| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > crnggrpd | Structured version Visualization version GIF version | ||
| Description: A commutative ring is a group. (Contributed by SN, 16-May-2024.) |
| Ref | Expression |
|---|---|
| crngringd.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Ref | Expression |
|---|---|
| crnggrpd | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 2 | 1 | crngringd 20164 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 3 | 2 | ringgrpd 20160 | 1 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Grpcgrp 18846 CRingccrg 20152 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-ring 20153 df-cring 20154 |
| This theorem is referenced by: fermltlchr 21466 psdmul 22081 psd1 22082 psdpw 22085 ply1chr 22221 ply1fermltlchr 22227 elrgspnsubrunlem1 33214 elrgspnsubrunlem2 33215 erlbr2d 33231 rlocaddval 33235 rloccring 33237 rloc0g 33238 rlocf1 33240 fracerl 33272 gsumind 33310 ressply1evls1 33528 evl1deg1 33539 evl1deg2 33540 evl1deg3 33541 ply1dg1rt 33543 vr1nz 33554 irngss 33700 extdgfialglem1 33705 irredminply 33729 algextdeglem4 33733 algextdeglem5 33734 aks6d1c1p3 42151 aks6d1c2lem4 42168 aks6d1c6lem2 42212 aks5lem2 42228 evlsbagval 42607 selvvvval 42626 evlselv 42628 selvadd 42629 prjcrv0 42674 |
| Copyright terms: Public domain | W3C validator |