| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > crnggrpd | Structured version Visualization version GIF version | ||
| Description: A commutative ring is a group. (Contributed by SN, 16-May-2024.) |
| Ref | Expression |
|---|---|
| crngringd.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Ref | Expression |
|---|---|
| crnggrpd | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 2 | 1 | crngringd 20162 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 3 | 2 | ringgrpd 20158 | 1 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18872 CRingccrg 20150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-ring 20151 df-cring 20152 |
| This theorem is referenced by: fermltlchr 21446 psdmul 22060 psd1 22061 psdpw 22064 ply1chr 22200 ply1fermltlchr 22206 elrgspnsubrunlem1 33205 elrgspnsubrunlem2 33206 erlbr2d 33222 rlocaddval 33226 rloccring 33228 rloc0g 33229 rlocf1 33231 fracerl 33263 ressply1evls1 33541 evl1deg1 33552 evl1deg2 33553 evl1deg3 33554 ply1dg1rt 33555 vr1nz 33566 irngss 33689 irredminply 33713 algextdeglem4 33717 algextdeglem5 33718 aks6d1c1p3 42105 aks6d1c2lem4 42122 aks6d1c6lem2 42166 aks5lem2 42182 evlsbagval 42561 selvvvval 42580 evlselv 42582 selvadd 42583 prjcrv0 42628 |
| Copyright terms: Public domain | W3C validator |