| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cyclispth | Structured version Visualization version GIF version | ||
| Description: A cycle is a path. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) |
| Ref | Expression |
|---|---|
| cyclispth | ⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cyclprop 29730 | . 2 ⊢ (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
| 2 | 1 | simpld 494 | 1 ⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5110 ‘cfv 6514 0cc0 11075 ♯chash 14302 Pathscpths 29647 Cyclesccycls 29722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-pths 29651 df-cycls 29724 |
| This theorem is referenced by: cycliswlk 29735 cyclnumvtx 29737 pthspthcyc 29740 cyclispthon 29741 usgrcyclgt2v 35125 acycgr1v 35143 pthacycspth 35151 upgrimcycls 47915 |
| Copyright terms: Public domain | W3C validator |