| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > crnggrpd | Structured version Visualization version GIF version | ||
| Description: A commutative ring is a group. (Contributed by SN, 16-May-2024.) |
| Ref | Expression |
|---|---|
| crngringd.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Ref | Expression |
|---|---|
| crnggrpd | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 2 | 1 | crngringd 20131 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 3 | 2 | ringgrpd 20127 | 1 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18812 CRingccrg 20119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5245 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-ring 20120 df-cring 20121 |
| This theorem is referenced by: fermltlchr 21436 psdmul 22051 psd1 22052 psdpw 22055 ply1chr 22191 ply1fermltlchr 22197 elrgspnsubrunlem1 33187 elrgspnsubrunlem2 33188 erlbr2d 33204 rlocaddval 33208 rloccring 33210 rloc0g 33211 rlocf1 33213 fracerl 33245 ressply1evls1 33500 evl1deg1 33511 evl1deg2 33512 evl1deg3 33513 ply1dg1rt 33515 vr1nz 33526 irngss 33654 extdgfialglem1 33659 irredminply 33683 algextdeglem4 33687 algextdeglem5 33688 aks6d1c1p3 42083 aks6d1c2lem4 42100 aks6d1c6lem2 42144 aks5lem2 42160 evlsbagval 42539 selvvvval 42558 evlselv 42560 selvadd 42561 prjcrv0 42606 |
| Copyright terms: Public domain | W3C validator |