MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyclispth Structured version   Visualization version   GIF version

Theorem cyclispth 29773
Description: A cycle is a path. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.)
Assertion
Ref Expression
cyclispth (𝐹(Cycles‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)

Proof of Theorem cyclispth
StepHypRef Expression
1 cyclprop 29769 . 2 (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
21simpld 494 1 (𝐹(Cycles‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   class class class wbr 5091  cfv 6481  0cc0 11003  chash 14234  Pathscpths 29686  Cyclesccycls 29761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489  df-pths 29690  df-cycls 29763
This theorem is referenced by:  cycliswlk  29774  cyclnumvtx  29776  pthspthcyc  29779  cyclispthon  29780  usgrcyclgt2v  35163  acycgr1v  35181  pthacycspth  35189  upgrimcycls  47941
  Copyright terms: Public domain W3C validator