| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > crnggrpd | Structured version Visualization version GIF version | ||
| Description: A commutative ring is a group. (Contributed by SN, 16-May-2024.) |
| Ref | Expression |
|---|---|
| crngringd.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Ref | Expression |
|---|---|
| crnggrpd | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 2 | 1 | crngringd 20131 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 3 | 2 | ringgrpd 20127 | 1 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18841 CRingccrg 20119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-ring 20120 df-cring 20121 |
| This theorem is referenced by: fermltlchr 21415 psdmul 22029 psd1 22030 psdpw 22033 ply1chr 22169 ply1fermltlchr 22175 elrgspnsubrunlem1 33171 elrgspnsubrunlem2 33172 erlbr2d 33188 rlocaddval 33192 rloccring 33194 rloc0g 33195 rlocf1 33197 fracerl 33229 ressply1evls1 33507 evl1deg1 33518 evl1deg2 33519 evl1deg3 33520 ply1dg1rt 33521 vr1nz 33532 irngss 33655 irredminply 33679 algextdeglem4 33683 algextdeglem5 33684 aks6d1c1p3 42071 aks6d1c2lem4 42088 aks6d1c6lem2 42132 aks5lem2 42148 evlsbagval 42527 selvvvval 42546 evlselv 42548 selvadd 42549 prjcrv0 42594 |
| Copyright terms: Public domain | W3C validator |