Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1fermltlchr | Structured version Visualization version GIF version |
Description: Fermat's little theorem for polynomials in a commutative ring 𝐹 of characteristic 𝑃 prime: we have the polynomial equation (𝑋 + 𝐴)↑𝑃 = ((𝑋↑𝑃) + 𝐴). (Contributed by Thierry Arnoux, 9-Jan-2025.) |
Ref | Expression |
---|---|
ply1fermltlchr.w | ⊢ 𝑊 = (Poly1‘𝐹) |
ply1fermltlchr.x | ⊢ 𝑋 = (var1‘𝐹) |
ply1fermltlchr.l | ⊢ + = (+g‘𝑊) |
ply1fermltlchr.n | ⊢ 𝑁 = (mulGrp‘𝑊) |
ply1fermltlchr.t | ⊢ ↑ = (.g‘𝑁) |
ply1fermltlchr.c | ⊢ 𝐶 = (algSc‘𝑊) |
ply1fermltlchr.a | ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝐹)‘𝐸)) |
ply1fermltlchr.p | ⊢ 𝑃 = (chr‘𝐹) |
ply1fermltlchr.f | ⊢ (𝜑 → 𝐹 ∈ CRing) |
ply1fermltlchr.1 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
ply1fermltlchr.2 | ⊢ (𝜑 → 𝐸 ∈ ℤ) |
Ref | Expression |
---|---|
ply1fermltlchr | ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | ply1fermltlchr.l | . . 3 ⊢ + = (+g‘𝑊) | |
3 | ply1fermltlchr.t | . . . 4 ⊢ ↑ = (.g‘𝑁) | |
4 | ply1fermltlchr.n | . . . . 5 ⊢ 𝑁 = (mulGrp‘𝑊) | |
5 | 4 | fveq2i 6814 | . . . 4 ⊢ (.g‘𝑁) = (.g‘(mulGrp‘𝑊)) |
6 | 3, 5 | eqtri 2765 | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑊)) |
7 | eqid 2737 | . . 3 ⊢ (chr‘𝑊) = (chr‘𝑊) | |
8 | ply1fermltlchr.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ CRing) | |
9 | ply1fermltlchr.w | . . . . 5 ⊢ 𝑊 = (Poly1‘𝐹) | |
10 | 9 | ply1crng 21441 | . . . 4 ⊢ (𝐹 ∈ CRing → 𝑊 ∈ CRing) |
11 | 8, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ CRing) |
12 | 9 | ply1chr 31774 | . . . . . 6 ⊢ (𝐹 ∈ CRing → (chr‘𝑊) = (chr‘𝐹)) |
13 | 8, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → (chr‘𝑊) = (chr‘𝐹)) |
14 | ply1fermltlchr.p | . . . . 5 ⊢ 𝑃 = (chr‘𝐹) | |
15 | 13, 14 | eqtr4di 2795 | . . . 4 ⊢ (𝜑 → (chr‘𝑊) = 𝑃) |
16 | ply1fermltlchr.1 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
17 | 15, 16 | eqeltrd 2838 | . . 3 ⊢ (𝜑 → (chr‘𝑊) ∈ ℙ) |
18 | 8 | crngringd 19864 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ Ring) |
19 | ply1fermltlchr.x | . . . . 5 ⊢ 𝑋 = (var1‘𝐹) | |
20 | 19, 9, 1 | vr1cl 21460 | . . . 4 ⊢ (𝐹 ∈ Ring → 𝑋 ∈ (Base‘𝑊)) |
21 | 18, 20 | syl 17 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
22 | ply1fermltlchr.a | . . . 4 ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝐹)‘𝐸)) | |
23 | eqid 2737 | . . . . . . . 8 ⊢ (ℤRHom‘𝐹) = (ℤRHom‘𝐹) | |
24 | 23 | zrhrhm 20785 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → (ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹)) |
25 | zringbas 20748 | . . . . . . . 8 ⊢ ℤ = (Base‘ℤring) | |
26 | eqid 2737 | . . . . . . . 8 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
27 | 25, 26 | rhmf 20038 | . . . . . . 7 ⊢ ((ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹) → (ℤRHom‘𝐹):ℤ⟶(Base‘𝐹)) |
28 | 18, 24, 27 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (ℤRHom‘𝐹):ℤ⟶(Base‘𝐹)) |
29 | ply1fermltlchr.2 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ ℤ) | |
30 | 28, 29 | ffvelcdmd 7001 | . . . . 5 ⊢ (𝜑 → ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹)) |
31 | ply1fermltlchr.c | . . . . . 6 ⊢ 𝐶 = (algSc‘𝑊) | |
32 | 9, 31, 26, 1 | ply1sclcl 21529 | . . . . 5 ⊢ ((𝐹 ∈ Ring ∧ ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹)) → (𝐶‘((ℤRHom‘𝐹)‘𝐸)) ∈ (Base‘𝑊)) |
33 | 18, 30, 32 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐶‘((ℤRHom‘𝐹)‘𝐸)) ∈ (Base‘𝑊)) |
34 | 22, 33 | eqeltrid 2842 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝑊)) |
35 | 1, 2, 6, 7, 11, 17, 21, 34 | freshmansdream 31592 | . 2 ⊢ (𝜑 → ((chr‘𝑊) ↑ (𝑋 + 𝐴)) = (((chr‘𝑊) ↑ 𝑋) + ((chr‘𝑊) ↑ 𝐴))) |
36 | 15 | oveq1d 7330 | . 2 ⊢ (𝜑 → ((chr‘𝑊) ↑ (𝑋 + 𝐴)) = (𝑃 ↑ (𝑋 + 𝐴))) |
37 | 15 | oveq1d 7330 | . . 3 ⊢ (𝜑 → ((chr‘𝑊) ↑ 𝑋) = (𝑃 ↑ 𝑋)) |
38 | 15 | oveq1d 7330 | . . . 4 ⊢ (𝜑 → ((chr‘𝑊) ↑ 𝐴) = (𝑃 ↑ 𝐴)) |
39 | 9 | ply1assa 21442 | . . . . . . . . 9 ⊢ (𝐹 ∈ CRing → 𝑊 ∈ AssAlg) |
40 | eqid 2737 | . . . . . . . . . 10 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
41 | 31, 40 | asclrhm 21166 | . . . . . . . . 9 ⊢ (𝑊 ∈ AssAlg → 𝐶 ∈ ((Scalar‘𝑊) RingHom 𝑊)) |
42 | 8, 39, 41 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ((Scalar‘𝑊) RingHom 𝑊)) |
43 | 8 | crnggrpd 19865 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ∈ Grp) |
44 | 9 | ply1sca 21496 | . . . . . . . . . 10 ⊢ (𝐹 ∈ Grp → 𝐹 = (Scalar‘𝑊)) |
45 | 43, 44 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) |
46 | 45 | oveq1d 7330 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 RingHom 𝑊) = ((Scalar‘𝑊) RingHom 𝑊)) |
47 | 42, 46 | eleqtrrd 2841 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (𝐹 RingHom 𝑊)) |
48 | eqid 2737 | . . . . . . . 8 ⊢ (mulGrp‘𝐹) = (mulGrp‘𝐹) | |
49 | 48, 4 | rhmmhm 20034 | . . . . . . 7 ⊢ (𝐶 ∈ (𝐹 RingHom 𝑊) → 𝐶 ∈ ((mulGrp‘𝐹) MndHom 𝑁)) |
50 | 47, 49 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ((mulGrp‘𝐹) MndHom 𝑁)) |
51 | prmnn 16449 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
52 | nnnn0 12313 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
53 | 16, 51, 52 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
54 | 48, 26 | mgpbas 19794 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘(mulGrp‘𝐹)) |
55 | eqid 2737 | . . . . . . 7 ⊢ (.g‘(mulGrp‘𝐹)) = (.g‘(mulGrp‘𝐹)) | |
56 | 54, 55, 3 | mhmmulg 18813 | . . . . . 6 ⊢ ((𝐶 ∈ ((mulGrp‘𝐹) MndHom 𝑁) ∧ 𝑃 ∈ ℕ0 ∧ ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹)) → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝑃 ↑ (𝐶‘((ℤRHom‘𝐹)‘𝐸)))) |
57 | 50, 53, 30, 56 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝑃 ↑ (𝐶‘((ℤRHom‘𝐹)‘𝐸)))) |
58 | 22 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (𝐶‘((ℤRHom‘𝐹)‘𝐸))) |
59 | 58 | oveq2d 7331 | . . . . 5 ⊢ (𝜑 → (𝑃 ↑ 𝐴) = (𝑃 ↑ (𝐶‘((ℤRHom‘𝐹)‘𝐸)))) |
60 | 57, 59 | eqtr4d 2780 | . . . 4 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝑃 ↑ 𝐴)) |
61 | eqid 2737 | . . . . . . 7 ⊢ ((ℤRHom‘𝐹)‘𝐸) = ((ℤRHom‘𝐹)‘𝐸) | |
62 | 14, 26, 55, 61, 16, 29, 8 | fermltlchr 31666 | . . . . . 6 ⊢ (𝜑 → (𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸)) = ((ℤRHom‘𝐹)‘𝐸)) |
63 | 62 | fveq2d 6815 | . . . . 5 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝐶‘((ℤRHom‘𝐹)‘𝐸))) |
64 | 63, 22 | eqtr4di 2795 | . . . 4 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = 𝐴) |
65 | 38, 60, 64 | 3eqtr2d 2783 | . . 3 ⊢ (𝜑 → ((chr‘𝑊) ↑ 𝐴) = 𝐴) |
66 | 37, 65 | oveq12d 7333 | . 2 ⊢ (𝜑 → (((chr‘𝑊) ↑ 𝑋) + ((chr‘𝑊) ↑ 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
67 | 35, 36, 66 | 3eqtr3d 2785 | 1 ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ⟶wf 6461 ‘cfv 6465 (class class class)co 7315 ℕcn 12046 ℕ0cn0 12306 ℤcz 12392 ℙcprime 16446 Basecbs 16982 +gcplusg 17032 Scalarcsca 17035 MndHom cmhm 18498 Grpcgrp 18646 .gcmg 18769 mulGrpcmgp 19788 Ringcrg 19851 CRingccrg 19852 RingHom crh 20024 ℤringczring 20742 ℤRHomczrh 20773 chrcchr 20775 AssAlgcasa 21129 algSccascl 21131 var1cv1 21419 Poly1cpl1 21420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-pre-sup 11022 ax-addf 11023 ax-mulf 11024 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-iin 4940 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-of 7573 df-ofr 7574 df-om 7758 df-1st 7876 df-2nd 7877 df-supp 8025 df-tpos 8089 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-2o 8345 df-oadd 8348 df-er 8546 df-map 8665 df-pm 8666 df-ixp 8734 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-fsupp 9199 df-sup 9271 df-inf 9272 df-oi 9339 df-dju 9730 df-card 9768 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 df-nn 12047 df-2 12109 df-3 12110 df-4 12111 df-5 12112 df-6 12113 df-7 12114 df-8 12115 df-9 12116 df-n0 12307 df-xnn0 12379 df-z 12393 df-dec 12511 df-uz 12656 df-rp 12804 df-fz 13313 df-fzo 13456 df-fl 13585 df-mod 13663 df-seq 13795 df-exp 13856 df-fac 14061 df-bc 14090 df-hash 14118 df-cj 14882 df-re 14883 df-im 14884 df-sqrt 15018 df-abs 15019 df-dvds 16036 df-gcd 16274 df-prm 16447 df-phi 16537 df-struct 16918 df-sets 16935 df-slot 16953 df-ndx 16965 df-base 16983 df-ress 17012 df-plusg 17045 df-mulr 17046 df-starv 17047 df-sca 17048 df-vsca 17049 df-tset 17051 df-ple 17052 df-ds 17054 df-unif 17055 df-0g 17222 df-gsum 17223 df-mre 17365 df-mrc 17366 df-acs 17368 df-mgm 18396 df-sgrp 18445 df-mnd 18456 df-mhm 18500 df-submnd 18501 df-grp 18649 df-minusg 18650 df-sbg 18651 df-mulg 18770 df-subg 18821 df-ghm 18901 df-cntz 18992 df-od 19205 df-cmn 19456 df-abl 19457 df-mgp 19789 df-ur 19806 df-srg 19810 df-ring 19853 df-cring 19854 df-oppr 19930 df-dvdsr 19951 df-unit 19952 df-invr 19982 df-dvr 19993 df-rnghom 20027 df-drng 20065 df-subrg 20094 df-lmod 20197 df-lss 20266 df-cnfld 20670 df-zring 20743 df-zrh 20777 df-chr 20779 df-assa 21132 df-ascl 21134 df-psr 21184 df-mvr 21185 df-mpl 21186 df-opsr 21188 df-psr1 21423 df-vr1 21424 df-ply1 21425 df-coe1 21426 |
This theorem is referenced by: ply1fermltl 31776 |
Copyright terms: Public domain | W3C validator |