MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshlem4 Structured version   Visualization version   GIF version

Theorem crctcshlem4 29793
Description: Lemma for crctcsh 29797. (Contributed by AV, 10-Mar-2021.)
Hypotheses
Ref Expression
crctcsh.v 𝑉 = (Vtx‘𝐺)
crctcsh.i 𝐼 = (iEdg‘𝐺)
crctcsh.d (𝜑𝐹(Circuits‘𝐺)𝑃)
crctcsh.n 𝑁 = (♯‘𝐹)
crctcsh.s (𝜑𝑆 ∈ (0..^𝑁))
crctcsh.h 𝐻 = (𝐹 cyclShift 𝑆)
crctcsh.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
Assertion
Ref Expression
crctcshlem4 ((𝜑𝑆 = 0) → (𝐻 = 𝐹𝑄 = 𝑃))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥
Allowed substitution hints:   𝑄(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem crctcshlem4
StepHypRef Expression
1 crctcsh.h . . 3 𝐻 = (𝐹 cyclShift 𝑆)
2 oveq2 7349 . . . 4 (𝑆 = 0 → (𝐹 cyclShift 𝑆) = (𝐹 cyclShift 0))
3 crctcsh.d . . . . 5 (𝜑𝐹(Circuits‘𝐺)𝑃)
4 crctiswlk 29769 . . . . 5 (𝐹(Circuits‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
5 crctcsh.i . . . . . 6 𝐼 = (iEdg‘𝐺)
65wlkf 29588 . . . . 5 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
7 cshw0 14696 . . . . 5 (𝐹 ∈ Word dom 𝐼 → (𝐹 cyclShift 0) = 𝐹)
83, 4, 6, 74syl 19 . . . 4 (𝜑 → (𝐹 cyclShift 0) = 𝐹)
92, 8sylan9eqr 2788 . . 3 ((𝜑𝑆 = 0) → (𝐹 cyclShift 𝑆) = 𝐹)
101, 9eqtrid 2778 . 2 ((𝜑𝑆 = 0) → 𝐻 = 𝐹)
11 crctcsh.q . . 3 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
12 oveq2 7349 . . . . . . . . 9 (𝑆 = 0 → (𝑁𝑆) = (𝑁 − 0))
13 crctcsh.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
14 crctcsh.n . . . . . . . . . . . 12 𝑁 = (♯‘𝐹)
1513, 5, 3, 14crctcshlem1 29790 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
1615nn0cnd 12439 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
1716subid1d 11456 . . . . . . . . 9 (𝜑 → (𝑁 − 0) = 𝑁)
1812, 17sylan9eqr 2788 . . . . . . . 8 ((𝜑𝑆 = 0) → (𝑁𝑆) = 𝑁)
1918breq2d 5098 . . . . . . 7 ((𝜑𝑆 = 0) → (𝑥 ≤ (𝑁𝑆) ↔ 𝑥𝑁))
2019adantr 480 . . . . . 6 (((𝜑𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → (𝑥 ≤ (𝑁𝑆) ↔ 𝑥𝑁))
21 oveq2 7349 . . . . . . . . 9 (𝑆 = 0 → (𝑥 + 𝑆) = (𝑥 + 0))
2221adantl 481 . . . . . . . 8 ((𝜑𝑆 = 0) → (𝑥 + 𝑆) = (𝑥 + 0))
23 elfzelz 13419 . . . . . . . . . 10 (𝑥 ∈ (0...𝑁) → 𝑥 ∈ ℤ)
2423zcnd 12573 . . . . . . . . 9 (𝑥 ∈ (0...𝑁) → 𝑥 ∈ ℂ)
2524addridd 11308 . . . . . . . 8 (𝑥 ∈ (0...𝑁) → (𝑥 + 0) = 𝑥)
2622, 25sylan9eq 2786 . . . . . . 7 (((𝜑𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → (𝑥 + 𝑆) = 𝑥)
2726fveq2d 6821 . . . . . 6 (((𝜑𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → (𝑃‘(𝑥 + 𝑆)) = (𝑃𝑥))
2826fvoveq1d 7363 . . . . . 6 (((𝜑𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘(𝑥𝑁)))
2920, 27, 28ifbieq12d 4499 . . . . 5 (((𝜑𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁))))
3029mpteq2dva 5179 . . . 4 ((𝜑𝑆 = 0) → (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) = (𝑥 ∈ (0...𝑁) ↦ if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁)))))
31 elfzle2 13423 . . . . . . . . 9 (𝑥 ∈ (0...𝑁) → 𝑥𝑁)
3231adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (0...𝑁)) → 𝑥𝑁)
3332iftrued 4478 . . . . . . 7 ((𝜑𝑥 ∈ (0...𝑁)) → if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁))) = (𝑃𝑥))
3433mpteq2dva 5179 . . . . . 6 (𝜑 → (𝑥 ∈ (0...𝑁) ↦ if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁)))) = (𝑥 ∈ (0...𝑁) ↦ (𝑃𝑥)))
3513wlkp 29590 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
363, 4, 353syl 18 . . . . . . 7 (𝜑𝑃:(0...(♯‘𝐹))⟶𝑉)
37 ffn 6646 . . . . . . . . . . 11 (𝑃:(0...(♯‘𝐹))⟶𝑉𝑃 Fn (0...(♯‘𝐹)))
3814eqcomi 2740 . . . . . . . . . . . . 13 (♯‘𝐹) = 𝑁
3938oveq2i 7352 . . . . . . . . . . . 12 (0...(♯‘𝐹)) = (0...𝑁)
4039fneq2i 6574 . . . . . . . . . . 11 (𝑃 Fn (0...(♯‘𝐹)) ↔ 𝑃 Fn (0...𝑁))
4137, 40sylib 218 . . . . . . . . . 10 (𝑃:(0...(♯‘𝐹))⟶𝑉𝑃 Fn (0...𝑁))
4241adantl 481 . . . . . . . . 9 ((𝜑𝑃:(0...(♯‘𝐹))⟶𝑉) → 𝑃 Fn (0...𝑁))
43 dffn5 6875 . . . . . . . . 9 (𝑃 Fn (0...𝑁) ↔ 𝑃 = (𝑥 ∈ (0...𝑁) ↦ (𝑃𝑥)))
4442, 43sylib 218 . . . . . . . 8 ((𝜑𝑃:(0...(♯‘𝐹))⟶𝑉) → 𝑃 = (𝑥 ∈ (0...𝑁) ↦ (𝑃𝑥)))
4544eqcomd 2737 . . . . . . 7 ((𝜑𝑃:(0...(♯‘𝐹))⟶𝑉) → (𝑥 ∈ (0...𝑁) ↦ (𝑃𝑥)) = 𝑃)
4636, 45mpdan 687 . . . . . 6 (𝜑 → (𝑥 ∈ (0...𝑁) ↦ (𝑃𝑥)) = 𝑃)
4734, 46eqtrd 2766 . . . . 5 (𝜑 → (𝑥 ∈ (0...𝑁) ↦ if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁)))) = 𝑃)
4847adantr 480 . . . 4 ((𝜑𝑆 = 0) → (𝑥 ∈ (0...𝑁) ↦ if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁)))) = 𝑃)
4930, 48eqtrd 2766 . . 3 ((𝜑𝑆 = 0) → (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) = 𝑃)
5011, 49eqtrid 2778 . 2 ((𝜑𝑆 = 0) → 𝑄 = 𝑃)
5110, 50jca 511 1 ((𝜑𝑆 = 0) → (𝐻 = 𝐹𝑄 = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  ifcif 4470   class class class wbr 5086  cmpt 5167  dom cdm 5611   Fn wfn 6471  wf 6472  cfv 6476  (class class class)co 7341  0cc0 11001   + caddc 11004  cle 11142  cmin 11339  ...cfz 13402  ..^cfzo 13549  chash 14232  Word cword 14415   cyclShift ccsh 14690  Vtxcvtx 28969  iEdgciedg 28970  Walkscwlks 29570  Circuitsccrcts 29757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-hash 14233  df-word 14416  df-concat 14473  df-substr 14544  df-pfx 14574  df-csh 14691  df-wlks 29573  df-trls 29664  df-crcts 29759
This theorem is referenced by:  crctcshwlk  29795  crctcsh  29797
  Copyright terms: Public domain W3C validator