MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshlem4 Structured version   Visualization version   GIF version

Theorem crctcshlem4 27720
Description: Lemma for crctcsh 27724. (Contributed by AV, 10-Mar-2021.)
Hypotheses
Ref Expression
crctcsh.v 𝑉 = (Vtx‘𝐺)
crctcsh.i 𝐼 = (iEdg‘𝐺)
crctcsh.d (𝜑𝐹(Circuits‘𝐺)𝑃)
crctcsh.n 𝑁 = (♯‘𝐹)
crctcsh.s (𝜑𝑆 ∈ (0..^𝑁))
crctcsh.h 𝐻 = (𝐹 cyclShift 𝑆)
crctcsh.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
Assertion
Ref Expression
crctcshlem4 ((𝜑𝑆 = 0) → (𝐻 = 𝐹𝑄 = 𝑃))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥
Allowed substitution hints:   𝑄(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem crctcshlem4
StepHypRef Expression
1 crctcsh.h . . 3 𝐻 = (𝐹 cyclShift 𝑆)
2 oveq2 7165 . . . 4 (𝑆 = 0 → (𝐹 cyclShift 𝑆) = (𝐹 cyclShift 0))
3 crctcsh.d . . . . . 6 (𝜑𝐹(Circuits‘𝐺)𝑃)
4 crctiswlk 27699 . . . . . 6 (𝐹(Circuits‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
5 crctcsh.i . . . . . . 7 𝐼 = (iEdg‘𝐺)
65wlkf 27518 . . . . . 6 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
73, 4, 63syl 18 . . . . 5 (𝜑𝐹 ∈ Word dom 𝐼)
8 cshw0 14217 . . . . 5 (𝐹 ∈ Word dom 𝐼 → (𝐹 cyclShift 0) = 𝐹)
97, 8syl 17 . . . 4 (𝜑 → (𝐹 cyclShift 0) = 𝐹)
102, 9sylan9eqr 2816 . . 3 ((𝜑𝑆 = 0) → (𝐹 cyclShift 𝑆) = 𝐹)
111, 10syl5eq 2806 . 2 ((𝜑𝑆 = 0) → 𝐻 = 𝐹)
12 crctcsh.q . . 3 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
13 oveq2 7165 . . . . . . . . 9 (𝑆 = 0 → (𝑁𝑆) = (𝑁 − 0))
14 crctcsh.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
15 crctcsh.n . . . . . . . . . . . 12 𝑁 = (♯‘𝐹)
1614, 5, 3, 15crctcshlem1 27717 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
1716nn0cnd 12010 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
1817subid1d 11038 . . . . . . . . 9 (𝜑 → (𝑁 − 0) = 𝑁)
1913, 18sylan9eqr 2816 . . . . . . . 8 ((𝜑𝑆 = 0) → (𝑁𝑆) = 𝑁)
2019breq2d 5049 . . . . . . 7 ((𝜑𝑆 = 0) → (𝑥 ≤ (𝑁𝑆) ↔ 𝑥𝑁))
2120adantr 484 . . . . . 6 (((𝜑𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → (𝑥 ≤ (𝑁𝑆) ↔ 𝑥𝑁))
22 oveq2 7165 . . . . . . . . 9 (𝑆 = 0 → (𝑥 + 𝑆) = (𝑥 + 0))
2322adantl 485 . . . . . . . 8 ((𝜑𝑆 = 0) → (𝑥 + 𝑆) = (𝑥 + 0))
24 elfzelz 12970 . . . . . . . . . 10 (𝑥 ∈ (0...𝑁) → 𝑥 ∈ ℤ)
2524zcnd 12141 . . . . . . . . 9 (𝑥 ∈ (0...𝑁) → 𝑥 ∈ ℂ)
2625addid1d 10892 . . . . . . . 8 (𝑥 ∈ (0...𝑁) → (𝑥 + 0) = 𝑥)
2723, 26sylan9eq 2814 . . . . . . 7 (((𝜑𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → (𝑥 + 𝑆) = 𝑥)
2827fveq2d 6668 . . . . . 6 (((𝜑𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → (𝑃‘(𝑥 + 𝑆)) = (𝑃𝑥))
2927fvoveq1d 7179 . . . . . 6 (((𝜑𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘(𝑥𝑁)))
3021, 28, 29ifbieq12d 4452 . . . . 5 (((𝜑𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁))))
3130mpteq2dva 5132 . . . 4 ((𝜑𝑆 = 0) → (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) = (𝑥 ∈ (0...𝑁) ↦ if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁)))))
32 elfzle2 12974 . . . . . . . . 9 (𝑥 ∈ (0...𝑁) → 𝑥𝑁)
3332adantl 485 . . . . . . . 8 ((𝜑𝑥 ∈ (0...𝑁)) → 𝑥𝑁)
3433iftrued 4432 . . . . . . 7 ((𝜑𝑥 ∈ (0...𝑁)) → if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁))) = (𝑃𝑥))
3534mpteq2dva 5132 . . . . . 6 (𝜑 → (𝑥 ∈ (0...𝑁) ↦ if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁)))) = (𝑥 ∈ (0...𝑁) ↦ (𝑃𝑥)))
3614wlkp 27520 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
373, 4, 363syl 18 . . . . . . 7 (𝜑𝑃:(0...(♯‘𝐹))⟶𝑉)
38 ffn 6504 . . . . . . . . . . 11 (𝑃:(0...(♯‘𝐹))⟶𝑉𝑃 Fn (0...(♯‘𝐹)))
3915eqcomi 2768 . . . . . . . . . . . . 13 (♯‘𝐹) = 𝑁
4039oveq2i 7168 . . . . . . . . . . . 12 (0...(♯‘𝐹)) = (0...𝑁)
4140fneq2i 6438 . . . . . . . . . . 11 (𝑃 Fn (0...(♯‘𝐹)) ↔ 𝑃 Fn (0...𝑁))
4238, 41sylib 221 . . . . . . . . . 10 (𝑃:(0...(♯‘𝐹))⟶𝑉𝑃 Fn (0...𝑁))
4342adantl 485 . . . . . . . . 9 ((𝜑𝑃:(0...(♯‘𝐹))⟶𝑉) → 𝑃 Fn (0...𝑁))
44 dffn5 6718 . . . . . . . . 9 (𝑃 Fn (0...𝑁) ↔ 𝑃 = (𝑥 ∈ (0...𝑁) ↦ (𝑃𝑥)))
4543, 44sylib 221 . . . . . . . 8 ((𝜑𝑃:(0...(♯‘𝐹))⟶𝑉) → 𝑃 = (𝑥 ∈ (0...𝑁) ↦ (𝑃𝑥)))
4645eqcomd 2765 . . . . . . 7 ((𝜑𝑃:(0...(♯‘𝐹))⟶𝑉) → (𝑥 ∈ (0...𝑁) ↦ (𝑃𝑥)) = 𝑃)
4737, 46mpdan 686 . . . . . 6 (𝜑 → (𝑥 ∈ (0...𝑁) ↦ (𝑃𝑥)) = 𝑃)
4835, 47eqtrd 2794 . . . . 5 (𝜑 → (𝑥 ∈ (0...𝑁) ↦ if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁)))) = 𝑃)
4948adantr 484 . . . 4 ((𝜑𝑆 = 0) → (𝑥 ∈ (0...𝑁) ↦ if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁)))) = 𝑃)
5031, 49eqtrd 2794 . . 3 ((𝜑𝑆 = 0) → (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) = 𝑃)
5112, 50syl5eq 2806 . 2 ((𝜑𝑆 = 0) → 𝑄 = 𝑃)
5211, 51jca 515 1 ((𝜑𝑆 = 0) → (𝐻 = 𝐹𝑄 = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1539  wcel 2112  ifcif 4424   class class class wbr 5037  cmpt 5117  dom cdm 5529   Fn wfn 6336  wf 6337  cfv 6341  (class class class)co 7157  0cc0 10589   + caddc 10592  cle 10728  cmin 10922  ...cfz 12953  ..^cfzo 13096  chash 13754  Word cword 13927   cyclShift ccsh 14211  Vtxcvtx 26903  iEdgciedg 26904  Walkscwlks 27500  Circuitsccrcts 27687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666  ax-pre-sup 10667
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-om 7587  df-1st 7700  df-2nd 7701  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-1o 8119  df-er 8306  df-map 8425  df-en 8542  df-dom 8543  df-sdom 8544  df-fin 8545  df-sup 8953  df-inf 8954  df-card 9415  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-div 11350  df-nn 11689  df-n0 11949  df-z 12035  df-uz 12297  df-rp 12445  df-fz 12954  df-fzo 13097  df-fl 13225  df-mod 13301  df-hash 13755  df-word 13928  df-concat 13984  df-substr 14064  df-pfx 14094  df-csh 14212  df-wlks 27503  df-trls 27596  df-crcts 27689
This theorem is referenced by:  crctcshwlk  27722  crctcsh  27724
  Copyright terms: Public domain W3C validator