MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucrct2eupth Structured version   Visualization version   GIF version

Theorem eucrct2eupth 28609
Description: Removing one edge (𝐼‘(𝐹𝐽)) from a graph 𝐺 with an Eulerian circuit 𝐹, 𝑃 results in a graph 𝑆 with an Eulerian path 𝐻, 𝑄. (Contributed by AV, 17-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.)
Hypotheses
Ref Expression
eucrct2eupth1.v 𝑉 = (Vtx‘𝐺)
eucrct2eupth1.i 𝐼 = (iEdg‘𝐺)
eucrct2eupth1.d (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eucrct2eupth1.c (𝜑𝐹(Circuits‘𝐺)𝑃)
eucrct2eupth1.s (Vtx‘𝑆) = 𝑉
eucrct2eupth.n (𝜑𝑁 = (♯‘𝐹))
eucrct2eupth.j (𝜑𝐽 ∈ (0..^𝑁))
eucrct2eupth.e (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))))
eucrct2eupth.k 𝐾 = (𝐽 + 1)
eucrct2eupth.h 𝐻 = ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1))
eucrct2eupth.q 𝑄 = (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁))))
Assertion
Ref Expression
eucrct2eupth (𝜑𝐻(EulerPaths‘𝑆)𝑄)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐼   𝑥,𝐽   𝑥,𝐾   𝑥,𝑁   𝑥,𝑃   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝑄(𝑥)   𝑆(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem eucrct2eupth
StepHypRef Expression
1 eucrct2eupth1.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eucrct2eupth1.i . . . 4 𝐼 = (iEdg‘𝐺)
3 eucrct2eupth1.d . . . . . 6 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
43adantl 482 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐹(EulerPaths‘𝐺)𝑃)
5 eucrct2eupth.k . . . . . . . 8 𝐾 = (𝐽 + 1)
65eqcomi 2747 . . . . . . 7 (𝐽 + 1) = 𝐾
76oveq2i 7286 . . . . . 6 (𝐹 cyclShift (𝐽 + 1)) = (𝐹 cyclShift 𝐾)
8 oveq1 7282 . . . . . . . . 9 (𝐽 = (𝑁 − 1) → (𝐽 + 1) = ((𝑁 − 1) + 1))
9 eucrct2eupth.j . . . . . . . . . 10 (𝜑𝐽 ∈ (0..^𝑁))
10 elfzo0 13428 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) ↔ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
11 nncn 11981 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
12113ad2ant2 1133 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℂ)
1310, 12sylbi 216 . . . . . . . . . 10 (𝐽 ∈ (0..^𝑁) → 𝑁 ∈ ℂ)
14 npcan1 11400 . . . . . . . . . 10 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
159, 13, 143syl 18 . . . . . . . . 9 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
168, 15sylan9eq 2798 . . . . . . . 8 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐽 + 1) = 𝑁)
1716oveq2d 7291 . . . . . . 7 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift (𝐽 + 1)) = (𝐹 cyclShift 𝑁))
18 eucrct2eupth.n . . . . . . . . . 10 (𝜑𝑁 = (♯‘𝐹))
1918oveq2d 7291 . . . . . . . . 9 (𝜑 → (𝐹 cyclShift 𝑁) = (𝐹 cyclShift (♯‘𝐹)))
20 eucrct2eupth1.c . . . . . . . . . . 11 (𝜑𝐹(Circuits‘𝐺)𝑃)
21 crctiswlk 28164 . . . . . . . . . . . 12 (𝐹(Circuits‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
222wlkf 27981 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
2321, 22syl 17 . . . . . . . . . . 11 (𝐹(Circuits‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
2420, 23syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ Word dom 𝐼)
25 cshwn 14510 . . . . . . . . . 10 (𝐹 ∈ Word dom 𝐼 → (𝐹 cyclShift (♯‘𝐹)) = 𝐹)
2624, 25syl 17 . . . . . . . . 9 (𝜑 → (𝐹 cyclShift (♯‘𝐹)) = 𝐹)
2719, 26eqtrd 2778 . . . . . . . 8 (𝜑 → (𝐹 cyclShift 𝑁) = 𝐹)
2827adantl 482 . . . . . . 7 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift 𝑁) = 𝐹)
2917, 28eqtrd 2778 . . . . . 6 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift (𝐽 + 1)) = 𝐹)
307, 29eqtr3id 2792 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift 𝐾) = 𝐹)
31 eqid 2738 . . . . . . . . . . . . . 14 (♯‘𝐹) = (♯‘𝐹)
321, 2, 20, 31crctcshlem1 28182 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐹) ∈ ℕ0)
33 fz0sn0fz1 13373 . . . . . . . . . . . . 13 ((♯‘𝐹) ∈ ℕ0 → (0...(♯‘𝐹)) = ({0} ∪ (1...(♯‘𝐹))))
3432, 33syl 17 . . . . . . . . . . . 12 (𝜑 → (0...(♯‘𝐹)) = ({0} ∪ (1...(♯‘𝐹))))
3534eleq2d 2824 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0...(♯‘𝐹)) ↔ 𝑥 ∈ ({0} ∪ (1...(♯‘𝐹)))))
36 elun 4083 . . . . . . . . . . 11 (𝑥 ∈ ({0} ∪ (1...(♯‘𝐹))) ↔ (𝑥 ∈ {0} ∨ 𝑥 ∈ (1...(♯‘𝐹))))
3735, 36bitrdi 287 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0...(♯‘𝐹)) ↔ (𝑥 ∈ {0} ∨ 𝑥 ∈ (1...(♯‘𝐹)))))
38 elsni 4578 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {0} → 𝑥 = 0)
39 0le0 12074 . . . . . . . . . . . . . . . 16 0 ≤ 0
4038, 39eqbrtrdi 5113 . . . . . . . . . . . . . . 15 (𝑥 ∈ {0} → 𝑥 ≤ 0)
4140adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ {0}) → 𝑥 ≤ 0)
4241iftrued 4467 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {0}) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃‘(𝑥 + 𝑁)))
4318fveq2d 6778 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃𝑁) = (𝑃‘(♯‘𝐹)))
44 crctprop 28160 . . . . . . . . . . . . . . . . . 18 (𝐹(Circuits‘𝐺)𝑃 → (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
45 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘0) = (𝑃‘(♯‘𝐹)))
4645eqcomd 2744 . . . . . . . . . . . . . . . . . 18 ((𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘(♯‘𝐹)) = (𝑃‘0))
4720, 44, 463syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃‘(♯‘𝐹)) = (𝑃‘0))
4843, 47eqtrd 2778 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃𝑁) = (𝑃‘0))
4948adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 0) → (𝑃𝑁) = (𝑃‘0))
50 oveq1 7282 . . . . . . . . . . . . . . . . 17 (𝑥 = 0 → (𝑥 + 𝑁) = (0 + 𝑁))
519, 13syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℂ)
5251addid2d 11176 . . . . . . . . . . . . . . . . 17 (𝜑 → (0 + 𝑁) = 𝑁)
5350, 52sylan9eqr 2800 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 0) → (𝑥 + 𝑁) = 𝑁)
5453fveq2d 6778 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 0) → (𝑃‘(𝑥 + 𝑁)) = (𝑃𝑁))
55 fveq2 6774 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → (𝑃𝑥) = (𝑃‘0))
5655adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 0) → (𝑃𝑥) = (𝑃‘0))
5749, 54, 563eqtr4d 2788 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 0) → (𝑃‘(𝑥 + 𝑁)) = (𝑃𝑥))
5838, 57sylan2 593 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {0}) → (𝑃‘(𝑥 + 𝑁)) = (𝑃𝑥))
5942, 58eqtrd 2778 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {0}) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥))
6059ex 413 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ {0} → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥)))
61 elfznn 13285 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...(♯‘𝐹)) → 𝑥 ∈ ℕ)
62 nnnle0 12006 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ → ¬ 𝑥 ≤ 0)
6361, 62syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...(♯‘𝐹)) → ¬ 𝑥 ≤ 0)
6463adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → ¬ 𝑥 ≤ 0)
6564iffalsed 4470 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃‘((𝑥 + 𝑁) − 𝑁)))
6661nncnd 11989 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...(♯‘𝐹)) → 𝑥 ∈ ℂ)
6766adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → 𝑥 ∈ ℂ)
6851adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → 𝑁 ∈ ℂ)
6967, 68pncand 11333 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → ((𝑥 + 𝑁) − 𝑁) = 𝑥)
7069fveq2d 6778 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → (𝑃‘((𝑥 + 𝑁) − 𝑁)) = (𝑃𝑥))
7165, 70eqtrd 2778 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥))
7271ex 413 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (1...(♯‘𝐹)) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥)))
7360, 72jaod 856 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ {0} ∨ 𝑥 ∈ (1...(♯‘𝐹))) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥)))
7437, 73sylbid 239 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0...(♯‘𝐹)) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥)))
7574imp 407 . . . . . . . 8 ((𝜑𝑥 ∈ (0...(♯‘𝐹))) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥))
7675mpteq2dva 5174 . . . . . . 7 (𝜑 → (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁)))) = (𝑥 ∈ (0...(♯‘𝐹)) ↦ (𝑃𝑥)))
7776adantl 482 . . . . . 6 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁)))) = (𝑥 ∈ (0...(♯‘𝐹)) ↦ (𝑃𝑥)))
785oveq2i 7286 . . . . . . . . . 10 (𝑁𝐾) = (𝑁 − (𝐽 + 1))
798oveq2d 7291 . . . . . . . . . . 11 (𝐽 = (𝑁 − 1) → (𝑁 − (𝐽 + 1)) = (𝑁 − ((𝑁 − 1) + 1)))
8015oveq2d 7291 . . . . . . . . . . . 12 (𝜑 → (𝑁 − ((𝑁 − 1) + 1)) = (𝑁𝑁))
8151subidd 11320 . . . . . . . . . . . 12 (𝜑 → (𝑁𝑁) = 0)
8280, 81eqtrd 2778 . . . . . . . . . . 11 (𝜑 → (𝑁 − ((𝑁 − 1) + 1)) = 0)
8379, 82sylan9eq 2798 . . . . . . . . . 10 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑁 − (𝐽 + 1)) = 0)
8478, 83eqtrid 2790 . . . . . . . . 9 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑁𝐾) = 0)
8584breq2d 5086 . . . . . . . 8 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ≤ (𝑁𝐾) ↔ 𝑥 ≤ 0))
865oveq2i 7286 . . . . . . . . . 10 (𝑥 + 𝐾) = (𝑥 + (𝐽 + 1))
8786fveq2i 6777 . . . . . . . . 9 (𝑃‘(𝑥 + 𝐾)) = (𝑃‘(𝑥 + (𝐽 + 1)))
888oveq2d 7291 . . . . . . . . . . 11 (𝐽 = (𝑁 − 1) → (𝑥 + (𝐽 + 1)) = (𝑥 + ((𝑁 − 1) + 1)))
8915oveq2d 7291 . . . . . . . . . . 11 (𝜑 → (𝑥 + ((𝑁 − 1) + 1)) = (𝑥 + 𝑁))
9088, 89sylan9eq 2798 . . . . . . . . . 10 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 + (𝐽 + 1)) = (𝑥 + 𝑁))
9190fveq2d 6778 . . . . . . . . 9 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑃‘(𝑥 + (𝐽 + 1))) = (𝑃‘(𝑥 + 𝑁)))
9287, 91eqtrid 2790 . . . . . . . 8 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑃‘(𝑥 + 𝐾)) = (𝑃‘(𝑥 + 𝑁)))
9386oveq1i 7285 . . . . . . . . . 10 ((𝑥 + 𝐾) − 𝑁) = ((𝑥 + (𝐽 + 1)) − 𝑁)
9493fveq2i 6777 . . . . . . . . 9 (𝑃‘((𝑥 + 𝐾) − 𝑁)) = (𝑃‘((𝑥 + (𝐽 + 1)) − 𝑁))
9588oveq1d 7290 . . . . . . . . . . 11 (𝐽 = (𝑁 − 1) → ((𝑥 + (𝐽 + 1)) − 𝑁) = ((𝑥 + ((𝑁 − 1) + 1)) − 𝑁))
9689oveq1d 7290 . . . . . . . . . . 11 (𝜑 → ((𝑥 + ((𝑁 − 1) + 1)) − 𝑁) = ((𝑥 + 𝑁) − 𝑁))
9795, 96sylan9eq 2798 . . . . . . . . . 10 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝑥 + (𝐽 + 1)) − 𝑁) = ((𝑥 + 𝑁) − 𝑁))
9897fveq2d 6778 . . . . . . . . 9 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑃‘((𝑥 + (𝐽 + 1)) − 𝑁)) = (𝑃‘((𝑥 + 𝑁) − 𝑁)))
9994, 98eqtrid 2790 . . . . . . . 8 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑃‘((𝑥 + 𝐾) − 𝑁)) = (𝑃‘((𝑥 + 𝑁) − 𝑁)))
10085, 92, 99ifbieq12d 4487 . . . . . . 7 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁))) = if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))))
101100mpteq2dv 5176 . . . . . 6 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) = (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁)))))
10220, 21syl 17 . . . . . . . . 9 (𝜑𝐹(Walks‘𝐺)𝑃)
1031wlkp 27983 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
104 ffn 6600 . . . . . . . . 9 (𝑃:(0...(♯‘𝐹))⟶𝑉𝑃 Fn (0...(♯‘𝐹)))
105102, 103, 1043syl 18 . . . . . . . 8 (𝜑𝑃 Fn (0...(♯‘𝐹)))
106105adantl 482 . . . . . . 7 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑃 Fn (0...(♯‘𝐹)))
107 dffn5 6828 . . . . . . 7 (𝑃 Fn (0...(♯‘𝐹)) ↔ 𝑃 = (𝑥 ∈ (0...(♯‘𝐹)) ↦ (𝑃𝑥)))
108106, 107sylib 217 . . . . . 6 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑃 = (𝑥 ∈ (0...(♯‘𝐹)) ↦ (𝑃𝑥)))
10977, 101, 1083eqtr4d 2788 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) = 𝑃)
1104, 30, 1093brtr4d 5106 . . . 4 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
11120adantl 482 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐹(Circuits‘𝐺)𝑃)
112111, 30, 1093brtr4d 5106 . . . 4 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
113 eucrct2eupth1.s . . . 4 (Vtx‘𝑆) = 𝑉
114 elfzolt3 13397 . . . . . . 7 (𝐽 ∈ (0..^𝑁) → 0 < 𝑁)
1159, 114syl 17 . . . . . 6 (𝜑 → 0 < 𝑁)
116 elfzoelz 13387 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
1179, 116syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
118117peano2zd 12429 . . . . . . . . 9 (𝜑 → (𝐽 + 1) ∈ ℤ)
1195, 118eqeltrid 2843 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
120 cshwlen 14512 . . . . . . . . 9 ((𝐹 ∈ Word dom 𝐼𝐾 ∈ ℤ) → (♯‘(𝐹 cyclShift 𝐾)) = (♯‘𝐹))
121120eqcomd 2744 . . . . . . . 8 ((𝐹 ∈ Word dom 𝐼𝐾 ∈ ℤ) → (♯‘𝐹) = (♯‘(𝐹 cyclShift 𝐾)))
12224, 119, 121syl2anc 584 . . . . . . 7 (𝜑 → (♯‘𝐹) = (♯‘(𝐹 cyclShift 𝐾)))
12318, 122eqtrd 2778 . . . . . 6 (𝜑𝑁 = (♯‘(𝐹 cyclShift 𝐾)))
124115, 123breqtrd 5100 . . . . 5 (𝜑 → 0 < (♯‘(𝐹 cyclShift 𝐾)))
125124adantl 482 . . . 4 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 0 < (♯‘(𝐹 cyclShift 𝐾)))
126123adantl 482 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑁 = (♯‘(𝐹 cyclShift 𝐾)))
127126oveq1d 7290 . . . 4 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑁 − 1) = ((♯‘(𝐹 cyclShift 𝐾)) − 1))
128 eucrct2eupth.e . . . . . 6 (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))))
129128adantl 482 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))))
13024, 18, 93jca 1127 . . . . . . . . 9 (𝜑 → (𝐹 ∈ Word dom 𝐼𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)))
131130adantl 482 . . . . . . . 8 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 ∈ Word dom 𝐼𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)))
132 cshimadifsn0 14543 . . . . . . . 8 ((𝐹 ∈ Word dom 𝐼𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))
133131, 132syl 17 . . . . . . 7 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))
1347imaeq1i 5966 . . . . . . 7 ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))) = ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))
135133, 134eqtrdi 2794 . . . . . 6 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1))))
136135reseq2d 5891 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))) = (𝐼 ↾ ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))))
137129, 136eqtrd 2778 . . . 4 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (iEdg‘𝑆) = (𝐼 ↾ ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))))
138 eqid 2738 . . . 4 ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1)) = ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1))
139 eqid 2738 . . . 4 ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))) = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1)))
1401, 2, 110, 112, 113, 125, 127, 137, 138, 139eucrct2eupth1 28608 . . 3 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1))(EulerPaths‘𝑆)((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))))
141 eucrct2eupth.h . . . 4 𝐻 = ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1))
142141a1i 11 . . 3 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐻 = ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1)))
143 eucrct2eupth.q . . . . 5 𝑄 = (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁))))
144 fzossfz 13406 . . . . . . . 8 (0..^𝑁) ⊆ (0...𝑁)
14518oveq2d 7291 . . . . . . . 8 (𝜑 → (0...𝑁) = (0...(♯‘𝐹)))
146144, 145sseqtrid 3973 . . . . . . 7 (𝜑 → (0..^𝑁) ⊆ (0...(♯‘𝐹)))
147146resmptd 5948 . . . . . 6 (𝜑 → ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0..^𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
148 elfzoel2 13386 . . . . . . . 8 (𝐽 ∈ (0..^𝑁) → 𝑁 ∈ ℤ)
149 fzoval 13388 . . . . . . . 8 (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1)))
1509, 148, 1493syl 18 . . . . . . 7 (𝜑 → (0..^𝑁) = (0...(𝑁 − 1)))
151150reseq2d 5891 . . . . . 6 (𝜑 → ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0..^𝑁)) = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))))
152147, 151eqtr3d 2780 . . . . 5 (𝜑 → (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))))
153143, 152eqtrid 2790 . . . 4 (𝜑𝑄 = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))))
154153adantl 482 . . 3 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑄 = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))))
155140, 142, 1543brtr4d 5106 . 2 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐻(EulerPaths‘𝑆)𝑄)
15620adantl 482 . . . 4 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐹(Circuits‘𝐺)𝑃)
157 peano2nn0 12273 . . . . . . . . . . . . 13 (𝐽 ∈ ℕ0 → (𝐽 + 1) ∈ ℕ0)
1581573ad2ant1 1132 . . . . . . . . . . . 12 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 + 1) ∈ ℕ0)
159158adantr 481 . . . . . . . . . . 11 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ ¬ 𝐽 = (𝑁 − 1)) → (𝐽 + 1) ∈ ℕ0)
160 simpl2 1191 . . . . . . . . . . 11 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ ¬ 𝐽 = (𝑁 − 1)) → 𝑁 ∈ ℕ)
161 1cnd 10970 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 1 ∈ ℂ)
162 nn0cn 12243 . . . . . . . . . . . . . . . . 17 (𝐽 ∈ ℕ0𝐽 ∈ ℂ)
1631623ad2ant1 1132 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℂ)
16412, 161, 163subadd2d 11351 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → ((𝑁 − 1) = 𝐽 ↔ (𝐽 + 1) = 𝑁))
165 eqcom 2745 . . . . . . . . . . . . . . 15 (𝐽 = (𝑁 − 1) ↔ (𝑁 − 1) = 𝐽)
166 eqcom 2745 . . . . . . . . . . . . . . 15 (𝑁 = (𝐽 + 1) ↔ (𝐽 + 1) = 𝑁)
167164, 165, 1663bitr4g 314 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 = (𝑁 − 1) ↔ 𝑁 = (𝐽 + 1)))
168167necon3bbid 2981 . . . . . . . . . . . . 13 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (¬ 𝐽 = (𝑁 − 1) ↔ 𝑁 ≠ (𝐽 + 1)))
169157nn0red 12294 . . . . . . . . . . . . . . . 16 (𝐽 ∈ ℕ0 → (𝐽 + 1) ∈ ℝ)
1701693ad2ant1 1132 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 + 1) ∈ ℝ)
171 nnre 11980 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1721713ad2ant2 1133 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℝ)
173 nn0z 12343 . . . . . . . . . . . . . . . . 17 (𝐽 ∈ ℕ0𝐽 ∈ ℤ)
174 nnz 12342 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
175 zltp1le 12370 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 < 𝑁 ↔ (𝐽 + 1) ≤ 𝑁))
176173, 174, 175syl2an 596 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐽 < 𝑁 ↔ (𝐽 + 1) ≤ 𝑁))
177176biimp3a 1468 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 + 1) ≤ 𝑁)
178170, 172, 177leltned 11128 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → ((𝐽 + 1) < 𝑁𝑁 ≠ (𝐽 + 1)))
179178biimprd 247 . . . . . . . . . . . . 13 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝑁 ≠ (𝐽 + 1) → (𝐽 + 1) < 𝑁))
180168, 179sylbid 239 . . . . . . . . . . . 12 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (¬ 𝐽 = (𝑁 − 1) → (𝐽 + 1) < 𝑁))
181180imp 407 . . . . . . . . . . 11 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ ¬ 𝐽 = (𝑁 − 1)) → (𝐽 + 1) < 𝑁)
182159, 160, 1813jca 1127 . . . . . . . . . 10 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ ¬ 𝐽 = (𝑁 − 1)) → ((𝐽 + 1) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝐽 + 1) < 𝑁))
183182ex 413 . . . . . . . . 9 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (¬ 𝐽 = (𝑁 − 1) → ((𝐽 + 1) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝐽 + 1) < 𝑁)))
18410, 183sylbi 216 . . . . . . . 8 (𝐽 ∈ (0..^𝑁) → (¬ 𝐽 = (𝑁 − 1) → ((𝐽 + 1) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝐽 + 1) < 𝑁)))
185 elfzo0 13428 . . . . . . . 8 ((𝐽 + 1) ∈ (0..^𝑁) ↔ ((𝐽 + 1) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝐽 + 1) < 𝑁))
186184, 185syl6ibr 251 . . . . . . 7 (𝐽 ∈ (0..^𝑁) → (¬ 𝐽 = (𝑁 − 1) → (𝐽 + 1) ∈ (0..^𝑁)))
1879, 186syl 17 . . . . . 6 (𝜑 → (¬ 𝐽 = (𝑁 − 1) → (𝐽 + 1) ∈ (0..^𝑁)))
188187impcom 408 . . . . 5 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐽 + 1) ∈ (0..^𝑁))
1895a1i 11 . . . . 5 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐾 = (𝐽 + 1))
19018eqcomd 2744 . . . . . . 7 (𝜑 → (♯‘𝐹) = 𝑁)
191190oveq2d 7291 . . . . . 6 (𝜑 → (0..^(♯‘𝐹)) = (0..^𝑁))
192191adantl 482 . . . . 5 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (0..^(♯‘𝐹)) = (0..^𝑁))
193188, 189, 1923eltr4d 2854 . . . 4 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐾 ∈ (0..^(♯‘𝐹)))
194 eqid 2738 . . . 4 (𝐹 cyclShift 𝐾) = (𝐹 cyclShift 𝐾)
195 eqid 2738 . . . 4 (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) = (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹)))))
1963adantl 482 . . . 4 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐹(EulerPaths‘𝐺)𝑃)
1971, 2, 156, 31, 193, 194, 195, 196eucrctshift 28607 . . 3 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹)))))))
198 simprl 768 . . . . 5 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → (𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))
199 simprr 770 . . . . 5 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))
200124ad2antlr 724 . . . . 5 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → 0 < (♯‘(𝐹 cyclShift 𝐾)))
201123oveq1d 7290 . . . . . 6 (𝜑 → (𝑁 − 1) = ((♯‘(𝐹 cyclShift 𝐾)) − 1))
202201ad2antlr 724 . . . . 5 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → (𝑁 − 1) = ((♯‘(𝐹 cyclShift 𝐾)) − 1))
203128adantl 482 . . . . . . 7 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))))
204130adantl 482 . . . . . . . . . 10 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 ∈ Word dom 𝐼𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)))
205204, 132syl 17 . . . . . . . . 9 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))
206205, 134eqtrdi 2794 . . . . . . . 8 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1))))
207206reseq2d 5891 . . . . . . 7 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))) = (𝐼 ↾ ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))))
208203, 207eqtrd 2778 . . . . . 6 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (iEdg‘𝑆) = (𝐼 ↾ ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))))
209208adantr 481 . . . . 5 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → (iEdg‘𝑆) = (𝐼 ↾ ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))))
210 eqid 2738 . . . . 5 ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))) = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1)))
2111, 2, 198, 199, 113, 200, 202, 209, 138, 210eucrct2eupth1 28608 . . . 4 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1))(EulerPaths‘𝑆)((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))))
212141a1i 11 . . . 4 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → 𝐻 = ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1)))
213190oveq1d 7290 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐹) − 𝐾) = (𝑁𝐾))
214213breq2d 5086 . . . . . . . . . . 11 (𝜑 → (𝑥 ≤ ((♯‘𝐹) − 𝐾) ↔ 𝑥 ≤ (𝑁𝐾)))
215214adantl 482 . . . . . . . . . 10 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ≤ ((♯‘𝐹) − 𝐾) ↔ 𝑥 ≤ (𝑁𝐾)))
216190oveq2d 7291 . . . . . . . . . . . 12 (𝜑 → ((𝑥 + 𝐾) − (♯‘𝐹)) = ((𝑥 + 𝐾) − 𝑁))
217216fveq2d 6778 . . . . . . . . . . 11 (𝜑 → (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))) = (𝑃‘((𝑥 + 𝐾) − 𝑁)))
218217adantl 482 . . . . . . . . . 10 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))) = (𝑃‘((𝑥 + 𝐾) − 𝑁)))
219215, 218ifbieq2d 4485 . . . . . . . . 9 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹)))) = if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁))))
220219mpteq2dv 5176 . . . . . . . 8 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) = (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
221150eqcomd 2744 . . . . . . . . 9 (𝜑 → (0...(𝑁 − 1)) = (0..^𝑁))
222221adantl 482 . . . . . . . 8 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (0...(𝑁 − 1)) = (0..^𝑁))
223220, 222reseq12d 5892 . . . . . . 7 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))) = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0..^𝑁)))
22418adantl 482 . . . . . . . . . 10 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑁 = (♯‘𝐹))
225224oveq2d 7291 . . . . . . . . 9 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (0...𝑁) = (0...(♯‘𝐹)))
226144, 225sseqtrid 3973 . . . . . . . 8 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (0..^𝑁) ⊆ (0...(♯‘𝐹)))
227226resmptd 5948 . . . . . . 7 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0..^𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
228223, 227eqtrd 2778 . . . . . 6 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))) = (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
229143, 228eqtr4id 2797 . . . . 5 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑄 = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))))
230229adantr 481 . . . 4 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → 𝑄 = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))))
231211, 212, 2303brtr4d 5106 . . 3 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → 𝐻(EulerPaths‘𝑆)𝑄)
232197, 231mpdan 684 . 2 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐻(EulerPaths‘𝑆)𝑄)
233155, 232pm2.61ian 809 1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  cdif 3884  cun 3885  ifcif 4459  {csn 4561   class class class wbr 5074  cmpt 5157  dom cdm 5589  cres 5591  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205  cn 11973  0cn0 12233  cz 12319  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217   prefix cpfx 14383   cyclShift ccsh 14501  Vtxcvtx 27366  iEdgciedg 27367  Walkscwlks 27963  Trailsctrls 28058  Circuitsccrcts 28152  EulerPathsceupth 28561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-hash 14045  df-word 14218  df-concat 14274  df-substr 14354  df-pfx 14384  df-csh 14502  df-wlks 27966  df-trls 28060  df-crcts 28154  df-eupth 28562
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator