MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucrct2eupth Structured version   Visualization version   GIF version

Theorem eucrct2eupth 30224
Description: Removing one edge (𝐼‘(𝐹𝐽)) from a graph 𝐺 with an Eulerian circuit 𝐹, 𝑃 results in a graph 𝑆 with an Eulerian path 𝐻, 𝑄. (Contributed by AV, 17-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.)
Hypotheses
Ref Expression
eucrct2eupth1.v 𝑉 = (Vtx‘𝐺)
eucrct2eupth1.i 𝐼 = (iEdg‘𝐺)
eucrct2eupth1.d (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eucrct2eupth1.c (𝜑𝐹(Circuits‘𝐺)𝑃)
eucrct2eupth1.s (Vtx‘𝑆) = 𝑉
eucrct2eupth.n (𝜑𝑁 = (♯‘𝐹))
eucrct2eupth.j (𝜑𝐽 ∈ (0..^𝑁))
eucrct2eupth.e (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))))
eucrct2eupth.k 𝐾 = (𝐽 + 1)
eucrct2eupth.h 𝐻 = ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1))
eucrct2eupth.q 𝑄 = (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁))))
Assertion
Ref Expression
eucrct2eupth (𝜑𝐻(EulerPaths‘𝑆)𝑄)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐼   𝑥,𝐽   𝑥,𝐾   𝑥,𝑁   𝑥,𝑃   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝑄(𝑥)   𝑆(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem eucrct2eupth
StepHypRef Expression
1 eucrct2eupth1.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eucrct2eupth1.i . . . 4 𝐼 = (iEdg‘𝐺)
3 eucrct2eupth1.d . . . . . 6 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
43adantl 481 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐹(EulerPaths‘𝐺)𝑃)
5 eucrct2eupth.k . . . . . . . 8 𝐾 = (𝐽 + 1)
65eqcomi 2738 . . . . . . 7 (𝐽 + 1) = 𝐾
76oveq2i 7380 . . . . . 6 (𝐹 cyclShift (𝐽 + 1)) = (𝐹 cyclShift 𝐾)
8 oveq1 7376 . . . . . . . . 9 (𝐽 = (𝑁 − 1) → (𝐽 + 1) = ((𝑁 − 1) + 1))
9 eucrct2eupth.j . . . . . . . . . 10 (𝜑𝐽 ∈ (0..^𝑁))
10 elfzo0 13637 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) ↔ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
11 nncn 12170 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
12113ad2ant2 1134 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℂ)
1310, 12sylbi 217 . . . . . . . . . 10 (𝐽 ∈ (0..^𝑁) → 𝑁 ∈ ℂ)
14 npcan1 11579 . . . . . . . . . 10 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
159, 13, 143syl 18 . . . . . . . . 9 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
168, 15sylan9eq 2784 . . . . . . . 8 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐽 + 1) = 𝑁)
1716oveq2d 7385 . . . . . . 7 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift (𝐽 + 1)) = (𝐹 cyclShift 𝑁))
18 eucrct2eupth.n . . . . . . . . . 10 (𝜑𝑁 = (♯‘𝐹))
1918oveq2d 7385 . . . . . . . . 9 (𝜑 → (𝐹 cyclShift 𝑁) = (𝐹 cyclShift (♯‘𝐹)))
20 eucrct2eupth1.c . . . . . . . . . . 11 (𝜑𝐹(Circuits‘𝐺)𝑃)
21 crctiswlk 29776 . . . . . . . . . . . 12 (𝐹(Circuits‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
222wlkf 29595 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
2321, 22syl 17 . . . . . . . . . . 11 (𝐹(Circuits‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
2420, 23syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ Word dom 𝐼)
25 cshwn 14738 . . . . . . . . . 10 (𝐹 ∈ Word dom 𝐼 → (𝐹 cyclShift (♯‘𝐹)) = 𝐹)
2624, 25syl 17 . . . . . . . . 9 (𝜑 → (𝐹 cyclShift (♯‘𝐹)) = 𝐹)
2719, 26eqtrd 2764 . . . . . . . 8 (𝜑 → (𝐹 cyclShift 𝑁) = 𝐹)
2827adantl 481 . . . . . . 7 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift 𝑁) = 𝐹)
2917, 28eqtrd 2764 . . . . . 6 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift (𝐽 + 1)) = 𝐹)
307, 29eqtr3id 2778 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift 𝐾) = 𝐹)
31 eqid 2729 . . . . . . . . . . . . . 14 (♯‘𝐹) = (♯‘𝐹)
321, 2, 20, 31crctcshlem1 29797 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐹) ∈ ℕ0)
33 fz0sn0fz1 13582 . . . . . . . . . . . . 13 ((♯‘𝐹) ∈ ℕ0 → (0...(♯‘𝐹)) = ({0} ∪ (1...(♯‘𝐹))))
3432, 33syl 17 . . . . . . . . . . . 12 (𝜑 → (0...(♯‘𝐹)) = ({0} ∪ (1...(♯‘𝐹))))
3534eleq2d 2814 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0...(♯‘𝐹)) ↔ 𝑥 ∈ ({0} ∪ (1...(♯‘𝐹)))))
36 elun 4112 . . . . . . . . . . 11 (𝑥 ∈ ({0} ∪ (1...(♯‘𝐹))) ↔ (𝑥 ∈ {0} ∨ 𝑥 ∈ (1...(♯‘𝐹))))
3735, 36bitrdi 287 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0...(♯‘𝐹)) ↔ (𝑥 ∈ {0} ∨ 𝑥 ∈ (1...(♯‘𝐹)))))
38 elsni 4602 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {0} → 𝑥 = 0)
39 0le0 12263 . . . . . . . . . . . . . . . 16 0 ≤ 0
4038, 39eqbrtrdi 5141 . . . . . . . . . . . . . . 15 (𝑥 ∈ {0} → 𝑥 ≤ 0)
4140adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ {0}) → 𝑥 ≤ 0)
4241iftrued 4492 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {0}) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃‘(𝑥 + 𝑁)))
4318fveq2d 6844 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃𝑁) = (𝑃‘(♯‘𝐹)))
44 crctprop 29772 . . . . . . . . . . . . . . . . . 18 (𝐹(Circuits‘𝐺)𝑃 → (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
45 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘0) = (𝑃‘(♯‘𝐹)))
4645eqcomd 2735 . . . . . . . . . . . . . . . . . 18 ((𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘(♯‘𝐹)) = (𝑃‘0))
4720, 44, 463syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃‘(♯‘𝐹)) = (𝑃‘0))
4843, 47eqtrd 2764 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃𝑁) = (𝑃‘0))
4948adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 0) → (𝑃𝑁) = (𝑃‘0))
50 oveq1 7376 . . . . . . . . . . . . . . . . 17 (𝑥 = 0 → (𝑥 + 𝑁) = (0 + 𝑁))
519, 13syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℂ)
5251addlidd 11351 . . . . . . . . . . . . . . . . 17 (𝜑 → (0 + 𝑁) = 𝑁)
5350, 52sylan9eqr 2786 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 0) → (𝑥 + 𝑁) = 𝑁)
5453fveq2d 6844 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 0) → (𝑃‘(𝑥 + 𝑁)) = (𝑃𝑁))
55 fveq2 6840 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → (𝑃𝑥) = (𝑃‘0))
5655adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 0) → (𝑃𝑥) = (𝑃‘0))
5749, 54, 563eqtr4d 2774 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 0) → (𝑃‘(𝑥 + 𝑁)) = (𝑃𝑥))
5838, 57sylan2 593 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {0}) → (𝑃‘(𝑥 + 𝑁)) = (𝑃𝑥))
5942, 58eqtrd 2764 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {0}) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥))
6059ex 412 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ {0} → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥)))
61 elfznn 13490 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...(♯‘𝐹)) → 𝑥 ∈ ℕ)
62 nnnle0 12195 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ → ¬ 𝑥 ≤ 0)
6361, 62syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...(♯‘𝐹)) → ¬ 𝑥 ≤ 0)
6463adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → ¬ 𝑥 ≤ 0)
6564iffalsed 4495 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃‘((𝑥 + 𝑁) − 𝑁)))
6661nncnd 12178 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...(♯‘𝐹)) → 𝑥 ∈ ℂ)
6766adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → 𝑥 ∈ ℂ)
6851adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → 𝑁 ∈ ℂ)
6967, 68pncand 11510 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → ((𝑥 + 𝑁) − 𝑁) = 𝑥)
7069fveq2d 6844 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → (𝑃‘((𝑥 + 𝑁) − 𝑁)) = (𝑃𝑥))
7165, 70eqtrd 2764 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥))
7271ex 412 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (1...(♯‘𝐹)) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥)))
7360, 72jaod 859 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ {0} ∨ 𝑥 ∈ (1...(♯‘𝐹))) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥)))
7437, 73sylbid 240 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0...(♯‘𝐹)) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥)))
7574imp 406 . . . . . . . 8 ((𝜑𝑥 ∈ (0...(♯‘𝐹))) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥))
7675mpteq2dva 5195 . . . . . . 7 (𝜑 → (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁)))) = (𝑥 ∈ (0...(♯‘𝐹)) ↦ (𝑃𝑥)))
7776adantl 481 . . . . . 6 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁)))) = (𝑥 ∈ (0...(♯‘𝐹)) ↦ (𝑃𝑥)))
785oveq2i 7380 . . . . . . . . . 10 (𝑁𝐾) = (𝑁 − (𝐽 + 1))
798oveq2d 7385 . . . . . . . . . . 11 (𝐽 = (𝑁 − 1) → (𝑁 − (𝐽 + 1)) = (𝑁 − ((𝑁 − 1) + 1)))
8015oveq2d 7385 . . . . . . . . . . . 12 (𝜑 → (𝑁 − ((𝑁 − 1) + 1)) = (𝑁𝑁))
8151subidd 11497 . . . . . . . . . . . 12 (𝜑 → (𝑁𝑁) = 0)
8280, 81eqtrd 2764 . . . . . . . . . . 11 (𝜑 → (𝑁 − ((𝑁 − 1) + 1)) = 0)
8379, 82sylan9eq 2784 . . . . . . . . . 10 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑁 − (𝐽 + 1)) = 0)
8478, 83eqtrid 2776 . . . . . . . . 9 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑁𝐾) = 0)
8584breq2d 5114 . . . . . . . 8 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ≤ (𝑁𝐾) ↔ 𝑥 ≤ 0))
865oveq2i 7380 . . . . . . . . . 10 (𝑥 + 𝐾) = (𝑥 + (𝐽 + 1))
8786fveq2i 6843 . . . . . . . . 9 (𝑃‘(𝑥 + 𝐾)) = (𝑃‘(𝑥 + (𝐽 + 1)))
888oveq2d 7385 . . . . . . . . . . 11 (𝐽 = (𝑁 − 1) → (𝑥 + (𝐽 + 1)) = (𝑥 + ((𝑁 − 1) + 1)))
8915oveq2d 7385 . . . . . . . . . . 11 (𝜑 → (𝑥 + ((𝑁 − 1) + 1)) = (𝑥 + 𝑁))
9088, 89sylan9eq 2784 . . . . . . . . . 10 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 + (𝐽 + 1)) = (𝑥 + 𝑁))
9190fveq2d 6844 . . . . . . . . 9 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑃‘(𝑥 + (𝐽 + 1))) = (𝑃‘(𝑥 + 𝑁)))
9287, 91eqtrid 2776 . . . . . . . 8 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑃‘(𝑥 + 𝐾)) = (𝑃‘(𝑥 + 𝑁)))
9386oveq1i 7379 . . . . . . . . . 10 ((𝑥 + 𝐾) − 𝑁) = ((𝑥 + (𝐽 + 1)) − 𝑁)
9493fveq2i 6843 . . . . . . . . 9 (𝑃‘((𝑥 + 𝐾) − 𝑁)) = (𝑃‘((𝑥 + (𝐽 + 1)) − 𝑁))
9588oveq1d 7384 . . . . . . . . . . 11 (𝐽 = (𝑁 − 1) → ((𝑥 + (𝐽 + 1)) − 𝑁) = ((𝑥 + ((𝑁 − 1) + 1)) − 𝑁))
9689oveq1d 7384 . . . . . . . . . . 11 (𝜑 → ((𝑥 + ((𝑁 − 1) + 1)) − 𝑁) = ((𝑥 + 𝑁) − 𝑁))
9795, 96sylan9eq 2784 . . . . . . . . . 10 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝑥 + (𝐽 + 1)) − 𝑁) = ((𝑥 + 𝑁) − 𝑁))
9897fveq2d 6844 . . . . . . . . 9 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑃‘((𝑥 + (𝐽 + 1)) − 𝑁)) = (𝑃‘((𝑥 + 𝑁) − 𝑁)))
9994, 98eqtrid 2776 . . . . . . . 8 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑃‘((𝑥 + 𝐾) − 𝑁)) = (𝑃‘((𝑥 + 𝑁) − 𝑁)))
10085, 92, 99ifbieq12d 4513 . . . . . . 7 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁))) = if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))))
101100mpteq2dv 5196 . . . . . 6 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) = (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁)))))
10220, 21syl 17 . . . . . . . . 9 (𝜑𝐹(Walks‘𝐺)𝑃)
1031wlkp 29597 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
104 ffn 6670 . . . . . . . . 9 (𝑃:(0...(♯‘𝐹))⟶𝑉𝑃 Fn (0...(♯‘𝐹)))
105102, 103, 1043syl 18 . . . . . . . 8 (𝜑𝑃 Fn (0...(♯‘𝐹)))
106105adantl 481 . . . . . . 7 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑃 Fn (0...(♯‘𝐹)))
107 dffn5 6901 . . . . . . 7 (𝑃 Fn (0...(♯‘𝐹)) ↔ 𝑃 = (𝑥 ∈ (0...(♯‘𝐹)) ↦ (𝑃𝑥)))
108106, 107sylib 218 . . . . . 6 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑃 = (𝑥 ∈ (0...(♯‘𝐹)) ↦ (𝑃𝑥)))
10977, 101, 1083eqtr4d 2774 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) = 𝑃)
1104, 30, 1093brtr4d 5134 . . . 4 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
11120adantl 481 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐹(Circuits‘𝐺)𝑃)
112111, 30, 1093brtr4d 5134 . . . 4 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
113 eucrct2eupth1.s . . . 4 (Vtx‘𝑆) = 𝑉
114 elfzolt3 13606 . . . . . . 7 (𝐽 ∈ (0..^𝑁) → 0 < 𝑁)
1159, 114syl 17 . . . . . 6 (𝜑 → 0 < 𝑁)
116 elfzoelz 13596 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
1179, 116syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
118117peano2zd 12617 . . . . . . . . 9 (𝜑 → (𝐽 + 1) ∈ ℤ)
1195, 118eqeltrid 2832 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
120 cshwlen 14740 . . . . . . . . 9 ((𝐹 ∈ Word dom 𝐼𝐾 ∈ ℤ) → (♯‘(𝐹 cyclShift 𝐾)) = (♯‘𝐹))
121120eqcomd 2735 . . . . . . . 8 ((𝐹 ∈ Word dom 𝐼𝐾 ∈ ℤ) → (♯‘𝐹) = (♯‘(𝐹 cyclShift 𝐾)))
12224, 119, 121syl2anc 584 . . . . . . 7 (𝜑 → (♯‘𝐹) = (♯‘(𝐹 cyclShift 𝐾)))
12318, 122eqtrd 2764 . . . . . 6 (𝜑𝑁 = (♯‘(𝐹 cyclShift 𝐾)))
124115, 123breqtrd 5128 . . . . 5 (𝜑 → 0 < (♯‘(𝐹 cyclShift 𝐾)))
125124adantl 481 . . . 4 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 0 < (♯‘(𝐹 cyclShift 𝐾)))
126123adantl 481 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑁 = (♯‘(𝐹 cyclShift 𝐾)))
127126oveq1d 7384 . . . 4 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑁 − 1) = ((♯‘(𝐹 cyclShift 𝐾)) − 1))
128 eucrct2eupth.e . . . . . 6 (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))))
129128adantl 481 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))))
13024, 18, 93jca 1128 . . . . . . . . 9 (𝜑 → (𝐹 ∈ Word dom 𝐼𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)))
131130adantl 481 . . . . . . . 8 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 ∈ Word dom 𝐼𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)))
132 cshimadifsn0 14772 . . . . . . . 8 ((𝐹 ∈ Word dom 𝐼𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))
133131, 132syl 17 . . . . . . 7 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))
1347imaeq1i 6017 . . . . . . 7 ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))) = ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))
135133, 134eqtrdi 2780 . . . . . 6 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1))))
136135reseq2d 5939 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))) = (𝐼 ↾ ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))))
137129, 136eqtrd 2764 . . . 4 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (iEdg‘𝑆) = (𝐼 ↾ ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))))
138 eqid 2729 . . . 4 ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1)) = ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1))
139 eqid 2729 . . . 4 ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))) = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1)))
1401, 2, 110, 112, 113, 125, 127, 137, 138, 139eucrct2eupth1 30223 . . 3 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1))(EulerPaths‘𝑆)((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))))
141 eucrct2eupth.h . . . 4 𝐻 = ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1))
142141a1i 11 . . 3 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐻 = ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1)))
143 eucrct2eupth.q . . . . 5 𝑄 = (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁))))
144 fzossfz 13615 . . . . . . . 8 (0..^𝑁) ⊆ (0...𝑁)
14518oveq2d 7385 . . . . . . . 8 (𝜑 → (0...𝑁) = (0...(♯‘𝐹)))
146144, 145sseqtrid 3986 . . . . . . 7 (𝜑 → (0..^𝑁) ⊆ (0...(♯‘𝐹)))
147146resmptd 6000 . . . . . 6 (𝜑 → ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0..^𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
148 elfzoel2 13595 . . . . . . . 8 (𝐽 ∈ (0..^𝑁) → 𝑁 ∈ ℤ)
149 fzoval 13597 . . . . . . . 8 (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1)))
1509, 148, 1493syl 18 . . . . . . 7 (𝜑 → (0..^𝑁) = (0...(𝑁 − 1)))
151150reseq2d 5939 . . . . . 6 (𝜑 → ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0..^𝑁)) = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))))
152147, 151eqtr3d 2766 . . . . 5 (𝜑 → (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))))
153143, 152eqtrid 2776 . . . 4 (𝜑𝑄 = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))))
154153adantl 481 . . 3 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑄 = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))))
155140, 142, 1543brtr4d 5134 . 2 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐻(EulerPaths‘𝑆)𝑄)
15620adantl 481 . . . 4 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐹(Circuits‘𝐺)𝑃)
157 peano2nn0 12458 . . . . . . . . . . . . 13 (𝐽 ∈ ℕ0 → (𝐽 + 1) ∈ ℕ0)
1581573ad2ant1 1133 . . . . . . . . . . . 12 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 + 1) ∈ ℕ0)
159158adantr 480 . . . . . . . . . . 11 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ ¬ 𝐽 = (𝑁 − 1)) → (𝐽 + 1) ∈ ℕ0)
160 simpl2 1193 . . . . . . . . . . 11 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ ¬ 𝐽 = (𝑁 − 1)) → 𝑁 ∈ ℕ)
161 1cnd 11145 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 1 ∈ ℂ)
162 nn0cn 12428 . . . . . . . . . . . . . . . . 17 (𝐽 ∈ ℕ0𝐽 ∈ ℂ)
1631623ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℂ)
16412, 161, 163subadd2d 11528 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → ((𝑁 − 1) = 𝐽 ↔ (𝐽 + 1) = 𝑁))
165 eqcom 2736 . . . . . . . . . . . . . . 15 (𝐽 = (𝑁 − 1) ↔ (𝑁 − 1) = 𝐽)
166 eqcom 2736 . . . . . . . . . . . . . . 15 (𝑁 = (𝐽 + 1) ↔ (𝐽 + 1) = 𝑁)
167164, 165, 1663bitr4g 314 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 = (𝑁 − 1) ↔ 𝑁 = (𝐽 + 1)))
168167necon3bbid 2962 . . . . . . . . . . . . 13 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (¬ 𝐽 = (𝑁 − 1) ↔ 𝑁 ≠ (𝐽 + 1)))
169157nn0red 12480 . . . . . . . . . . . . . . . 16 (𝐽 ∈ ℕ0 → (𝐽 + 1) ∈ ℝ)
1701693ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 + 1) ∈ ℝ)
171 nnre 12169 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1721713ad2ant2 1134 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℝ)
173 nn0z 12530 . . . . . . . . . . . . . . . . 17 (𝐽 ∈ ℕ0𝐽 ∈ ℤ)
174 nnz 12526 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
175 zltp1le 12559 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 < 𝑁 ↔ (𝐽 + 1) ≤ 𝑁))
176173, 174, 175syl2an 596 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐽 < 𝑁 ↔ (𝐽 + 1) ≤ 𝑁))
177176biimp3a 1471 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 + 1) ≤ 𝑁)
178170, 172, 177leltned 11303 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → ((𝐽 + 1) < 𝑁𝑁 ≠ (𝐽 + 1)))
179178biimprd 248 . . . . . . . . . . . . 13 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝑁 ≠ (𝐽 + 1) → (𝐽 + 1) < 𝑁))
180168, 179sylbid 240 . . . . . . . . . . . 12 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (¬ 𝐽 = (𝑁 − 1) → (𝐽 + 1) < 𝑁))
181180imp 406 . . . . . . . . . . 11 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ ¬ 𝐽 = (𝑁 − 1)) → (𝐽 + 1) < 𝑁)
182159, 160, 1813jca 1128 . . . . . . . . . 10 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ ¬ 𝐽 = (𝑁 − 1)) → ((𝐽 + 1) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝐽 + 1) < 𝑁))
183182ex 412 . . . . . . . . 9 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (¬ 𝐽 = (𝑁 − 1) → ((𝐽 + 1) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝐽 + 1) < 𝑁)))
18410, 183sylbi 217 . . . . . . . 8 (𝐽 ∈ (0..^𝑁) → (¬ 𝐽 = (𝑁 − 1) → ((𝐽 + 1) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝐽 + 1) < 𝑁)))
185 elfzo0 13637 . . . . . . . 8 ((𝐽 + 1) ∈ (0..^𝑁) ↔ ((𝐽 + 1) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝐽 + 1) < 𝑁))
186184, 185imbitrrdi 252 . . . . . . 7 (𝐽 ∈ (0..^𝑁) → (¬ 𝐽 = (𝑁 − 1) → (𝐽 + 1) ∈ (0..^𝑁)))
1879, 186syl 17 . . . . . 6 (𝜑 → (¬ 𝐽 = (𝑁 − 1) → (𝐽 + 1) ∈ (0..^𝑁)))
188187impcom 407 . . . . 5 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐽 + 1) ∈ (0..^𝑁))
1895a1i 11 . . . . 5 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐾 = (𝐽 + 1))
19018eqcomd 2735 . . . . . . 7 (𝜑 → (♯‘𝐹) = 𝑁)
191190oveq2d 7385 . . . . . 6 (𝜑 → (0..^(♯‘𝐹)) = (0..^𝑁))
192191adantl 481 . . . . 5 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (0..^(♯‘𝐹)) = (0..^𝑁))
193188, 189, 1923eltr4d 2843 . . . 4 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐾 ∈ (0..^(♯‘𝐹)))
194 eqid 2729 . . . 4 (𝐹 cyclShift 𝐾) = (𝐹 cyclShift 𝐾)
195 eqid 2729 . . . 4 (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) = (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹)))))
1963adantl 481 . . . 4 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐹(EulerPaths‘𝐺)𝑃)
1971, 2, 156, 31, 193, 194, 195, 196eucrctshift 30222 . . 3 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹)))))))
198 simprl 770 . . . . 5 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → (𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))
199 simprr 772 . . . . 5 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))
200124ad2antlr 727 . . . . 5 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → 0 < (♯‘(𝐹 cyclShift 𝐾)))
201123oveq1d 7384 . . . . . 6 (𝜑 → (𝑁 − 1) = ((♯‘(𝐹 cyclShift 𝐾)) − 1))
202201ad2antlr 727 . . . . 5 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → (𝑁 − 1) = ((♯‘(𝐹 cyclShift 𝐾)) − 1))
203128adantl 481 . . . . . . 7 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))))
204130adantl 481 . . . . . . . . . 10 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 ∈ Word dom 𝐼𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)))
205204, 132syl 17 . . . . . . . . 9 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))
206205, 134eqtrdi 2780 . . . . . . . 8 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1))))
207206reseq2d 5939 . . . . . . 7 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))) = (𝐼 ↾ ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))))
208203, 207eqtrd 2764 . . . . . 6 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (iEdg‘𝑆) = (𝐼 ↾ ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))))
209208adantr 480 . . . . 5 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → (iEdg‘𝑆) = (𝐼 ↾ ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))))
210 eqid 2729 . . . . 5 ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))) = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1)))
2111, 2, 198, 199, 113, 200, 202, 209, 138, 210eucrct2eupth1 30223 . . . 4 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1))(EulerPaths‘𝑆)((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))))
212141a1i 11 . . . 4 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → 𝐻 = ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1)))
213190oveq1d 7384 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐹) − 𝐾) = (𝑁𝐾))
214213breq2d 5114 . . . . . . . . . . 11 (𝜑 → (𝑥 ≤ ((♯‘𝐹) − 𝐾) ↔ 𝑥 ≤ (𝑁𝐾)))
215214adantl 481 . . . . . . . . . 10 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ≤ ((♯‘𝐹) − 𝐾) ↔ 𝑥 ≤ (𝑁𝐾)))
216190oveq2d 7385 . . . . . . . . . . . 12 (𝜑 → ((𝑥 + 𝐾) − (♯‘𝐹)) = ((𝑥 + 𝐾) − 𝑁))
217216fveq2d 6844 . . . . . . . . . . 11 (𝜑 → (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))) = (𝑃‘((𝑥 + 𝐾) − 𝑁)))
218217adantl 481 . . . . . . . . . 10 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))) = (𝑃‘((𝑥 + 𝐾) − 𝑁)))
219215, 218ifbieq2d 4511 . . . . . . . . 9 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹)))) = if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁))))
220219mpteq2dv 5196 . . . . . . . 8 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) = (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
221150eqcomd 2735 . . . . . . . . 9 (𝜑 → (0...(𝑁 − 1)) = (0..^𝑁))
222221adantl 481 . . . . . . . 8 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (0...(𝑁 − 1)) = (0..^𝑁))
223220, 222reseq12d 5940 . . . . . . 7 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))) = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0..^𝑁)))
22418adantl 481 . . . . . . . . . 10 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑁 = (♯‘𝐹))
225224oveq2d 7385 . . . . . . . . 9 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (0...𝑁) = (0...(♯‘𝐹)))
226144, 225sseqtrid 3986 . . . . . . . 8 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (0..^𝑁) ⊆ (0...(♯‘𝐹)))
227226resmptd 6000 . . . . . . 7 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0..^𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
228223, 227eqtrd 2764 . . . . . 6 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))) = (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
229143, 228eqtr4id 2783 . . . . 5 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑄 = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))))
230229adantr 480 . . . 4 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → 𝑄 = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))))
231211, 212, 2303brtr4d 5134 . . 3 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → 𝐻(EulerPaths‘𝑆)𝑄)
232197, 231mpdan 687 . 2 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐻(EulerPaths‘𝑆)𝑄)
233155, 232pm2.61ian 811 1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3908  cun 3909  ifcif 4484  {csn 4585   class class class wbr 5102  cmpt 5183  dom cdm 5631  cres 5633  cima 5634   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cmin 11381  cn 12162  0cn0 12418  cz 12505  ...cfz 13444  ..^cfzo 13591  chash 14271  Word cword 14454   prefix cpfx 14611   cyclShift ccsh 14729  Vtxcvtx 28976  iEdgciedg 28977  Walkscwlks 29577  Trailsctrls 29669  Circuitsccrcts 29764  EulerPathsceupth 30176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-hash 14272  df-word 14455  df-concat 14512  df-substr 14582  df-pfx 14612  df-csh 14730  df-wlks 29580  df-trls 29671  df-crcts 29766  df-eupth 30177
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator