| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > crnggrpd | Structured version Visualization version GIF version | ||
| Description: A commutative ring is a group. (Contributed by SN, 16-May-2024.) |
| Ref | Expression |
|---|---|
| crngringd.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Ref | Expression |
|---|---|
| crnggrpd | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 2 | 1 | crngringd 20155 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 3 | 2 | ringgrpd 20151 | 1 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18865 CRingccrg 20143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-ring 20144 df-cring 20145 |
| This theorem is referenced by: fermltlchr 21439 psdmul 22053 psd1 22054 psdpw 22057 ply1chr 22193 ply1fermltlchr 22199 elrgspnsubrunlem1 33198 elrgspnsubrunlem2 33199 erlbr2d 33215 rlocaddval 33219 rloccring 33221 rloc0g 33222 rlocf1 33224 fracerl 33256 ressply1evls1 33534 evl1deg1 33545 evl1deg2 33546 evl1deg3 33547 ply1dg1rt 33548 vr1nz 33559 irngss 33682 irredminply 33706 algextdeglem4 33710 algextdeglem5 33711 aks6d1c1p3 42098 aks6d1c2lem4 42115 aks6d1c6lem2 42159 aks5lem2 42175 evlsbagval 42554 selvvvval 42573 evlselv 42575 selvadd 42576 prjcrv0 42621 |
| Copyright terms: Public domain | W3C validator |