![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > crnggrpd | Structured version Visualization version GIF version |
Description: A commutative ring is a group. (Contributed by SN, 16-May-2024.) |
Ref | Expression |
---|---|
crngringd.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
Ref | Expression |
---|---|
crnggrpd | ⊢ (𝜑 → 𝑅 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
2 | 1 | crngringd 20273 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
3 | 2 | ringgrpd 20269 | 1 ⊢ (𝜑 → 𝑅 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Grpcgrp 18973 CRingccrg 20261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-ring 20262 df-cring 20263 |
This theorem is referenced by: fermltlchr 21567 psdmul 22193 psd1 22194 ply1chr 22331 ply1fermltlchr 22337 erlbr2d 33236 rlocaddval 33240 rloccring 33242 rloc0g 33243 rlocf1 33245 fracerl 33273 evl1deg1 33566 evl1deg2 33567 evl1deg3 33568 ply1dg1rt 33569 irngss 33687 irredminply 33707 algextdeglem4 33711 algextdeglem5 33712 aks6d1c1p3 42067 aks6d1c2lem4 42084 aks6d1c6lem2 42128 aks5lem2 42144 evlsbagval 42521 selvvvval 42540 evlselv 42542 selvadd 42543 prjcrv0 42588 |
Copyright terms: Public domain | W3C validator |