![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > crnggrpd | Structured version Visualization version GIF version |
Description: A commutative ring is a group. (Contributed by SN, 16-May-2024.) |
Ref | Expression |
---|---|
crngringd.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
Ref | Expression |
---|---|
crnggrpd | ⊢ (𝜑 → 𝑅 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
2 | 1 | crngringd 20264 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
3 | 2 | ringgrpd 20260 | 1 ⊢ (𝜑 → 𝑅 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Grpcgrp 18964 CRingccrg 20252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-ring 20253 df-cring 20254 |
This theorem is referenced by: fermltlchr 21562 psdmul 22188 psd1 22189 ply1chr 22326 ply1fermltlchr 22332 erlbr2d 33251 rlocaddval 33255 rloccring 33257 rloc0g 33258 rlocf1 33260 fracerl 33288 evl1deg1 33581 evl1deg2 33582 evl1deg3 33583 ply1dg1rt 33584 irngss 33702 irredminply 33722 algextdeglem4 33726 algextdeglem5 33727 aks6d1c1p3 42092 aks6d1c2lem4 42109 aks6d1c6lem2 42153 aks5lem2 42169 evlsbagval 42553 selvvvval 42572 evlselv 42574 selvadd 42575 prjcrv0 42620 |
Copyright terms: Public domain | W3C validator |