MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucrct2eupth Structured version   Visualization version   GIF version

Theorem eucrct2eupth 29487
Description: Removing one edge (πΌβ€˜(πΉβ€˜π½)) from a graph 𝐺 with an Eulerian circuit ⟨𝐹, π‘ƒβŸ© results in a graph 𝑆 with an Eulerian path ⟨𝐻, π‘„βŸ©. (Contributed by AV, 17-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.)
Hypotheses
Ref Expression
eucrct2eupth1.v 𝑉 = (Vtxβ€˜πΊ)
eucrct2eupth1.i 𝐼 = (iEdgβ€˜πΊ)
eucrct2eupth1.d (πœ‘ β†’ 𝐹(EulerPathsβ€˜πΊ)𝑃)
eucrct2eupth1.c (πœ‘ β†’ 𝐹(Circuitsβ€˜πΊ)𝑃)
eucrct2eupth1.s (Vtxβ€˜π‘†) = 𝑉
eucrct2eupth.n (πœ‘ β†’ 𝑁 = (β™―β€˜πΉ))
eucrct2eupth.j (πœ‘ β†’ 𝐽 ∈ (0..^𝑁))
eucrct2eupth.e (πœ‘ β†’ (iEdgβ€˜π‘†) = (𝐼 β†Ύ (𝐹 β€œ ((0..^𝑁) βˆ– {𝐽}))))
eucrct2eupth.k 𝐾 = (𝐽 + 1)
eucrct2eupth.h 𝐻 = ((𝐹 cyclShift 𝐾) prefix (𝑁 βˆ’ 1))
eucrct2eupth.q 𝑄 = (π‘₯ ∈ (0..^𝑁) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁))))
Assertion
Ref Expression
eucrct2eupth (πœ‘ β†’ 𝐻(EulerPathsβ€˜π‘†)𝑄)
Distinct variable groups:   π‘₯,𝐹   π‘₯,𝐼   π‘₯,𝐽   π‘₯,𝐾   π‘₯,𝑁   π‘₯,𝑃   π‘₯,𝑉   πœ‘,π‘₯
Allowed substitution hints:   𝑄(π‘₯)   𝑆(π‘₯)   𝐺(π‘₯)   𝐻(π‘₯)

Proof of Theorem eucrct2eupth
StepHypRef Expression
1 eucrct2eupth1.v . . . 4 𝑉 = (Vtxβ€˜πΊ)
2 eucrct2eupth1.i . . . 4 𝐼 = (iEdgβ€˜πΊ)
3 eucrct2eupth1.d . . . . . 6 (πœ‘ β†’ 𝐹(EulerPathsβ€˜πΊ)𝑃)
43adantl 482 . . . . 5 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ 𝐹(EulerPathsβ€˜πΊ)𝑃)
5 eucrct2eupth.k . . . . . . . 8 𝐾 = (𝐽 + 1)
65eqcomi 2741 . . . . . . 7 (𝐽 + 1) = 𝐾
76oveq2i 7416 . . . . . 6 (𝐹 cyclShift (𝐽 + 1)) = (𝐹 cyclShift 𝐾)
8 oveq1 7412 . . . . . . . . 9 (𝐽 = (𝑁 βˆ’ 1) β†’ (𝐽 + 1) = ((𝑁 βˆ’ 1) + 1))
9 eucrct2eupth.j . . . . . . . . . 10 (πœ‘ β†’ 𝐽 ∈ (0..^𝑁))
10 elfzo0 13669 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) ↔ (𝐽 ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ 𝐽 < 𝑁))
11 nncn 12216 . . . . . . . . . . . 12 (𝑁 ∈ β„• β†’ 𝑁 ∈ β„‚)
12113ad2ant2 1134 . . . . . . . . . . 11 ((𝐽 ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ 𝐽 < 𝑁) β†’ 𝑁 ∈ β„‚)
1310, 12sylbi 216 . . . . . . . . . 10 (𝐽 ∈ (0..^𝑁) β†’ 𝑁 ∈ β„‚)
14 npcan1 11635 . . . . . . . . . 10 (𝑁 ∈ β„‚ β†’ ((𝑁 βˆ’ 1) + 1) = 𝑁)
159, 13, 143syl 18 . . . . . . . . 9 (πœ‘ β†’ ((𝑁 βˆ’ 1) + 1) = 𝑁)
168, 15sylan9eq 2792 . . . . . . . 8 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (𝐽 + 1) = 𝑁)
1716oveq2d 7421 . . . . . . 7 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (𝐹 cyclShift (𝐽 + 1)) = (𝐹 cyclShift 𝑁))
18 eucrct2eupth.n . . . . . . . . . 10 (πœ‘ β†’ 𝑁 = (β™―β€˜πΉ))
1918oveq2d 7421 . . . . . . . . 9 (πœ‘ β†’ (𝐹 cyclShift 𝑁) = (𝐹 cyclShift (β™―β€˜πΉ)))
20 eucrct2eupth1.c . . . . . . . . . . 11 (πœ‘ β†’ 𝐹(Circuitsβ€˜πΊ)𝑃)
21 crctiswlk 29042 . . . . . . . . . . . 12 (𝐹(Circuitsβ€˜πΊ)𝑃 β†’ 𝐹(Walksβ€˜πΊ)𝑃)
222wlkf 28860 . . . . . . . . . . . 12 (𝐹(Walksβ€˜πΊ)𝑃 β†’ 𝐹 ∈ Word dom 𝐼)
2321, 22syl 17 . . . . . . . . . . 11 (𝐹(Circuitsβ€˜πΊ)𝑃 β†’ 𝐹 ∈ Word dom 𝐼)
2420, 23syl 17 . . . . . . . . . 10 (πœ‘ β†’ 𝐹 ∈ Word dom 𝐼)
25 cshwn 14743 . . . . . . . . . 10 (𝐹 ∈ Word dom 𝐼 β†’ (𝐹 cyclShift (β™―β€˜πΉ)) = 𝐹)
2624, 25syl 17 . . . . . . . . 9 (πœ‘ β†’ (𝐹 cyclShift (β™―β€˜πΉ)) = 𝐹)
2719, 26eqtrd 2772 . . . . . . . 8 (πœ‘ β†’ (𝐹 cyclShift 𝑁) = 𝐹)
2827adantl 482 . . . . . . 7 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (𝐹 cyclShift 𝑁) = 𝐹)
2917, 28eqtrd 2772 . . . . . 6 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (𝐹 cyclShift (𝐽 + 1)) = 𝐹)
307, 29eqtr3id 2786 . . . . 5 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (𝐹 cyclShift 𝐾) = 𝐹)
31 eqid 2732 . . . . . . . . . . . . . 14 (β™―β€˜πΉ) = (β™―β€˜πΉ)
321, 2, 20, 31crctcshlem1 29060 . . . . . . . . . . . . 13 (πœ‘ β†’ (β™―β€˜πΉ) ∈ β„•0)
33 fz0sn0fz1 13614 . . . . . . . . . . . . 13 ((β™―β€˜πΉ) ∈ β„•0 β†’ (0...(β™―β€˜πΉ)) = ({0} βˆͺ (1...(β™―β€˜πΉ))))
3432, 33syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ (0...(β™―β€˜πΉ)) = ({0} βˆͺ (1...(β™―β€˜πΉ))))
3534eleq2d 2819 . . . . . . . . . . 11 (πœ‘ β†’ (π‘₯ ∈ (0...(β™―β€˜πΉ)) ↔ π‘₯ ∈ ({0} βˆͺ (1...(β™―β€˜πΉ)))))
36 elun 4147 . . . . . . . . . . 11 (π‘₯ ∈ ({0} βˆͺ (1...(β™―β€˜πΉ))) ↔ (π‘₯ ∈ {0} ∨ π‘₯ ∈ (1...(β™―β€˜πΉ))))
3735, 36bitrdi 286 . . . . . . . . . 10 (πœ‘ β†’ (π‘₯ ∈ (0...(β™―β€˜πΉ)) ↔ (π‘₯ ∈ {0} ∨ π‘₯ ∈ (1...(β™―β€˜πΉ)))))
38 elsni 4644 . . . . . . . . . . . . . . . 16 (π‘₯ ∈ {0} β†’ π‘₯ = 0)
39 0le0 12309 . . . . . . . . . . . . . . . 16 0 ≀ 0
4038, 39eqbrtrdi 5186 . . . . . . . . . . . . . . 15 (π‘₯ ∈ {0} β†’ π‘₯ ≀ 0)
4140adantl 482 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘₯ ∈ {0}) β†’ π‘₯ ≀ 0)
4241iftrued 4535 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ {0}) β†’ if(π‘₯ ≀ 0, (π‘ƒβ€˜(π‘₯ + 𝑁)), (π‘ƒβ€˜((π‘₯ + 𝑁) βˆ’ 𝑁))) = (π‘ƒβ€˜(π‘₯ + 𝑁)))
4318fveq2d 6892 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (π‘ƒβ€˜π‘) = (π‘ƒβ€˜(β™―β€˜πΉ)))
44 crctprop 29038 . . . . . . . . . . . . . . . . . 18 (𝐹(Circuitsβ€˜πΊ)𝑃 β†’ (𝐹(Trailsβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))
45 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((𝐹(Trailsβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))) β†’ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ)))
4645eqcomd 2738 . . . . . . . . . . . . . . . . . 18 ((𝐹(Trailsβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))) β†’ (π‘ƒβ€˜(β™―β€˜πΉ)) = (π‘ƒβ€˜0))
4720, 44, 463syl 18 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (π‘ƒβ€˜(β™―β€˜πΉ)) = (π‘ƒβ€˜0))
4843, 47eqtrd 2772 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (π‘ƒβ€˜π‘) = (π‘ƒβ€˜0))
4948adantr 481 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘₯ = 0) β†’ (π‘ƒβ€˜π‘) = (π‘ƒβ€˜0))
50 oveq1 7412 . . . . . . . . . . . . . . . . 17 (π‘₯ = 0 β†’ (π‘₯ + 𝑁) = (0 + 𝑁))
519, 13syl 17 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ 𝑁 ∈ β„‚)
5251addlidd 11411 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (0 + 𝑁) = 𝑁)
5350, 52sylan9eqr 2794 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ π‘₯ = 0) β†’ (π‘₯ + 𝑁) = 𝑁)
5453fveq2d 6892 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘₯ = 0) β†’ (π‘ƒβ€˜(π‘₯ + 𝑁)) = (π‘ƒβ€˜π‘))
55 fveq2 6888 . . . . . . . . . . . . . . . 16 (π‘₯ = 0 β†’ (π‘ƒβ€˜π‘₯) = (π‘ƒβ€˜0))
5655adantl 482 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘₯ = 0) β†’ (π‘ƒβ€˜π‘₯) = (π‘ƒβ€˜0))
5749, 54, 563eqtr4d 2782 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘₯ = 0) β†’ (π‘ƒβ€˜(π‘₯ + 𝑁)) = (π‘ƒβ€˜π‘₯))
5838, 57sylan2 593 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ {0}) β†’ (π‘ƒβ€˜(π‘₯ + 𝑁)) = (π‘ƒβ€˜π‘₯))
5942, 58eqtrd 2772 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ {0}) β†’ if(π‘₯ ≀ 0, (π‘ƒβ€˜(π‘₯ + 𝑁)), (π‘ƒβ€˜((π‘₯ + 𝑁) βˆ’ 𝑁))) = (π‘ƒβ€˜π‘₯))
6059ex 413 . . . . . . . . . . 11 (πœ‘ β†’ (π‘₯ ∈ {0} β†’ if(π‘₯ ≀ 0, (π‘ƒβ€˜(π‘₯ + 𝑁)), (π‘ƒβ€˜((π‘₯ + 𝑁) βˆ’ 𝑁))) = (π‘ƒβ€˜π‘₯)))
61 elfznn 13526 . . . . . . . . . . . . . . . 16 (π‘₯ ∈ (1...(β™―β€˜πΉ)) β†’ π‘₯ ∈ β„•)
62 nnnle0 12241 . . . . . . . . . . . . . . . 16 (π‘₯ ∈ β„• β†’ Β¬ π‘₯ ≀ 0)
6361, 62syl 17 . . . . . . . . . . . . . . 15 (π‘₯ ∈ (1...(β™―β€˜πΉ)) β†’ Β¬ π‘₯ ≀ 0)
6463adantl 482 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘₯ ∈ (1...(β™―β€˜πΉ))) β†’ Β¬ π‘₯ ≀ 0)
6564iffalsed 4538 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ (1...(β™―β€˜πΉ))) β†’ if(π‘₯ ≀ 0, (π‘ƒβ€˜(π‘₯ + 𝑁)), (π‘ƒβ€˜((π‘₯ + 𝑁) βˆ’ 𝑁))) = (π‘ƒβ€˜((π‘₯ + 𝑁) βˆ’ 𝑁)))
6661nncnd 12224 . . . . . . . . . . . . . . . 16 (π‘₯ ∈ (1...(β™―β€˜πΉ)) β†’ π‘₯ ∈ β„‚)
6766adantl 482 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘₯ ∈ (1...(β™―β€˜πΉ))) β†’ π‘₯ ∈ β„‚)
6851adantr 481 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘₯ ∈ (1...(β™―β€˜πΉ))) β†’ 𝑁 ∈ β„‚)
6967, 68pncand 11568 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘₯ ∈ (1...(β™―β€˜πΉ))) β†’ ((π‘₯ + 𝑁) βˆ’ 𝑁) = π‘₯)
7069fveq2d 6892 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ (1...(β™―β€˜πΉ))) β†’ (π‘ƒβ€˜((π‘₯ + 𝑁) βˆ’ 𝑁)) = (π‘ƒβ€˜π‘₯))
7165, 70eqtrd 2772 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ (1...(β™―β€˜πΉ))) β†’ if(π‘₯ ≀ 0, (π‘ƒβ€˜(π‘₯ + 𝑁)), (π‘ƒβ€˜((π‘₯ + 𝑁) βˆ’ 𝑁))) = (π‘ƒβ€˜π‘₯))
7271ex 413 . . . . . . . . . . 11 (πœ‘ β†’ (π‘₯ ∈ (1...(β™―β€˜πΉ)) β†’ if(π‘₯ ≀ 0, (π‘ƒβ€˜(π‘₯ + 𝑁)), (π‘ƒβ€˜((π‘₯ + 𝑁) βˆ’ 𝑁))) = (π‘ƒβ€˜π‘₯)))
7360, 72jaod 857 . . . . . . . . . 10 (πœ‘ β†’ ((π‘₯ ∈ {0} ∨ π‘₯ ∈ (1...(β™―β€˜πΉ))) β†’ if(π‘₯ ≀ 0, (π‘ƒβ€˜(π‘₯ + 𝑁)), (π‘ƒβ€˜((π‘₯ + 𝑁) βˆ’ 𝑁))) = (π‘ƒβ€˜π‘₯)))
7437, 73sylbid 239 . . . . . . . . 9 (πœ‘ β†’ (π‘₯ ∈ (0...(β™―β€˜πΉ)) β†’ if(π‘₯ ≀ 0, (π‘ƒβ€˜(π‘₯ + 𝑁)), (π‘ƒβ€˜((π‘₯ + 𝑁) βˆ’ 𝑁))) = (π‘ƒβ€˜π‘₯)))
7574imp 407 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (0...(β™―β€˜πΉ))) β†’ if(π‘₯ ≀ 0, (π‘ƒβ€˜(π‘₯ + 𝑁)), (π‘ƒβ€˜((π‘₯ + 𝑁) βˆ’ 𝑁))) = (π‘ƒβ€˜π‘₯))
7675mpteq2dva 5247 . . . . . . 7 (πœ‘ β†’ (π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ 0, (π‘ƒβ€˜(π‘₯ + 𝑁)), (π‘ƒβ€˜((π‘₯ + 𝑁) βˆ’ 𝑁)))) = (π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ (π‘ƒβ€˜π‘₯)))
7776adantl 482 . . . . . 6 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ 0, (π‘ƒβ€˜(π‘₯ + 𝑁)), (π‘ƒβ€˜((π‘₯ + 𝑁) βˆ’ 𝑁)))) = (π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ (π‘ƒβ€˜π‘₯)))
785oveq2i 7416 . . . . . . . . . 10 (𝑁 βˆ’ 𝐾) = (𝑁 βˆ’ (𝐽 + 1))
798oveq2d 7421 . . . . . . . . . . 11 (𝐽 = (𝑁 βˆ’ 1) β†’ (𝑁 βˆ’ (𝐽 + 1)) = (𝑁 βˆ’ ((𝑁 βˆ’ 1) + 1)))
8015oveq2d 7421 . . . . . . . . . . . 12 (πœ‘ β†’ (𝑁 βˆ’ ((𝑁 βˆ’ 1) + 1)) = (𝑁 βˆ’ 𝑁))
8151subidd 11555 . . . . . . . . . . . 12 (πœ‘ β†’ (𝑁 βˆ’ 𝑁) = 0)
8280, 81eqtrd 2772 . . . . . . . . . . 11 (πœ‘ β†’ (𝑁 βˆ’ ((𝑁 βˆ’ 1) + 1)) = 0)
8379, 82sylan9eq 2792 . . . . . . . . . 10 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (𝑁 βˆ’ (𝐽 + 1)) = 0)
8478, 83eqtrid 2784 . . . . . . . . 9 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (𝑁 βˆ’ 𝐾) = 0)
8584breq2d 5159 . . . . . . . 8 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (π‘₯ ≀ (𝑁 βˆ’ 𝐾) ↔ π‘₯ ≀ 0))
865oveq2i 7416 . . . . . . . . . 10 (π‘₯ + 𝐾) = (π‘₯ + (𝐽 + 1))
8786fveq2i 6891 . . . . . . . . 9 (π‘ƒβ€˜(π‘₯ + 𝐾)) = (π‘ƒβ€˜(π‘₯ + (𝐽 + 1)))
888oveq2d 7421 . . . . . . . . . . 11 (𝐽 = (𝑁 βˆ’ 1) β†’ (π‘₯ + (𝐽 + 1)) = (π‘₯ + ((𝑁 βˆ’ 1) + 1)))
8915oveq2d 7421 . . . . . . . . . . 11 (πœ‘ β†’ (π‘₯ + ((𝑁 βˆ’ 1) + 1)) = (π‘₯ + 𝑁))
9088, 89sylan9eq 2792 . . . . . . . . . 10 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (π‘₯ + (𝐽 + 1)) = (π‘₯ + 𝑁))
9190fveq2d 6892 . . . . . . . . 9 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (π‘ƒβ€˜(π‘₯ + (𝐽 + 1))) = (π‘ƒβ€˜(π‘₯ + 𝑁)))
9287, 91eqtrid 2784 . . . . . . . 8 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (π‘ƒβ€˜(π‘₯ + 𝐾)) = (π‘ƒβ€˜(π‘₯ + 𝑁)))
9386oveq1i 7415 . . . . . . . . . 10 ((π‘₯ + 𝐾) βˆ’ 𝑁) = ((π‘₯ + (𝐽 + 1)) βˆ’ 𝑁)
9493fveq2i 6891 . . . . . . . . 9 (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)) = (π‘ƒβ€˜((π‘₯ + (𝐽 + 1)) βˆ’ 𝑁))
9588oveq1d 7420 . . . . . . . . . . 11 (𝐽 = (𝑁 βˆ’ 1) β†’ ((π‘₯ + (𝐽 + 1)) βˆ’ 𝑁) = ((π‘₯ + ((𝑁 βˆ’ 1) + 1)) βˆ’ 𝑁))
9689oveq1d 7420 . . . . . . . . . . 11 (πœ‘ β†’ ((π‘₯ + ((𝑁 βˆ’ 1) + 1)) βˆ’ 𝑁) = ((π‘₯ + 𝑁) βˆ’ 𝑁))
9795, 96sylan9eq 2792 . . . . . . . . . 10 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ ((π‘₯ + (𝐽 + 1)) βˆ’ 𝑁) = ((π‘₯ + 𝑁) βˆ’ 𝑁))
9897fveq2d 6892 . . . . . . . . 9 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (π‘ƒβ€˜((π‘₯ + (𝐽 + 1)) βˆ’ 𝑁)) = (π‘ƒβ€˜((π‘₯ + 𝑁) βˆ’ 𝑁)))
9994, 98eqtrid 2784 . . . . . . . 8 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)) = (π‘ƒβ€˜((π‘₯ + 𝑁) βˆ’ 𝑁)))
10085, 92, 99ifbieq12d 4555 . . . . . . 7 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁))) = if(π‘₯ ≀ 0, (π‘ƒβ€˜(π‘₯ + 𝑁)), (π‘ƒβ€˜((π‘₯ + 𝑁) βˆ’ 𝑁))))
101100mpteq2dv 5249 . . . . . 6 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)))) = (π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ 0, (π‘ƒβ€˜(π‘₯ + 𝑁)), (π‘ƒβ€˜((π‘₯ + 𝑁) βˆ’ 𝑁)))))
10220, 21syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝐹(Walksβ€˜πΊ)𝑃)
1031wlkp 28862 . . . . . . . . 9 (𝐹(Walksβ€˜πΊ)𝑃 β†’ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰)
104 ffn 6714 . . . . . . . . 9 (𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ β†’ 𝑃 Fn (0...(β™―β€˜πΉ)))
105102, 103, 1043syl 18 . . . . . . . 8 (πœ‘ β†’ 𝑃 Fn (0...(β™―β€˜πΉ)))
106105adantl 482 . . . . . . 7 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ 𝑃 Fn (0...(β™―β€˜πΉ)))
107 dffn5 6947 . . . . . . 7 (𝑃 Fn (0...(β™―β€˜πΉ)) ↔ 𝑃 = (π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ (π‘ƒβ€˜π‘₯)))
108106, 107sylib 217 . . . . . 6 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ 𝑃 = (π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ (π‘ƒβ€˜π‘₯)))
10977, 101, 1083eqtr4d 2782 . . . . 5 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)))) = 𝑃)
1104, 30, 1093brtr4d 5179 . . . 4 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (𝐹 cyclShift 𝐾)(EulerPathsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)))))
11120adantl 482 . . . . 5 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ 𝐹(Circuitsβ€˜πΊ)𝑃)
112111, 30, 1093brtr4d 5179 . . . 4 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (𝐹 cyclShift 𝐾)(Circuitsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)))))
113 eucrct2eupth1.s . . . 4 (Vtxβ€˜π‘†) = 𝑉
114 elfzolt3 13638 . . . . . . 7 (𝐽 ∈ (0..^𝑁) β†’ 0 < 𝑁)
1159, 114syl 17 . . . . . 6 (πœ‘ β†’ 0 < 𝑁)
116 elfzoelz 13628 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) β†’ 𝐽 ∈ β„€)
1179, 116syl 17 . . . . . . . . . 10 (πœ‘ β†’ 𝐽 ∈ β„€)
118117peano2zd 12665 . . . . . . . . 9 (πœ‘ β†’ (𝐽 + 1) ∈ β„€)
1195, 118eqeltrid 2837 . . . . . . . 8 (πœ‘ β†’ 𝐾 ∈ β„€)
120 cshwlen 14745 . . . . . . . . 9 ((𝐹 ∈ Word dom 𝐼 ∧ 𝐾 ∈ β„€) β†’ (β™―β€˜(𝐹 cyclShift 𝐾)) = (β™―β€˜πΉ))
121120eqcomd 2738 . . . . . . . 8 ((𝐹 ∈ Word dom 𝐼 ∧ 𝐾 ∈ β„€) β†’ (β™―β€˜πΉ) = (β™―β€˜(𝐹 cyclShift 𝐾)))
12224, 119, 121syl2anc 584 . . . . . . 7 (πœ‘ β†’ (β™―β€˜πΉ) = (β™―β€˜(𝐹 cyclShift 𝐾)))
12318, 122eqtrd 2772 . . . . . 6 (πœ‘ β†’ 𝑁 = (β™―β€˜(𝐹 cyclShift 𝐾)))
124115, 123breqtrd 5173 . . . . 5 (πœ‘ β†’ 0 < (β™―β€˜(𝐹 cyclShift 𝐾)))
125124adantl 482 . . . 4 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ 0 < (β™―β€˜(𝐹 cyclShift 𝐾)))
126123adantl 482 . . . . 5 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ 𝑁 = (β™―β€˜(𝐹 cyclShift 𝐾)))
127126oveq1d 7420 . . . 4 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (𝑁 βˆ’ 1) = ((β™―β€˜(𝐹 cyclShift 𝐾)) βˆ’ 1))
128 eucrct2eupth.e . . . . . 6 (πœ‘ β†’ (iEdgβ€˜π‘†) = (𝐼 β†Ύ (𝐹 β€œ ((0..^𝑁) βˆ– {𝐽}))))
129128adantl 482 . . . . 5 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (iEdgβ€˜π‘†) = (𝐼 β†Ύ (𝐹 β€œ ((0..^𝑁) βˆ– {𝐽}))))
13024, 18, 93jca 1128 . . . . . . . . 9 (πœ‘ β†’ (𝐹 ∈ Word dom 𝐼 ∧ 𝑁 = (β™―β€˜πΉ) ∧ 𝐽 ∈ (0..^𝑁)))
131130adantl 482 . . . . . . . 8 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (𝐹 ∈ Word dom 𝐼 ∧ 𝑁 = (β™―β€˜πΉ) ∧ 𝐽 ∈ (0..^𝑁)))
132 cshimadifsn0 14777 . . . . . . . 8 ((𝐹 ∈ Word dom 𝐼 ∧ 𝑁 = (β™―β€˜πΉ) ∧ 𝐽 ∈ (0..^𝑁)) β†’ (𝐹 β€œ ((0..^𝑁) βˆ– {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) β€œ (0..^(𝑁 βˆ’ 1))))
133131, 132syl 17 . . . . . . 7 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (𝐹 β€œ ((0..^𝑁) βˆ– {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) β€œ (0..^(𝑁 βˆ’ 1))))
1347imaeq1i 6054 . . . . . . 7 ((𝐹 cyclShift (𝐽 + 1)) β€œ (0..^(𝑁 βˆ’ 1))) = ((𝐹 cyclShift 𝐾) β€œ (0..^(𝑁 βˆ’ 1)))
135133, 134eqtrdi 2788 . . . . . 6 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (𝐹 β€œ ((0..^𝑁) βˆ– {𝐽})) = ((𝐹 cyclShift 𝐾) β€œ (0..^(𝑁 βˆ’ 1))))
136135reseq2d 5979 . . . . 5 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (𝐼 β†Ύ (𝐹 β€œ ((0..^𝑁) βˆ– {𝐽}))) = (𝐼 β†Ύ ((𝐹 cyclShift 𝐾) β€œ (0..^(𝑁 βˆ’ 1)))))
137129, 136eqtrd 2772 . . . 4 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (iEdgβ€˜π‘†) = (𝐼 β†Ύ ((𝐹 cyclShift 𝐾) β€œ (0..^(𝑁 βˆ’ 1)))))
138 eqid 2732 . . . 4 ((𝐹 cyclShift 𝐾) prefix (𝑁 βˆ’ 1)) = ((𝐹 cyclShift 𝐾) prefix (𝑁 βˆ’ 1))
139 eqid 2732 . . . 4 ((π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)))) β†Ύ (0...(𝑁 βˆ’ 1))) = ((π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)))) β†Ύ (0...(𝑁 βˆ’ 1)))
1401, 2, 110, 112, 113, 125, 127, 137, 138, 139eucrct2eupth1 29486 . . 3 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ ((𝐹 cyclShift 𝐾) prefix (𝑁 βˆ’ 1))(EulerPathsβ€˜π‘†)((π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)))) β†Ύ (0...(𝑁 βˆ’ 1))))
141 eucrct2eupth.h . . . 4 𝐻 = ((𝐹 cyclShift 𝐾) prefix (𝑁 βˆ’ 1))
142141a1i 11 . . 3 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ 𝐻 = ((𝐹 cyclShift 𝐾) prefix (𝑁 βˆ’ 1)))
143 eucrct2eupth.q . . . . 5 𝑄 = (π‘₯ ∈ (0..^𝑁) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁))))
144 fzossfz 13647 . . . . . . . 8 (0..^𝑁) βŠ† (0...𝑁)
14518oveq2d 7421 . . . . . . . 8 (πœ‘ β†’ (0...𝑁) = (0...(β™―β€˜πΉ)))
146144, 145sseqtrid 4033 . . . . . . 7 (πœ‘ β†’ (0..^𝑁) βŠ† (0...(β™―β€˜πΉ)))
147146resmptd 6038 . . . . . 6 (πœ‘ β†’ ((π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)))) β†Ύ (0..^𝑁)) = (π‘₯ ∈ (0..^𝑁) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)))))
148 elfzoel2 13627 . . . . . . . 8 (𝐽 ∈ (0..^𝑁) β†’ 𝑁 ∈ β„€)
149 fzoval 13629 . . . . . . . 8 (𝑁 ∈ β„€ β†’ (0..^𝑁) = (0...(𝑁 βˆ’ 1)))
1509, 148, 1493syl 18 . . . . . . 7 (πœ‘ β†’ (0..^𝑁) = (0...(𝑁 βˆ’ 1)))
151150reseq2d 5979 . . . . . 6 (πœ‘ β†’ ((π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)))) β†Ύ (0..^𝑁)) = ((π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)))) β†Ύ (0...(𝑁 βˆ’ 1))))
152147, 151eqtr3d 2774 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ (0..^𝑁) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)))) = ((π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)))) β†Ύ (0...(𝑁 βˆ’ 1))))
153143, 152eqtrid 2784 . . . 4 (πœ‘ β†’ 𝑄 = ((π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)))) β†Ύ (0...(𝑁 βˆ’ 1))))
154153adantl 482 . . 3 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ 𝑄 = ((π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)))) β†Ύ (0...(𝑁 βˆ’ 1))))
155140, 142, 1543brtr4d 5179 . 2 ((𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ 𝐻(EulerPathsβ€˜π‘†)𝑄)
15620adantl 482 . . . 4 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ 𝐹(Circuitsβ€˜πΊ)𝑃)
157 peano2nn0 12508 . . . . . . . . . . . . 13 (𝐽 ∈ β„•0 β†’ (𝐽 + 1) ∈ β„•0)
1581573ad2ant1 1133 . . . . . . . . . . . 12 ((𝐽 ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ 𝐽 < 𝑁) β†’ (𝐽 + 1) ∈ β„•0)
159158adantr 481 . . . . . . . . . . 11 (((𝐽 ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ 𝐽 < 𝑁) ∧ Β¬ 𝐽 = (𝑁 βˆ’ 1)) β†’ (𝐽 + 1) ∈ β„•0)
160 simpl2 1192 . . . . . . . . . . 11 (((𝐽 ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ 𝐽 < 𝑁) ∧ Β¬ 𝐽 = (𝑁 βˆ’ 1)) β†’ 𝑁 ∈ β„•)
161 1cnd 11205 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ 𝐽 < 𝑁) β†’ 1 ∈ β„‚)
162 nn0cn 12478 . . . . . . . . . . . . . . . . 17 (𝐽 ∈ β„•0 β†’ 𝐽 ∈ β„‚)
1631623ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ 𝐽 < 𝑁) β†’ 𝐽 ∈ β„‚)
16412, 161, 163subadd2d 11586 . . . . . . . . . . . . . . 15 ((𝐽 ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ 𝐽 < 𝑁) β†’ ((𝑁 βˆ’ 1) = 𝐽 ↔ (𝐽 + 1) = 𝑁))
165 eqcom 2739 . . . . . . . . . . . . . . 15 (𝐽 = (𝑁 βˆ’ 1) ↔ (𝑁 βˆ’ 1) = 𝐽)
166 eqcom 2739 . . . . . . . . . . . . . . 15 (𝑁 = (𝐽 + 1) ↔ (𝐽 + 1) = 𝑁)
167164, 165, 1663bitr4g 313 . . . . . . . . . . . . . 14 ((𝐽 ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ 𝐽 < 𝑁) β†’ (𝐽 = (𝑁 βˆ’ 1) ↔ 𝑁 = (𝐽 + 1)))
168167necon3bbid 2978 . . . . . . . . . . . . 13 ((𝐽 ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ 𝐽 < 𝑁) β†’ (Β¬ 𝐽 = (𝑁 βˆ’ 1) ↔ 𝑁 β‰  (𝐽 + 1)))
169157nn0red 12529 . . . . . . . . . . . . . . . 16 (𝐽 ∈ β„•0 β†’ (𝐽 + 1) ∈ ℝ)
1701693ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝐽 ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ 𝐽 < 𝑁) β†’ (𝐽 + 1) ∈ ℝ)
171 nnre 12215 . . . . . . . . . . . . . . . 16 (𝑁 ∈ β„• β†’ 𝑁 ∈ ℝ)
1721713ad2ant2 1134 . . . . . . . . . . . . . . 15 ((𝐽 ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ 𝐽 < 𝑁) β†’ 𝑁 ∈ ℝ)
173 nn0z 12579 . . . . . . . . . . . . . . . . 17 (𝐽 ∈ β„•0 β†’ 𝐽 ∈ β„€)
174 nnz 12575 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ β„• β†’ 𝑁 ∈ β„€)
175 zltp1le 12608 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ β„€ ∧ 𝑁 ∈ β„€) β†’ (𝐽 < 𝑁 ↔ (𝐽 + 1) ≀ 𝑁))
176173, 174, 175syl2an 596 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ β„•0 ∧ 𝑁 ∈ β„•) β†’ (𝐽 < 𝑁 ↔ (𝐽 + 1) ≀ 𝑁))
177176biimp3a 1469 . . . . . . . . . . . . . . 15 ((𝐽 ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ 𝐽 < 𝑁) β†’ (𝐽 + 1) ≀ 𝑁)
178170, 172, 177leltned 11363 . . . . . . . . . . . . . 14 ((𝐽 ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ 𝐽 < 𝑁) β†’ ((𝐽 + 1) < 𝑁 ↔ 𝑁 β‰  (𝐽 + 1)))
179178biimprd 247 . . . . . . . . . . . . 13 ((𝐽 ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ 𝐽 < 𝑁) β†’ (𝑁 β‰  (𝐽 + 1) β†’ (𝐽 + 1) < 𝑁))
180168, 179sylbid 239 . . . . . . . . . . . 12 ((𝐽 ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ 𝐽 < 𝑁) β†’ (Β¬ 𝐽 = (𝑁 βˆ’ 1) β†’ (𝐽 + 1) < 𝑁))
181180imp 407 . . . . . . . . . . 11 (((𝐽 ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ 𝐽 < 𝑁) ∧ Β¬ 𝐽 = (𝑁 βˆ’ 1)) β†’ (𝐽 + 1) < 𝑁)
182159, 160, 1813jca 1128 . . . . . . . . . 10 (((𝐽 ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ 𝐽 < 𝑁) ∧ Β¬ 𝐽 = (𝑁 βˆ’ 1)) β†’ ((𝐽 + 1) ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ (𝐽 + 1) < 𝑁))
183182ex 413 . . . . . . . . 9 ((𝐽 ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ 𝐽 < 𝑁) β†’ (Β¬ 𝐽 = (𝑁 βˆ’ 1) β†’ ((𝐽 + 1) ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ (𝐽 + 1) < 𝑁)))
18410, 183sylbi 216 . . . . . . . 8 (𝐽 ∈ (0..^𝑁) β†’ (Β¬ 𝐽 = (𝑁 βˆ’ 1) β†’ ((𝐽 + 1) ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ (𝐽 + 1) < 𝑁)))
185 elfzo0 13669 . . . . . . . 8 ((𝐽 + 1) ∈ (0..^𝑁) ↔ ((𝐽 + 1) ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ (𝐽 + 1) < 𝑁))
186184, 185syl6ibr 251 . . . . . . 7 (𝐽 ∈ (0..^𝑁) β†’ (Β¬ 𝐽 = (𝑁 βˆ’ 1) β†’ (𝐽 + 1) ∈ (0..^𝑁)))
1879, 186syl 17 . . . . . 6 (πœ‘ β†’ (Β¬ 𝐽 = (𝑁 βˆ’ 1) β†’ (𝐽 + 1) ∈ (0..^𝑁)))
188187impcom 408 . . . . 5 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (𝐽 + 1) ∈ (0..^𝑁))
1895a1i 11 . . . . 5 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ 𝐾 = (𝐽 + 1))
19018eqcomd 2738 . . . . . . 7 (πœ‘ β†’ (β™―β€˜πΉ) = 𝑁)
191190oveq2d 7421 . . . . . 6 (πœ‘ β†’ (0..^(β™―β€˜πΉ)) = (0..^𝑁))
192191adantl 482 . . . . 5 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (0..^(β™―β€˜πΉ)) = (0..^𝑁))
193188, 189, 1923eltr4d 2848 . . . 4 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ 𝐾 ∈ (0..^(β™―β€˜πΉ)))
194 eqid 2732 . . . 4 (𝐹 cyclShift 𝐾) = (𝐹 cyclShift 𝐾)
195 eqid 2732 . . . 4 (π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))) = (π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ)))))
1963adantl 482 . . . 4 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ 𝐹(EulerPathsβ€˜πΊ)𝑃)
1971, 2, 156, 31, 193, 194, 195, 196eucrctshift 29485 . . 3 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ ((𝐹 cyclShift 𝐾)(EulerPathsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))) ∧ (𝐹 cyclShift 𝐾)(Circuitsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ)))))))
198 simprl 769 . . . . 5 (((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) ∧ ((𝐹 cyclShift 𝐾)(EulerPathsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))) ∧ (𝐹 cyclShift 𝐾)(Circuitsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))))) β†’ (𝐹 cyclShift 𝐾)(EulerPathsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))))
199 simprr 771 . . . . 5 (((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) ∧ ((𝐹 cyclShift 𝐾)(EulerPathsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))) ∧ (𝐹 cyclShift 𝐾)(Circuitsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))))) β†’ (𝐹 cyclShift 𝐾)(Circuitsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))))
200124ad2antlr 725 . . . . 5 (((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) ∧ ((𝐹 cyclShift 𝐾)(EulerPathsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))) ∧ (𝐹 cyclShift 𝐾)(Circuitsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))))) β†’ 0 < (β™―β€˜(𝐹 cyclShift 𝐾)))
201123oveq1d 7420 . . . . . 6 (πœ‘ β†’ (𝑁 βˆ’ 1) = ((β™―β€˜(𝐹 cyclShift 𝐾)) βˆ’ 1))
202201ad2antlr 725 . . . . 5 (((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) ∧ ((𝐹 cyclShift 𝐾)(EulerPathsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))) ∧ (𝐹 cyclShift 𝐾)(Circuitsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))))) β†’ (𝑁 βˆ’ 1) = ((β™―β€˜(𝐹 cyclShift 𝐾)) βˆ’ 1))
203128adantl 482 . . . . . . 7 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (iEdgβ€˜π‘†) = (𝐼 β†Ύ (𝐹 β€œ ((0..^𝑁) βˆ– {𝐽}))))
204130adantl 482 . . . . . . . . . 10 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (𝐹 ∈ Word dom 𝐼 ∧ 𝑁 = (β™―β€˜πΉ) ∧ 𝐽 ∈ (0..^𝑁)))
205204, 132syl 17 . . . . . . . . 9 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (𝐹 β€œ ((0..^𝑁) βˆ– {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) β€œ (0..^(𝑁 βˆ’ 1))))
206205, 134eqtrdi 2788 . . . . . . . 8 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (𝐹 β€œ ((0..^𝑁) βˆ– {𝐽})) = ((𝐹 cyclShift 𝐾) β€œ (0..^(𝑁 βˆ’ 1))))
207206reseq2d 5979 . . . . . . 7 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (𝐼 β†Ύ (𝐹 β€œ ((0..^𝑁) βˆ– {𝐽}))) = (𝐼 β†Ύ ((𝐹 cyclShift 𝐾) β€œ (0..^(𝑁 βˆ’ 1)))))
208203, 207eqtrd 2772 . . . . . 6 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (iEdgβ€˜π‘†) = (𝐼 β†Ύ ((𝐹 cyclShift 𝐾) β€œ (0..^(𝑁 βˆ’ 1)))))
209208adantr 481 . . . . 5 (((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) ∧ ((𝐹 cyclShift 𝐾)(EulerPathsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))) ∧ (𝐹 cyclShift 𝐾)(Circuitsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))))) β†’ (iEdgβ€˜π‘†) = (𝐼 β†Ύ ((𝐹 cyclShift 𝐾) β€œ (0..^(𝑁 βˆ’ 1)))))
210 eqid 2732 . . . . 5 ((π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))) β†Ύ (0...(𝑁 βˆ’ 1))) = ((π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))) β†Ύ (0...(𝑁 βˆ’ 1)))
2111, 2, 198, 199, 113, 200, 202, 209, 138, 210eucrct2eupth1 29486 . . . 4 (((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) ∧ ((𝐹 cyclShift 𝐾)(EulerPathsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))) ∧ (𝐹 cyclShift 𝐾)(Circuitsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))))) β†’ ((𝐹 cyclShift 𝐾) prefix (𝑁 βˆ’ 1))(EulerPathsβ€˜π‘†)((π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))) β†Ύ (0...(𝑁 βˆ’ 1))))
212141a1i 11 . . . 4 (((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) ∧ ((𝐹 cyclShift 𝐾)(EulerPathsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))) ∧ (𝐹 cyclShift 𝐾)(Circuitsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))))) β†’ 𝐻 = ((𝐹 cyclShift 𝐾) prefix (𝑁 βˆ’ 1)))
213190oveq1d 7420 . . . . . . . . . . . 12 (πœ‘ β†’ ((β™―β€˜πΉ) βˆ’ 𝐾) = (𝑁 βˆ’ 𝐾))
214213breq2d 5159 . . . . . . . . . . 11 (πœ‘ β†’ (π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾) ↔ π‘₯ ≀ (𝑁 βˆ’ 𝐾)))
215214adantl 482 . . . . . . . . . 10 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾) ↔ π‘₯ ≀ (𝑁 βˆ’ 𝐾)))
216190oveq2d 7421 . . . . . . . . . . . 12 (πœ‘ β†’ ((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ)) = ((π‘₯ + 𝐾) βˆ’ 𝑁))
217216fveq2d 6892 . . . . . . . . . . 11 (πœ‘ β†’ (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))) = (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)))
218217adantl 482 . . . . . . . . . 10 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))) = (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)))
219215, 218ifbieq2d 4553 . . . . . . . . 9 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ)))) = if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁))))
220219mpteq2dv 5249 . . . . . . . 8 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))) = (π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)))))
221150eqcomd 2738 . . . . . . . . 9 (πœ‘ β†’ (0...(𝑁 βˆ’ 1)) = (0..^𝑁))
222221adantl 482 . . . . . . . 8 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (0...(𝑁 βˆ’ 1)) = (0..^𝑁))
223220, 222reseq12d 5980 . . . . . . 7 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ ((π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))) β†Ύ (0...(𝑁 βˆ’ 1))) = ((π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)))) β†Ύ (0..^𝑁)))
22418adantl 482 . . . . . . . . . 10 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ 𝑁 = (β™―β€˜πΉ))
225224oveq2d 7421 . . . . . . . . 9 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (0...𝑁) = (0...(β™―β€˜πΉ)))
226144, 225sseqtrid 4033 . . . . . . . 8 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ (0..^𝑁) βŠ† (0...(β™―β€˜πΉ)))
227226resmptd 6038 . . . . . . 7 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ ((π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)))) β†Ύ (0..^𝑁)) = (π‘₯ ∈ (0..^𝑁) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)))))
228223, 227eqtrd 2772 . . . . . 6 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ ((π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))) β†Ύ (0...(𝑁 βˆ’ 1))) = (π‘₯ ∈ (0..^𝑁) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ 𝑁)))))
229143, 228eqtr4id 2791 . . . . 5 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ 𝑄 = ((π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))) β†Ύ (0...(𝑁 βˆ’ 1))))
230229adantr 481 . . . 4 (((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) ∧ ((𝐹 cyclShift 𝐾)(EulerPathsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))) ∧ (𝐹 cyclShift 𝐾)(Circuitsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))))) β†’ 𝑄 = ((π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))) β†Ύ (0...(𝑁 βˆ’ 1))))
231211, 212, 2303brtr4d 5179 . . 3 (((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) ∧ ((𝐹 cyclShift 𝐾)(EulerPathsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))) ∧ (𝐹 cyclShift 𝐾)(Circuitsβ€˜πΊ)(π‘₯ ∈ (0...(β™―β€˜πΉ)) ↦ if(π‘₯ ≀ ((β™―β€˜πΉ) βˆ’ 𝐾), (π‘ƒβ€˜(π‘₯ + 𝐾)), (π‘ƒβ€˜((π‘₯ + 𝐾) βˆ’ (β™―β€˜πΉ))))))) β†’ 𝐻(EulerPathsβ€˜π‘†)𝑄)
232197, 231mpdan 685 . 2 ((Β¬ 𝐽 = (𝑁 βˆ’ 1) ∧ πœ‘) β†’ 𝐻(EulerPathsβ€˜π‘†)𝑄)
233155, 232pm2.61ian 810 1 (πœ‘ β†’ 𝐻(EulerPathsβ€˜π‘†)𝑄)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   βˆ– cdif 3944   βˆͺ cun 3945  ifcif 4527  {csn 4627   class class class wbr 5147   ↦ cmpt 5230  dom cdm 5675   β†Ύ cres 5677   β€œ cima 5678   Fn wfn 6535  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  β„‚cc 11104  β„cr 11105  0cc0 11106  1c1 11107   + caddc 11109   < clt 11244   ≀ cle 11245   βˆ’ cmin 11440  β„•cn 12208  β„•0cn0 12468  β„€cz 12554  ...cfz 13480  ..^cfzo 13623  β™―chash 14286  Word cword 14460   prefix cpfx 14616   cyclShift ccsh 14734  Vtxcvtx 28245  iEdgciedg 28246  Walkscwlks 28842  Trailsctrls 28936  Circuitsccrcts 29030  EulerPathsceupth 29439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-ico 13326  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-hash 14287  df-word 14461  df-concat 14517  df-substr 14587  df-pfx 14617  df-csh 14735  df-wlks 28845  df-trls 28938  df-crcts 29032  df-eupth 29440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator