Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > crnggrpd | Structured version Visualization version GIF version |
Description: A commutative ring is a group. (Contributed by SN, 16-May-2024.) |
Ref | Expression |
---|---|
crngringd.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
Ref | Expression |
---|---|
crnggrpd | ⊢ (𝜑 → 𝑅 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
2 | 1 | crngringd 19883 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
3 | 2 | ringgrpd 19879 | 1 ⊢ (𝜑 → 𝑅 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Grpcgrp 18665 CRingccrg 19871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-nul 5247 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rab 3404 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-iota 6425 df-fv 6481 df-ov 7332 df-ring 19872 df-cring 19873 |
This theorem is referenced by: fermltlchr 31799 asclmulg 31904 ply1chr 31907 ply1fermltlchr 31908 prjcrv0 40720 |
Copyright terms: Public domain | W3C validator |