MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucrct2eupth Structured version   Visualization version   GIF version

Theorem eucrct2eupth 30181
Description: Removing one edge (𝐼‘(𝐹𝐽)) from a graph 𝐺 with an Eulerian circuit 𝐹, 𝑃 results in a graph 𝑆 with an Eulerian path 𝐻, 𝑄. (Contributed by AV, 17-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.)
Hypotheses
Ref Expression
eucrct2eupth1.v 𝑉 = (Vtx‘𝐺)
eucrct2eupth1.i 𝐼 = (iEdg‘𝐺)
eucrct2eupth1.d (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eucrct2eupth1.c (𝜑𝐹(Circuits‘𝐺)𝑃)
eucrct2eupth1.s (Vtx‘𝑆) = 𝑉
eucrct2eupth.n (𝜑𝑁 = (♯‘𝐹))
eucrct2eupth.j (𝜑𝐽 ∈ (0..^𝑁))
eucrct2eupth.e (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))))
eucrct2eupth.k 𝐾 = (𝐽 + 1)
eucrct2eupth.h 𝐻 = ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1))
eucrct2eupth.q 𝑄 = (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁))))
Assertion
Ref Expression
eucrct2eupth (𝜑𝐻(EulerPaths‘𝑆)𝑄)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐼   𝑥,𝐽   𝑥,𝐾   𝑥,𝑁   𝑥,𝑃   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝑄(𝑥)   𝑆(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem eucrct2eupth
StepHypRef Expression
1 eucrct2eupth1.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eucrct2eupth1.i . . . 4 𝐼 = (iEdg‘𝐺)
3 eucrct2eupth1.d . . . . . 6 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
43adantl 481 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐹(EulerPaths‘𝐺)𝑃)
5 eucrct2eupth.k . . . . . . . 8 𝐾 = (𝐽 + 1)
65eqcomi 2739 . . . . . . 7 (𝐽 + 1) = 𝐾
76oveq2i 7401 . . . . . 6 (𝐹 cyclShift (𝐽 + 1)) = (𝐹 cyclShift 𝐾)
8 oveq1 7397 . . . . . . . . 9 (𝐽 = (𝑁 − 1) → (𝐽 + 1) = ((𝑁 − 1) + 1))
9 eucrct2eupth.j . . . . . . . . . 10 (𝜑𝐽 ∈ (0..^𝑁))
10 elfzo0 13668 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) ↔ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
11 nncn 12201 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
12113ad2ant2 1134 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℂ)
1310, 12sylbi 217 . . . . . . . . . 10 (𝐽 ∈ (0..^𝑁) → 𝑁 ∈ ℂ)
14 npcan1 11610 . . . . . . . . . 10 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
159, 13, 143syl 18 . . . . . . . . 9 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
168, 15sylan9eq 2785 . . . . . . . 8 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐽 + 1) = 𝑁)
1716oveq2d 7406 . . . . . . 7 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift (𝐽 + 1)) = (𝐹 cyclShift 𝑁))
18 eucrct2eupth.n . . . . . . . . . 10 (𝜑𝑁 = (♯‘𝐹))
1918oveq2d 7406 . . . . . . . . 9 (𝜑 → (𝐹 cyclShift 𝑁) = (𝐹 cyclShift (♯‘𝐹)))
20 eucrct2eupth1.c . . . . . . . . . . 11 (𝜑𝐹(Circuits‘𝐺)𝑃)
21 crctiswlk 29733 . . . . . . . . . . . 12 (𝐹(Circuits‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
222wlkf 29549 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
2321, 22syl 17 . . . . . . . . . . 11 (𝐹(Circuits‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
2420, 23syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ Word dom 𝐼)
25 cshwn 14769 . . . . . . . . . 10 (𝐹 ∈ Word dom 𝐼 → (𝐹 cyclShift (♯‘𝐹)) = 𝐹)
2624, 25syl 17 . . . . . . . . 9 (𝜑 → (𝐹 cyclShift (♯‘𝐹)) = 𝐹)
2719, 26eqtrd 2765 . . . . . . . 8 (𝜑 → (𝐹 cyclShift 𝑁) = 𝐹)
2827adantl 481 . . . . . . 7 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift 𝑁) = 𝐹)
2917, 28eqtrd 2765 . . . . . 6 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift (𝐽 + 1)) = 𝐹)
307, 29eqtr3id 2779 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift 𝐾) = 𝐹)
31 eqid 2730 . . . . . . . . . . . . . 14 (♯‘𝐹) = (♯‘𝐹)
321, 2, 20, 31crctcshlem1 29754 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐹) ∈ ℕ0)
33 fz0sn0fz1 13613 . . . . . . . . . . . . 13 ((♯‘𝐹) ∈ ℕ0 → (0...(♯‘𝐹)) = ({0} ∪ (1...(♯‘𝐹))))
3432, 33syl 17 . . . . . . . . . . . 12 (𝜑 → (0...(♯‘𝐹)) = ({0} ∪ (1...(♯‘𝐹))))
3534eleq2d 2815 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0...(♯‘𝐹)) ↔ 𝑥 ∈ ({0} ∪ (1...(♯‘𝐹)))))
36 elun 4119 . . . . . . . . . . 11 (𝑥 ∈ ({0} ∪ (1...(♯‘𝐹))) ↔ (𝑥 ∈ {0} ∨ 𝑥 ∈ (1...(♯‘𝐹))))
3735, 36bitrdi 287 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0...(♯‘𝐹)) ↔ (𝑥 ∈ {0} ∨ 𝑥 ∈ (1...(♯‘𝐹)))))
38 elsni 4609 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {0} → 𝑥 = 0)
39 0le0 12294 . . . . . . . . . . . . . . . 16 0 ≤ 0
4038, 39eqbrtrdi 5149 . . . . . . . . . . . . . . 15 (𝑥 ∈ {0} → 𝑥 ≤ 0)
4140adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ {0}) → 𝑥 ≤ 0)
4241iftrued 4499 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {0}) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃‘(𝑥 + 𝑁)))
4318fveq2d 6865 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃𝑁) = (𝑃‘(♯‘𝐹)))
44 crctprop 29729 . . . . . . . . . . . . . . . . . 18 (𝐹(Circuits‘𝐺)𝑃 → (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
45 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘0) = (𝑃‘(♯‘𝐹)))
4645eqcomd 2736 . . . . . . . . . . . . . . . . . 18 ((𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘(♯‘𝐹)) = (𝑃‘0))
4720, 44, 463syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃‘(♯‘𝐹)) = (𝑃‘0))
4843, 47eqtrd 2765 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃𝑁) = (𝑃‘0))
4948adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 0) → (𝑃𝑁) = (𝑃‘0))
50 oveq1 7397 . . . . . . . . . . . . . . . . 17 (𝑥 = 0 → (𝑥 + 𝑁) = (0 + 𝑁))
519, 13syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℂ)
5251addlidd 11382 . . . . . . . . . . . . . . . . 17 (𝜑 → (0 + 𝑁) = 𝑁)
5350, 52sylan9eqr 2787 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 0) → (𝑥 + 𝑁) = 𝑁)
5453fveq2d 6865 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 0) → (𝑃‘(𝑥 + 𝑁)) = (𝑃𝑁))
55 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → (𝑃𝑥) = (𝑃‘0))
5655adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 0) → (𝑃𝑥) = (𝑃‘0))
5749, 54, 563eqtr4d 2775 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 0) → (𝑃‘(𝑥 + 𝑁)) = (𝑃𝑥))
5838, 57sylan2 593 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {0}) → (𝑃‘(𝑥 + 𝑁)) = (𝑃𝑥))
5942, 58eqtrd 2765 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {0}) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥))
6059ex 412 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ {0} → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥)))
61 elfznn 13521 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...(♯‘𝐹)) → 𝑥 ∈ ℕ)
62 nnnle0 12226 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ → ¬ 𝑥 ≤ 0)
6361, 62syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...(♯‘𝐹)) → ¬ 𝑥 ≤ 0)
6463adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → ¬ 𝑥 ≤ 0)
6564iffalsed 4502 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃‘((𝑥 + 𝑁) − 𝑁)))
6661nncnd 12209 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...(♯‘𝐹)) → 𝑥 ∈ ℂ)
6766adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → 𝑥 ∈ ℂ)
6851adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → 𝑁 ∈ ℂ)
6967, 68pncand 11541 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → ((𝑥 + 𝑁) − 𝑁) = 𝑥)
7069fveq2d 6865 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → (𝑃‘((𝑥 + 𝑁) − 𝑁)) = (𝑃𝑥))
7165, 70eqtrd 2765 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥))
7271ex 412 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (1...(♯‘𝐹)) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥)))
7360, 72jaod 859 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ {0} ∨ 𝑥 ∈ (1...(♯‘𝐹))) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥)))
7437, 73sylbid 240 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0...(♯‘𝐹)) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥)))
7574imp 406 . . . . . . . 8 ((𝜑𝑥 ∈ (0...(♯‘𝐹))) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥))
7675mpteq2dva 5203 . . . . . . 7 (𝜑 → (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁)))) = (𝑥 ∈ (0...(♯‘𝐹)) ↦ (𝑃𝑥)))
7776adantl 481 . . . . . 6 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁)))) = (𝑥 ∈ (0...(♯‘𝐹)) ↦ (𝑃𝑥)))
785oveq2i 7401 . . . . . . . . . 10 (𝑁𝐾) = (𝑁 − (𝐽 + 1))
798oveq2d 7406 . . . . . . . . . . 11 (𝐽 = (𝑁 − 1) → (𝑁 − (𝐽 + 1)) = (𝑁 − ((𝑁 − 1) + 1)))
8015oveq2d 7406 . . . . . . . . . . . 12 (𝜑 → (𝑁 − ((𝑁 − 1) + 1)) = (𝑁𝑁))
8151subidd 11528 . . . . . . . . . . . 12 (𝜑 → (𝑁𝑁) = 0)
8280, 81eqtrd 2765 . . . . . . . . . . 11 (𝜑 → (𝑁 − ((𝑁 − 1) + 1)) = 0)
8379, 82sylan9eq 2785 . . . . . . . . . 10 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑁 − (𝐽 + 1)) = 0)
8478, 83eqtrid 2777 . . . . . . . . 9 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑁𝐾) = 0)
8584breq2d 5122 . . . . . . . 8 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ≤ (𝑁𝐾) ↔ 𝑥 ≤ 0))
865oveq2i 7401 . . . . . . . . . 10 (𝑥 + 𝐾) = (𝑥 + (𝐽 + 1))
8786fveq2i 6864 . . . . . . . . 9 (𝑃‘(𝑥 + 𝐾)) = (𝑃‘(𝑥 + (𝐽 + 1)))
888oveq2d 7406 . . . . . . . . . . 11 (𝐽 = (𝑁 − 1) → (𝑥 + (𝐽 + 1)) = (𝑥 + ((𝑁 − 1) + 1)))
8915oveq2d 7406 . . . . . . . . . . 11 (𝜑 → (𝑥 + ((𝑁 − 1) + 1)) = (𝑥 + 𝑁))
9088, 89sylan9eq 2785 . . . . . . . . . 10 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 + (𝐽 + 1)) = (𝑥 + 𝑁))
9190fveq2d 6865 . . . . . . . . 9 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑃‘(𝑥 + (𝐽 + 1))) = (𝑃‘(𝑥 + 𝑁)))
9287, 91eqtrid 2777 . . . . . . . 8 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑃‘(𝑥 + 𝐾)) = (𝑃‘(𝑥 + 𝑁)))
9386oveq1i 7400 . . . . . . . . . 10 ((𝑥 + 𝐾) − 𝑁) = ((𝑥 + (𝐽 + 1)) − 𝑁)
9493fveq2i 6864 . . . . . . . . 9 (𝑃‘((𝑥 + 𝐾) − 𝑁)) = (𝑃‘((𝑥 + (𝐽 + 1)) − 𝑁))
9588oveq1d 7405 . . . . . . . . . . 11 (𝐽 = (𝑁 − 1) → ((𝑥 + (𝐽 + 1)) − 𝑁) = ((𝑥 + ((𝑁 − 1) + 1)) − 𝑁))
9689oveq1d 7405 . . . . . . . . . . 11 (𝜑 → ((𝑥 + ((𝑁 − 1) + 1)) − 𝑁) = ((𝑥 + 𝑁) − 𝑁))
9795, 96sylan9eq 2785 . . . . . . . . . 10 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝑥 + (𝐽 + 1)) − 𝑁) = ((𝑥 + 𝑁) − 𝑁))
9897fveq2d 6865 . . . . . . . . 9 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑃‘((𝑥 + (𝐽 + 1)) − 𝑁)) = (𝑃‘((𝑥 + 𝑁) − 𝑁)))
9994, 98eqtrid 2777 . . . . . . . 8 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑃‘((𝑥 + 𝐾) − 𝑁)) = (𝑃‘((𝑥 + 𝑁) − 𝑁)))
10085, 92, 99ifbieq12d 4520 . . . . . . 7 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁))) = if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))))
101100mpteq2dv 5204 . . . . . 6 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) = (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁)))))
10220, 21syl 17 . . . . . . . . 9 (𝜑𝐹(Walks‘𝐺)𝑃)
1031wlkp 29551 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
104 ffn 6691 . . . . . . . . 9 (𝑃:(0...(♯‘𝐹))⟶𝑉𝑃 Fn (0...(♯‘𝐹)))
105102, 103, 1043syl 18 . . . . . . . 8 (𝜑𝑃 Fn (0...(♯‘𝐹)))
106105adantl 481 . . . . . . 7 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑃 Fn (0...(♯‘𝐹)))
107 dffn5 6922 . . . . . . 7 (𝑃 Fn (0...(♯‘𝐹)) ↔ 𝑃 = (𝑥 ∈ (0...(♯‘𝐹)) ↦ (𝑃𝑥)))
108106, 107sylib 218 . . . . . 6 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑃 = (𝑥 ∈ (0...(♯‘𝐹)) ↦ (𝑃𝑥)))
10977, 101, 1083eqtr4d 2775 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) = 𝑃)
1104, 30, 1093brtr4d 5142 . . . 4 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
11120adantl 481 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐹(Circuits‘𝐺)𝑃)
112111, 30, 1093brtr4d 5142 . . . 4 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
113 eucrct2eupth1.s . . . 4 (Vtx‘𝑆) = 𝑉
114 elfzolt3 13637 . . . . . . 7 (𝐽 ∈ (0..^𝑁) → 0 < 𝑁)
1159, 114syl 17 . . . . . 6 (𝜑 → 0 < 𝑁)
116 elfzoelz 13627 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
1179, 116syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
118117peano2zd 12648 . . . . . . . . 9 (𝜑 → (𝐽 + 1) ∈ ℤ)
1195, 118eqeltrid 2833 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
120 cshwlen 14771 . . . . . . . . 9 ((𝐹 ∈ Word dom 𝐼𝐾 ∈ ℤ) → (♯‘(𝐹 cyclShift 𝐾)) = (♯‘𝐹))
121120eqcomd 2736 . . . . . . . 8 ((𝐹 ∈ Word dom 𝐼𝐾 ∈ ℤ) → (♯‘𝐹) = (♯‘(𝐹 cyclShift 𝐾)))
12224, 119, 121syl2anc 584 . . . . . . 7 (𝜑 → (♯‘𝐹) = (♯‘(𝐹 cyclShift 𝐾)))
12318, 122eqtrd 2765 . . . . . 6 (𝜑𝑁 = (♯‘(𝐹 cyclShift 𝐾)))
124115, 123breqtrd 5136 . . . . 5 (𝜑 → 0 < (♯‘(𝐹 cyclShift 𝐾)))
125124adantl 481 . . . 4 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 0 < (♯‘(𝐹 cyclShift 𝐾)))
126123adantl 481 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑁 = (♯‘(𝐹 cyclShift 𝐾)))
127126oveq1d 7405 . . . 4 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑁 − 1) = ((♯‘(𝐹 cyclShift 𝐾)) − 1))
128 eucrct2eupth.e . . . . . 6 (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))))
129128adantl 481 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))))
13024, 18, 93jca 1128 . . . . . . . . 9 (𝜑 → (𝐹 ∈ Word dom 𝐼𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)))
131130adantl 481 . . . . . . . 8 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 ∈ Word dom 𝐼𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)))
132 cshimadifsn0 14803 . . . . . . . 8 ((𝐹 ∈ Word dom 𝐼𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))
133131, 132syl 17 . . . . . . 7 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))
1347imaeq1i 6031 . . . . . . 7 ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))) = ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))
135133, 134eqtrdi 2781 . . . . . 6 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1))))
136135reseq2d 5953 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))) = (𝐼 ↾ ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))))
137129, 136eqtrd 2765 . . . 4 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (iEdg‘𝑆) = (𝐼 ↾ ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))))
138 eqid 2730 . . . 4 ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1)) = ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1))
139 eqid 2730 . . . 4 ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))) = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1)))
1401, 2, 110, 112, 113, 125, 127, 137, 138, 139eucrct2eupth1 30180 . . 3 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1))(EulerPaths‘𝑆)((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))))
141 eucrct2eupth.h . . . 4 𝐻 = ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1))
142141a1i 11 . . 3 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐻 = ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1)))
143 eucrct2eupth.q . . . . 5 𝑄 = (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁))))
144 fzossfz 13646 . . . . . . . 8 (0..^𝑁) ⊆ (0...𝑁)
14518oveq2d 7406 . . . . . . . 8 (𝜑 → (0...𝑁) = (0...(♯‘𝐹)))
146144, 145sseqtrid 3992 . . . . . . 7 (𝜑 → (0..^𝑁) ⊆ (0...(♯‘𝐹)))
147146resmptd 6014 . . . . . 6 (𝜑 → ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0..^𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
148 elfzoel2 13626 . . . . . . . 8 (𝐽 ∈ (0..^𝑁) → 𝑁 ∈ ℤ)
149 fzoval 13628 . . . . . . . 8 (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1)))
1509, 148, 1493syl 18 . . . . . . 7 (𝜑 → (0..^𝑁) = (0...(𝑁 − 1)))
151150reseq2d 5953 . . . . . 6 (𝜑 → ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0..^𝑁)) = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))))
152147, 151eqtr3d 2767 . . . . 5 (𝜑 → (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))))
153143, 152eqtrid 2777 . . . 4 (𝜑𝑄 = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))))
154153adantl 481 . . 3 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑄 = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))))
155140, 142, 1543brtr4d 5142 . 2 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐻(EulerPaths‘𝑆)𝑄)
15620adantl 481 . . . 4 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐹(Circuits‘𝐺)𝑃)
157 peano2nn0 12489 . . . . . . . . . . . . 13 (𝐽 ∈ ℕ0 → (𝐽 + 1) ∈ ℕ0)
1581573ad2ant1 1133 . . . . . . . . . . . 12 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 + 1) ∈ ℕ0)
159158adantr 480 . . . . . . . . . . 11 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ ¬ 𝐽 = (𝑁 − 1)) → (𝐽 + 1) ∈ ℕ0)
160 simpl2 1193 . . . . . . . . . . 11 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ ¬ 𝐽 = (𝑁 − 1)) → 𝑁 ∈ ℕ)
161 1cnd 11176 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 1 ∈ ℂ)
162 nn0cn 12459 . . . . . . . . . . . . . . . . 17 (𝐽 ∈ ℕ0𝐽 ∈ ℂ)
1631623ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℂ)
16412, 161, 163subadd2d 11559 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → ((𝑁 − 1) = 𝐽 ↔ (𝐽 + 1) = 𝑁))
165 eqcom 2737 . . . . . . . . . . . . . . 15 (𝐽 = (𝑁 − 1) ↔ (𝑁 − 1) = 𝐽)
166 eqcom 2737 . . . . . . . . . . . . . . 15 (𝑁 = (𝐽 + 1) ↔ (𝐽 + 1) = 𝑁)
167164, 165, 1663bitr4g 314 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 = (𝑁 − 1) ↔ 𝑁 = (𝐽 + 1)))
168167necon3bbid 2963 . . . . . . . . . . . . 13 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (¬ 𝐽 = (𝑁 − 1) ↔ 𝑁 ≠ (𝐽 + 1)))
169157nn0red 12511 . . . . . . . . . . . . . . . 16 (𝐽 ∈ ℕ0 → (𝐽 + 1) ∈ ℝ)
1701693ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 + 1) ∈ ℝ)
171 nnre 12200 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1721713ad2ant2 1134 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℝ)
173 nn0z 12561 . . . . . . . . . . . . . . . . 17 (𝐽 ∈ ℕ0𝐽 ∈ ℤ)
174 nnz 12557 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
175 zltp1le 12590 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 < 𝑁 ↔ (𝐽 + 1) ≤ 𝑁))
176173, 174, 175syl2an 596 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐽 < 𝑁 ↔ (𝐽 + 1) ≤ 𝑁))
177176biimp3a 1471 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 + 1) ≤ 𝑁)
178170, 172, 177leltned 11334 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → ((𝐽 + 1) < 𝑁𝑁 ≠ (𝐽 + 1)))
179178biimprd 248 . . . . . . . . . . . . 13 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝑁 ≠ (𝐽 + 1) → (𝐽 + 1) < 𝑁))
180168, 179sylbid 240 . . . . . . . . . . . 12 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (¬ 𝐽 = (𝑁 − 1) → (𝐽 + 1) < 𝑁))
181180imp 406 . . . . . . . . . . 11 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ ¬ 𝐽 = (𝑁 − 1)) → (𝐽 + 1) < 𝑁)
182159, 160, 1813jca 1128 . . . . . . . . . 10 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ ¬ 𝐽 = (𝑁 − 1)) → ((𝐽 + 1) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝐽 + 1) < 𝑁))
183182ex 412 . . . . . . . . 9 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (¬ 𝐽 = (𝑁 − 1) → ((𝐽 + 1) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝐽 + 1) < 𝑁)))
18410, 183sylbi 217 . . . . . . . 8 (𝐽 ∈ (0..^𝑁) → (¬ 𝐽 = (𝑁 − 1) → ((𝐽 + 1) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝐽 + 1) < 𝑁)))
185 elfzo0 13668 . . . . . . . 8 ((𝐽 + 1) ∈ (0..^𝑁) ↔ ((𝐽 + 1) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝐽 + 1) < 𝑁))
186184, 185imbitrrdi 252 . . . . . . 7 (𝐽 ∈ (0..^𝑁) → (¬ 𝐽 = (𝑁 − 1) → (𝐽 + 1) ∈ (0..^𝑁)))
1879, 186syl 17 . . . . . 6 (𝜑 → (¬ 𝐽 = (𝑁 − 1) → (𝐽 + 1) ∈ (0..^𝑁)))
188187impcom 407 . . . . 5 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐽 + 1) ∈ (0..^𝑁))
1895a1i 11 . . . . 5 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐾 = (𝐽 + 1))
19018eqcomd 2736 . . . . . . 7 (𝜑 → (♯‘𝐹) = 𝑁)
191190oveq2d 7406 . . . . . 6 (𝜑 → (0..^(♯‘𝐹)) = (0..^𝑁))
192191adantl 481 . . . . 5 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (0..^(♯‘𝐹)) = (0..^𝑁))
193188, 189, 1923eltr4d 2844 . . . 4 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐾 ∈ (0..^(♯‘𝐹)))
194 eqid 2730 . . . 4 (𝐹 cyclShift 𝐾) = (𝐹 cyclShift 𝐾)
195 eqid 2730 . . . 4 (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) = (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹)))))
1963adantl 481 . . . 4 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐹(EulerPaths‘𝐺)𝑃)
1971, 2, 156, 31, 193, 194, 195, 196eucrctshift 30179 . . 3 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹)))))))
198 simprl 770 . . . . 5 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → (𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))
199 simprr 772 . . . . 5 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))
200124ad2antlr 727 . . . . 5 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → 0 < (♯‘(𝐹 cyclShift 𝐾)))
201123oveq1d 7405 . . . . . 6 (𝜑 → (𝑁 − 1) = ((♯‘(𝐹 cyclShift 𝐾)) − 1))
202201ad2antlr 727 . . . . 5 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → (𝑁 − 1) = ((♯‘(𝐹 cyclShift 𝐾)) − 1))
203128adantl 481 . . . . . . 7 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))))
204130adantl 481 . . . . . . . . . 10 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 ∈ Word dom 𝐼𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)))
205204, 132syl 17 . . . . . . . . 9 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))
206205, 134eqtrdi 2781 . . . . . . . 8 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1))))
207206reseq2d 5953 . . . . . . 7 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))) = (𝐼 ↾ ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))))
208203, 207eqtrd 2765 . . . . . 6 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (iEdg‘𝑆) = (𝐼 ↾ ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))))
209208adantr 480 . . . . 5 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → (iEdg‘𝑆) = (𝐼 ↾ ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))))
210 eqid 2730 . . . . 5 ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))) = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1)))
2111, 2, 198, 199, 113, 200, 202, 209, 138, 210eucrct2eupth1 30180 . . . 4 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1))(EulerPaths‘𝑆)((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))))
212141a1i 11 . . . 4 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → 𝐻 = ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1)))
213190oveq1d 7405 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐹) − 𝐾) = (𝑁𝐾))
214213breq2d 5122 . . . . . . . . . . 11 (𝜑 → (𝑥 ≤ ((♯‘𝐹) − 𝐾) ↔ 𝑥 ≤ (𝑁𝐾)))
215214adantl 481 . . . . . . . . . 10 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ≤ ((♯‘𝐹) − 𝐾) ↔ 𝑥 ≤ (𝑁𝐾)))
216190oveq2d 7406 . . . . . . . . . . . 12 (𝜑 → ((𝑥 + 𝐾) − (♯‘𝐹)) = ((𝑥 + 𝐾) − 𝑁))
217216fveq2d 6865 . . . . . . . . . . 11 (𝜑 → (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))) = (𝑃‘((𝑥 + 𝐾) − 𝑁)))
218217adantl 481 . . . . . . . . . 10 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))) = (𝑃‘((𝑥 + 𝐾) − 𝑁)))
219215, 218ifbieq2d 4518 . . . . . . . . 9 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹)))) = if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁))))
220219mpteq2dv 5204 . . . . . . . 8 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) = (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
221150eqcomd 2736 . . . . . . . . 9 (𝜑 → (0...(𝑁 − 1)) = (0..^𝑁))
222221adantl 481 . . . . . . . 8 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (0...(𝑁 − 1)) = (0..^𝑁))
223220, 222reseq12d 5954 . . . . . . 7 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))) = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0..^𝑁)))
22418adantl 481 . . . . . . . . . 10 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑁 = (♯‘𝐹))
225224oveq2d 7406 . . . . . . . . 9 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (0...𝑁) = (0...(♯‘𝐹)))
226144, 225sseqtrid 3992 . . . . . . . 8 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (0..^𝑁) ⊆ (0...(♯‘𝐹)))
227226resmptd 6014 . . . . . . 7 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0..^𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
228223, 227eqtrd 2765 . . . . . 6 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))) = (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
229143, 228eqtr4id 2784 . . . . 5 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑄 = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))))
230229adantr 480 . . . 4 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → 𝑄 = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))))
231211, 212, 2303brtr4d 5142 . . 3 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → 𝐻(EulerPaths‘𝑆)𝑄)
232197, 231mpdan 687 . 2 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐻(EulerPaths‘𝑆)𝑄)
233155, 232pm2.61ian 811 1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cdif 3914  cun 3915  ifcif 4491  {csn 4592   class class class wbr 5110  cmpt 5191  dom cdm 5641  cres 5643  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cmin 11412  cn 12193  0cn0 12449  cz 12536  ...cfz 13475  ..^cfzo 13622  chash 14302  Word cword 14485   prefix cpfx 14642   cyclShift ccsh 14760  Vtxcvtx 28930  iEdgciedg 28931  Walkscwlks 29531  Trailsctrls 29625  Circuitsccrcts 29721  EulerPathsceupth 30133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-hash 14303  df-word 14486  df-concat 14543  df-substr 14613  df-pfx 14643  df-csh 14761  df-wlks 29534  df-trls 29627  df-crcts 29723  df-eupth 30134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator