| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > crnggrpd | Structured version Visualization version GIF version | ||
| Description: A commutative ring is a group. (Contributed by SN, 16-May-2024.) |
| Ref | Expression |
|---|---|
| crngringd.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Ref | Expression |
|---|---|
| crnggrpd | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 2 | 1 | crngringd 20211 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 3 | 2 | ringgrpd 20207 | 1 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18921 CRingccrg 20199 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-ring 20200 df-cring 20201 |
| This theorem is referenced by: fermltlchr 21495 psdmul 22109 psd1 22110 psdpw 22113 ply1chr 22249 ply1fermltlchr 22255 elrgspnsubrunlem1 33247 elrgspnsubrunlem2 33248 erlbr2d 33264 rlocaddval 33268 rloccring 33270 rloc0g 33271 rlocf1 33273 fracerl 33305 ressply1evls1 33583 evl1deg1 33594 evl1deg2 33595 evl1deg3 33596 ply1dg1rt 33597 vr1nz 33608 irngss 33733 irredminply 33755 algextdeglem4 33759 algextdeglem5 33760 aks6d1c1p3 42128 aks6d1c2lem4 42145 aks6d1c6lem2 42189 aks5lem2 42205 evlsbagval 42556 selvvvval 42575 evlselv 42577 selvadd 42578 prjcrv0 42623 |
| Copyright terms: Public domain | W3C validator |