↔ (𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
1514ralbidv 3176 . . . . . . . 8 (𝑓 = (𝐹 ↾ (1...𝑛)) → (∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
16152rexbidv 3218 . . . . . . 7 (𝑓 = (𝐹 ↾ (1...𝑛)) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
1716rexbidv 3177 . . . . . 6 (𝑓 = (𝐹 ↾ (1...𝑛)) → (∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
1817rspcv 3605 . . . . 5 ((𝐹 ↾ (1...𝑛)) ∈ (𝑅m (1...𝑛)) → (∀𝑓 ∈ (𝑅m (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
1911, 18syl 17 . . . 4 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (∀𝑓 ∈ (𝑅m (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
20 resss 5998 . . . . . . . . . 10 (𝐹 ↾ (1...𝑛)) ⊆ 𝐹
21 cnvss 5864 . . . . . . . . . 10 ((𝐹 ↾ (1...𝑛)) ⊆ 𝐹(𝐹 ↾ (1...𝑛)) ⊆ 𝐹)
22 imass1 6089 . . . . . . . . . 10 ((𝐹 ↾ (1...𝑛)) ⊆ 𝐹 → ((𝐹 ↾ (1...𝑛)) “ {𝑐}) ⊆ (𝐹 “ {𝑐}))
2320, 21, 22mp2b 10 . . . . . . . . 9 ((𝐹 ↾ (1...𝑛)) “ {𝑐}) ⊆ (𝐹 “ {𝑐})
2423sseli 3974 . . . . . . . 8 ((𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐}) → (𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
2524ralimi 3082 . . . . . . 7 (∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐}) → ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
2625reximi 3083 . . . . . 6 (∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐}) → ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
2726reximi 3083 . . . . 5 (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐}) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
2827reximi 3083 . . . 4 (∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐}) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
2919, 28syl6 35 . . 3 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (∀𝑓 ∈ (𝑅m (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3029rexlimdva 3154 . 2 ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
312, 30mpd 15 1 ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3060  wrex 3069  Vcvv 3473  wss 3944  {csn 4622  ccnv 5668  cres 5671  cima 5672  wf 6528  (class class class)co 7393  m cmap 8803  Fincfn 8922  0cc0 11092  1c1 11093   + caddc 11095   · cmul 11097  cmin 11426  cn 12194  0cn0 12454  ...cfz 13466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-oadd 8452  df-er 8686  df-map 8805  df-pm 8806  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-dju 9878  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-n0 12455  df-xnn0 12527  df-z 12541  df-uz 12805  df-rp 12957  df-fz 13467  df-hash 14273  df-vdwap 16883  df-vdwmc 16884  df-vdwpc 16885
This theorem is referenced by:  vdwnnlem3  16912
  Copyright terms: Public domain W3C validator