Step | Hyp | Ref
| Expression |
1 | | vdw 16695 |
. . 3
⊢ ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0)
→ ∃𝑛 ∈
ℕ ∀𝑓 ∈
(𝑅 ↑m
(1...𝑛))∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐})) |
2 | 1 | 3adant2 1130 |
. 2
⊢ ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅 ∧ 𝐾 ∈ ℕ0) →
∃𝑛 ∈ ℕ
∀𝑓 ∈ (𝑅 ↑m (1...𝑛))∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐})) |
3 | | simpl2 1191 |
. . . . . . 7
⊢ (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅 ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → 𝐹:ℕ⟶𝑅) |
4 | | fz1ssnn 13287 |
. . . . . . 7
⊢
(1...𝑛) ⊆
ℕ |
5 | | fssres 6640 |
. . . . . . 7
⊢ ((𝐹:ℕ⟶𝑅 ∧ (1...𝑛) ⊆ ℕ) → (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶𝑅) |
6 | 3, 4, 5 | sylancl 586 |
. . . . . 6
⊢ (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅 ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶𝑅) |
7 | | simpl1 1190 |
. . . . . . 7
⊢ (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅 ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → 𝑅 ∈ Fin) |
8 | | ovex 7308 |
. . . . . . 7
⊢
(1...𝑛) ∈
V |
9 | | elmapg 8628 |
. . . . . . 7
⊢ ((𝑅 ∈ Fin ∧ (1...𝑛) ∈ V) → ((𝐹 ↾ (1...𝑛)) ∈ (𝑅 ↑m (1...𝑛)) ↔ (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶𝑅)) |
10 | 7, 8, 9 | sylancl 586 |
. . . . . 6
⊢ (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅 ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → ((𝐹 ↾ (1...𝑛)) ∈ (𝑅 ↑m (1...𝑛)) ↔ (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶𝑅)) |
11 | 6, 10 | mpbird 256 |
. . . . 5
⊢ (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅 ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (𝐹 ↾ (1...𝑛)) ∈ (𝑅 ↑m (1...𝑛))) |
12 | | cnveq 5782 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝐹 ↾ (1...𝑛)) → ◡𝑓 = ◡(𝐹 ↾ (1...𝑛))) |
13 | 12 | imaeq1d 5968 |
. . . . . . . . . 10
⊢ (𝑓 = (𝐹 ↾ (1...𝑛)) → (◡𝑓 “ {𝑐}) = (◡(𝐹 ↾ (1...𝑛)) “ {𝑐})) |
14 | 13 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝑓 = (𝐹 ↾ (1...𝑛)) → ((𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐}) ↔ (𝑎 + (𝑚 · 𝑑)) ∈ (◡(𝐹 ↾ (1...𝑛)) “ {𝑐}))) |
15 | 14 | ralbidv 3112 |
. . . . . . . 8
⊢ (𝑓 = (𝐹 ↾ (1...𝑛)) → (∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡(𝐹 ↾ (1...𝑛)) “ {𝑐}))) |
16 | 15 | 2rexbidv 3229 |
. . . . . . 7
⊢ (𝑓 = (𝐹 ↾ (1...𝑛)) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡(𝐹 ↾ (1...𝑛)) “ {𝑐}))) |
17 | 16 | rexbidv 3226 |
. . . . . 6
⊢ (𝑓 = (𝐹 ↾ (1...𝑛)) → (∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐}) ↔ ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡(𝐹 ↾ (1...𝑛)) “ {𝑐}))) |
18 | 17 | rspcv 3557 |
. . . . 5
⊢ ((𝐹 ↾ (1...𝑛)) ∈ (𝑅 ↑m (1...𝑛)) → (∀𝑓 ∈ (𝑅 ↑m (1...𝑛))∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐}) → ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡(𝐹 ↾ (1...𝑛)) “ {𝑐}))) |
19 | 11, 18 | syl 17 |
. . . 4
⊢ (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅 ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) →
(∀𝑓 ∈ (𝑅 ↑m (1...𝑛))∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐}) → ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡(𝐹 ↾ (1...𝑛)) “ {𝑐}))) |
20 | | resss 5916 |
. . . . . . . . . 10
⊢ (𝐹 ↾ (1...𝑛)) ⊆ 𝐹 |
21 | | cnvss 5781 |
. . . . . . . . . 10
⊢ ((𝐹 ↾ (1...𝑛)) ⊆ 𝐹 → ◡(𝐹 ↾ (1...𝑛)) ⊆ ◡𝐹) |
22 | | imass1 6009 |
. . . . . . . . . 10
⊢ (◡(𝐹 ↾ (1...𝑛)) ⊆ ◡𝐹 → (◡(𝐹 ↾ (1...𝑛)) “ {𝑐}) ⊆ (◡𝐹 “ {𝑐})) |
23 | 20, 21, 22 | mp2b 10 |
. . . . . . . . 9
⊢ (◡(𝐹 ↾ (1...𝑛)) “ {𝑐}) ⊆ (◡𝐹 “ {𝑐}) |
24 | 23 | sseli 3917 |
. . . . . . . 8
⊢ ((𝑎 + (𝑚 · 𝑑)) ∈ (◡(𝐹 ↾ (1...𝑛)) “ {𝑐}) → (𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) |
25 | 24 | ralimi 3087 |
. . . . . . 7
⊢
(∀𝑚 ∈
(0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡(𝐹 ↾ (1...𝑛)) “ {𝑐}) → ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) |
26 | 25 | reximi 3178 |
. . . . . 6
⊢
(∃𝑑 ∈
ℕ ∀𝑚 ∈
(0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡(𝐹 ↾ (1...𝑛)) “ {𝑐}) → ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) |
27 | 26 | reximi 3178 |
. . . . 5
⊢
(∃𝑎 ∈
ℕ ∃𝑑 ∈
ℕ ∀𝑚 ∈
(0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡(𝐹 ↾ (1...𝑛)) “ {𝑐}) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) |
28 | 27 | reximi 3178 |
. . . 4
⊢
(∃𝑐 ∈
𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡(𝐹 ↾ (1...𝑛)) “ {𝑐}) → ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) |
29 | 19, 28 | syl6 35 |
. . 3
⊢ (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅 ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) →
(∀𝑓 ∈ (𝑅 ↑m (1...𝑛))∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐}) → ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |
30 | 29 | rexlimdva 3213 |
. 2
⊢ ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅 ∧ 𝐾 ∈ ℕ0) →
(∃𝑛 ∈ ℕ
∀𝑓 ∈ (𝑅 ↑m (1...𝑛))∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐}) → ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |
31 | 2, 30 | mpd 15 |
1
⊢ ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅 ∧ 𝐾 ∈ ℕ0) →
∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) |