MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crnggrpd Structured version   Visualization version   GIF version

Theorem crnggrpd 20148
Description: A commutative ring is a group. (Contributed by SN, 16-May-2024.)
Hypothesis
Ref Expression
crngringd.1 (𝜑𝑅 ∈ CRing)
Assertion
Ref Expression
crnggrpd (𝜑𝑅 ∈ Grp)

Proof of Theorem crnggrpd
StepHypRef Expression
1 crngringd.1 . . 3 (𝜑𝑅 ∈ CRing)
21crngringd 20147 . 2 (𝜑𝑅 ∈ Ring)
32ringgrpd 20143 1 (𝜑𝑅 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  Grpcgrp 18859  CRingccrg 20135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-nul 5297
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rab 3425  df-v 3468  df-sbc 3771  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-iota 6486  df-fv 6542  df-ov 7405  df-ring 20136  df-cring 20137
This theorem is referenced by:  fermltlchr  21409  ply1chr  22169  ply1fermltlchr  22175  irngss  33259  irredminply  33282  algextdeglem4  33286  algextdeglem5  33287  aks6d1c1p3  41477  evlsbagval  41667  selvvvval  41686  evlselv  41688  selvadd  41689  prjcrv0  41925
  Copyright terms: Public domain W3C validator