MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyclispth Structured version   Visualization version   GIF version

Theorem cyclispth 29725
Description: A cycle is a path. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.)
Assertion
Ref Expression
cyclispth (𝐹(Cycles‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)

Proof of Theorem cyclispth
StepHypRef Expression
1 cyclprop 29721 . 2 (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
21simpld 494 1 (𝐹(Cycles‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   class class class wbr 5119  cfv 6530  0cc0 11127  chash 14346  Pathscpths 29638  Cyclesccycls 29713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fv 6538  df-pths 29642  df-cycls 29715
This theorem is referenced by:  cycliswlk  29726  cyclnumvtx  29728  pthspthcyc  29731  cyclispthon  29732  usgrcyclgt2v  35099  acycgr1v  35117  pthacycspth  35125  upgrimcycls  47872
  Copyright terms: Public domain W3C validator