Proof of Theorem crctcshlem4
Step | Hyp | Ref
| Expression |
1 | | crctcsh.h |
. . 3
⊢ 𝐻 = (𝐹 cyclShift 𝑆) |
2 | | oveq2 7165 |
. . . 4
⊢ (𝑆 = 0 → (𝐹 cyclShift 𝑆) = (𝐹 cyclShift 0)) |
3 | | crctcsh.d |
. . . . . 6
⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) |
4 | | crctiswlk 27699 |
. . . . . 6
⊢ (𝐹(Circuits‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
5 | | crctcsh.i |
. . . . . . 7
⊢ 𝐼 = (iEdg‘𝐺) |
6 | 5 | wlkf 27518 |
. . . . . 6
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
7 | 3, 4, 6 | 3syl 18 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
8 | | cshw0 14217 |
. . . . 5
⊢ (𝐹 ∈ Word dom 𝐼 → (𝐹 cyclShift 0) = 𝐹) |
9 | 7, 8 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐹 cyclShift 0) = 𝐹) |
10 | 2, 9 | sylan9eqr 2816 |
. . 3
⊢ ((𝜑 ∧ 𝑆 = 0) → (𝐹 cyclShift 𝑆) = 𝐹) |
11 | 1, 10 | syl5eq 2806 |
. 2
⊢ ((𝜑 ∧ 𝑆 = 0) → 𝐻 = 𝐹) |
12 | | crctcsh.q |
. . 3
⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) |
13 | | oveq2 7165 |
. . . . . . . . 9
⊢ (𝑆 = 0 → (𝑁 − 𝑆) = (𝑁 − 0)) |
14 | | crctcsh.v |
. . . . . . . . . . . 12
⊢ 𝑉 = (Vtx‘𝐺) |
15 | | crctcsh.n |
. . . . . . . . . . . 12
⊢ 𝑁 = (♯‘𝐹) |
16 | 14, 5, 3, 15 | crctcshlem1 27717 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
17 | 16 | nn0cnd 12010 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℂ) |
18 | 17 | subid1d 11038 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 − 0) = 𝑁) |
19 | 13, 18 | sylan9eqr 2816 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑆 = 0) → (𝑁 − 𝑆) = 𝑁) |
20 | 19 | breq2d 5049 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑆 = 0) → (𝑥 ≤ (𝑁 − 𝑆) ↔ 𝑥 ≤ 𝑁)) |
21 | 20 | adantr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → (𝑥 ≤ (𝑁 − 𝑆) ↔ 𝑥 ≤ 𝑁)) |
22 | | oveq2 7165 |
. . . . . . . . 9
⊢ (𝑆 = 0 → (𝑥 + 𝑆) = (𝑥 + 0)) |
23 | 22 | adantl 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑆 = 0) → (𝑥 + 𝑆) = (𝑥 + 0)) |
24 | | elfzelz 12970 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (0...𝑁) → 𝑥 ∈ ℤ) |
25 | 24 | zcnd 12141 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0...𝑁) → 𝑥 ∈ ℂ) |
26 | 25 | addid1d 10892 |
. . . . . . . 8
⊢ (𝑥 ∈ (0...𝑁) → (𝑥 + 0) = 𝑥) |
27 | 23, 26 | sylan9eq 2814 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → (𝑥 + 𝑆) = 𝑥) |
28 | 27 | fveq2d 6668 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → (𝑃‘(𝑥 + 𝑆)) = (𝑃‘𝑥)) |
29 | 27 | fvoveq1d 7179 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘(𝑥 − 𝑁))) |
30 | 21, 28, 29 | ifbieq12d 4452 |
. . . . 5
⊢ (((𝜑 ∧ 𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(𝑥 ≤ 𝑁, (𝑃‘𝑥), (𝑃‘(𝑥 − 𝑁)))) |
31 | 30 | mpteq2dva 5132 |
. . . 4
⊢ ((𝜑 ∧ 𝑆 = 0) → (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ 𝑁, (𝑃‘𝑥), (𝑃‘(𝑥 − 𝑁))))) |
32 | | elfzle2 12974 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0...𝑁) → 𝑥 ≤ 𝑁) |
33 | 32 | adantl 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0...𝑁)) → 𝑥 ≤ 𝑁) |
34 | 33 | iftrued 4432 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (0...𝑁)) → if(𝑥 ≤ 𝑁, (𝑃‘𝑥), (𝑃‘(𝑥 − 𝑁))) = (𝑃‘𝑥)) |
35 | 34 | mpteq2dva 5132 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ 𝑁, (𝑃‘𝑥), (𝑃‘(𝑥 − 𝑁)))) = (𝑥 ∈ (0...𝑁) ↦ (𝑃‘𝑥))) |
36 | 14 | wlkp 27520 |
. . . . . . . 8
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
37 | 3, 4, 36 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
38 | | ffn 6504 |
. . . . . . . . . . 11
⊢ (𝑃:(0...(♯‘𝐹))⟶𝑉 → 𝑃 Fn (0...(♯‘𝐹))) |
39 | 15 | eqcomi 2768 |
. . . . . . . . . . . . 13
⊢
(♯‘𝐹) =
𝑁 |
40 | 39 | oveq2i 7168 |
. . . . . . . . . . . 12
⊢
(0...(♯‘𝐹)) = (0...𝑁) |
41 | 40 | fneq2i 6438 |
. . . . . . . . . . 11
⊢ (𝑃 Fn (0...(♯‘𝐹)) ↔ 𝑃 Fn (0...𝑁)) |
42 | 38, 41 | sylib 221 |
. . . . . . . . . 10
⊢ (𝑃:(0...(♯‘𝐹))⟶𝑉 → 𝑃 Fn (0...𝑁)) |
43 | 42 | adantl 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) → 𝑃 Fn (0...𝑁)) |
44 | | dffn5 6718 |
. . . . . . . . 9
⊢ (𝑃 Fn (0...𝑁) ↔ 𝑃 = (𝑥 ∈ (0...𝑁) ↦ (𝑃‘𝑥))) |
45 | 43, 44 | sylib 221 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) → 𝑃 = (𝑥 ∈ (0...𝑁) ↦ (𝑃‘𝑥))) |
46 | 45 | eqcomd 2765 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) → (𝑥 ∈ (0...𝑁) ↦ (𝑃‘𝑥)) = 𝑃) |
47 | 37, 46 | mpdan 686 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (0...𝑁) ↦ (𝑃‘𝑥)) = 𝑃) |
48 | 35, 47 | eqtrd 2794 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ 𝑁, (𝑃‘𝑥), (𝑃‘(𝑥 − 𝑁)))) = 𝑃) |
49 | 48 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑆 = 0) → (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ 𝑁, (𝑃‘𝑥), (𝑃‘(𝑥 − 𝑁)))) = 𝑃) |
50 | 31, 49 | eqtrd 2794 |
. . 3
⊢ ((𝜑 ∧ 𝑆 = 0) → (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) = 𝑃) |
51 | 12, 50 | syl5eq 2806 |
. 2
⊢ ((𝜑 ∧ 𝑆 = 0) → 𝑄 = 𝑃) |
52 | 11, 51 | jca 515 |
1
⊢ ((𝜑 ∧ 𝑆 = 0) → (𝐻 = 𝐹 ∧ 𝑄 = 𝑃)) |