![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1fermltlchr | Structured version Visualization version GIF version |
Description: Fermat's little theorem for polynomials in a commutative ring 𝐹 of characteristic 𝑃 prime: we have the polynomial equation (𝑋 + 𝐴)↑𝑃 = ((𝑋↑𝑃) + 𝐴). (Contributed by Thierry Arnoux, 9-Jan-2025.) |
Ref | Expression |
---|---|
ply1fermltlchr.w | ⊢ 𝑊 = (Poly1‘𝐹) |
ply1fermltlchr.x | ⊢ 𝑋 = (var1‘𝐹) |
ply1fermltlchr.l | ⊢ + = (+g‘𝑊) |
ply1fermltlchr.n | ⊢ 𝑁 = (mulGrp‘𝑊) |
ply1fermltlchr.t | ⊢ ↑ = (.g‘𝑁) |
ply1fermltlchr.c | ⊢ 𝐶 = (algSc‘𝑊) |
ply1fermltlchr.a | ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝐹)‘𝐸)) |
ply1fermltlchr.p | ⊢ 𝑃 = (chr‘𝐹) |
ply1fermltlchr.f | ⊢ (𝜑 → 𝐹 ∈ CRing) |
ply1fermltlchr.1 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
ply1fermltlchr.2 | ⊢ (𝜑 → 𝐸 ∈ ℤ) |
Ref | Expression |
---|---|
ply1fermltlchr | ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | ply1fermltlchr.l | . . 3 ⊢ + = (+g‘𝑊) | |
3 | ply1fermltlchr.t | . . . 4 ⊢ ↑ = (.g‘𝑁) | |
4 | ply1fermltlchr.n | . . . . 5 ⊢ 𝑁 = (mulGrp‘𝑊) | |
5 | 4 | fveq2i 6910 | . . . 4 ⊢ (.g‘𝑁) = (.g‘(mulGrp‘𝑊)) |
6 | 3, 5 | eqtri 2763 | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑊)) |
7 | eqid 2735 | . . 3 ⊢ (chr‘𝑊) = (chr‘𝑊) | |
8 | ply1fermltlchr.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ CRing) | |
9 | ply1fermltlchr.w | . . . . 5 ⊢ 𝑊 = (Poly1‘𝐹) | |
10 | 9 | ply1crng 22216 | . . . 4 ⊢ (𝐹 ∈ CRing → 𝑊 ∈ CRing) |
11 | 8, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ CRing) |
12 | 9 | ply1chr 22326 | . . . . . 6 ⊢ (𝐹 ∈ CRing → (chr‘𝑊) = (chr‘𝐹)) |
13 | 8, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → (chr‘𝑊) = (chr‘𝐹)) |
14 | ply1fermltlchr.p | . . . . 5 ⊢ 𝑃 = (chr‘𝐹) | |
15 | 13, 14 | eqtr4di 2793 | . . . 4 ⊢ (𝜑 → (chr‘𝑊) = 𝑃) |
16 | ply1fermltlchr.1 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
17 | 15, 16 | eqeltrd 2839 | . . 3 ⊢ (𝜑 → (chr‘𝑊) ∈ ℙ) |
18 | 8 | crngringd 20264 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ Ring) |
19 | ply1fermltlchr.x | . . . . 5 ⊢ 𝑋 = (var1‘𝐹) | |
20 | 19, 9, 1 | vr1cl 22235 | . . . 4 ⊢ (𝐹 ∈ Ring → 𝑋 ∈ (Base‘𝑊)) |
21 | 18, 20 | syl 17 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
22 | ply1fermltlchr.a | . . . 4 ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝐹)‘𝐸)) | |
23 | eqid 2735 | . . . . . . . 8 ⊢ (ℤRHom‘𝐹) = (ℤRHom‘𝐹) | |
24 | 23 | zrhrhm 21540 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → (ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹)) |
25 | zringbas 21482 | . . . . . . . 8 ⊢ ℤ = (Base‘ℤring) | |
26 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
27 | 25, 26 | rhmf 20502 | . . . . . . 7 ⊢ ((ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹) → (ℤRHom‘𝐹):ℤ⟶(Base‘𝐹)) |
28 | 18, 24, 27 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (ℤRHom‘𝐹):ℤ⟶(Base‘𝐹)) |
29 | ply1fermltlchr.2 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ ℤ) | |
30 | 28, 29 | ffvelcdmd 7105 | . . . . 5 ⊢ (𝜑 → ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹)) |
31 | ply1fermltlchr.c | . . . . . 6 ⊢ 𝐶 = (algSc‘𝑊) | |
32 | 9, 31, 26, 1 | ply1sclcl 22305 | . . . . 5 ⊢ ((𝐹 ∈ Ring ∧ ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹)) → (𝐶‘((ℤRHom‘𝐹)‘𝐸)) ∈ (Base‘𝑊)) |
33 | 18, 30, 32 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐶‘((ℤRHom‘𝐹)‘𝐸)) ∈ (Base‘𝑊)) |
34 | 22, 33 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝑊)) |
35 | 1, 2, 6, 7, 11, 17, 21, 34 | freshmansdream 21611 | . 2 ⊢ (𝜑 → ((chr‘𝑊) ↑ (𝑋 + 𝐴)) = (((chr‘𝑊) ↑ 𝑋) + ((chr‘𝑊) ↑ 𝐴))) |
36 | 15 | oveq1d 7446 | . 2 ⊢ (𝜑 → ((chr‘𝑊) ↑ (𝑋 + 𝐴)) = (𝑃 ↑ (𝑋 + 𝐴))) |
37 | 15 | oveq1d 7446 | . . 3 ⊢ (𝜑 → ((chr‘𝑊) ↑ 𝑋) = (𝑃 ↑ 𝑋)) |
38 | 15 | oveq1d 7446 | . . . 4 ⊢ (𝜑 → ((chr‘𝑊) ↑ 𝐴) = (𝑃 ↑ 𝐴)) |
39 | 9 | ply1assa 22217 | . . . . . . . . 9 ⊢ (𝐹 ∈ CRing → 𝑊 ∈ AssAlg) |
40 | eqid 2735 | . . . . . . . . . 10 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
41 | 31, 40 | asclrhm 21928 | . . . . . . . . 9 ⊢ (𝑊 ∈ AssAlg → 𝐶 ∈ ((Scalar‘𝑊) RingHom 𝑊)) |
42 | 8, 39, 41 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ((Scalar‘𝑊) RingHom 𝑊)) |
43 | 8 | crnggrpd 20265 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ∈ Grp) |
44 | 9 | ply1sca 22270 | . . . . . . . . . 10 ⊢ (𝐹 ∈ Grp → 𝐹 = (Scalar‘𝑊)) |
45 | 43, 44 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) |
46 | 45 | oveq1d 7446 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 RingHom 𝑊) = ((Scalar‘𝑊) RingHom 𝑊)) |
47 | 42, 46 | eleqtrrd 2842 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (𝐹 RingHom 𝑊)) |
48 | eqid 2735 | . . . . . . . 8 ⊢ (mulGrp‘𝐹) = (mulGrp‘𝐹) | |
49 | 48, 4 | rhmmhm 20496 | . . . . . . 7 ⊢ (𝐶 ∈ (𝐹 RingHom 𝑊) → 𝐶 ∈ ((mulGrp‘𝐹) MndHom 𝑁)) |
50 | 47, 49 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ((mulGrp‘𝐹) MndHom 𝑁)) |
51 | prmnn 16708 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
52 | nnnn0 12531 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
53 | 16, 51, 52 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
54 | 48, 26 | mgpbas 20158 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘(mulGrp‘𝐹)) |
55 | eqid 2735 | . . . . . . 7 ⊢ (.g‘(mulGrp‘𝐹)) = (.g‘(mulGrp‘𝐹)) | |
56 | 54, 55, 3 | mhmmulg 19146 | . . . . . 6 ⊢ ((𝐶 ∈ ((mulGrp‘𝐹) MndHom 𝑁) ∧ 𝑃 ∈ ℕ0 ∧ ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹)) → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝑃 ↑ (𝐶‘((ℤRHom‘𝐹)‘𝐸)))) |
57 | 50, 53, 30, 56 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝑃 ↑ (𝐶‘((ℤRHom‘𝐹)‘𝐸)))) |
58 | 22 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (𝐶‘((ℤRHom‘𝐹)‘𝐸))) |
59 | 58 | oveq2d 7447 | . . . . 5 ⊢ (𝜑 → (𝑃 ↑ 𝐴) = (𝑃 ↑ (𝐶‘((ℤRHom‘𝐹)‘𝐸)))) |
60 | 57, 59 | eqtr4d 2778 | . . . 4 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝑃 ↑ 𝐴)) |
61 | eqid 2735 | . . . . . . 7 ⊢ ((ℤRHom‘𝐹)‘𝐸) = ((ℤRHom‘𝐹)‘𝐸) | |
62 | 14, 26, 55, 61, 16, 29, 8 | fermltlchr 21562 | . . . . . 6 ⊢ (𝜑 → (𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸)) = ((ℤRHom‘𝐹)‘𝐸)) |
63 | 62 | fveq2d 6911 | . . . . 5 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝐶‘((ℤRHom‘𝐹)‘𝐸))) |
64 | 63, 22 | eqtr4di 2793 | . . . 4 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = 𝐴) |
65 | 38, 60, 64 | 3eqtr2d 2781 | . . 3 ⊢ (𝜑 → ((chr‘𝑊) ↑ 𝐴) = 𝐴) |
66 | 37, 65 | oveq12d 7449 | . 2 ⊢ (𝜑 → (((chr‘𝑊) ↑ 𝑋) + ((chr‘𝑊) ↑ 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
67 | 35, 36, 66 | 3eqtr3d 2783 | 1 ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ℕcn 12264 ℕ0cn0 12524 ℤcz 12611 ℙcprime 16705 Basecbs 17245 +gcplusg 17298 Scalarcsca 17301 MndHom cmhm 18807 Grpcgrp 18964 .gcmg 19098 mulGrpcmgp 20152 Ringcrg 20251 CRingccrg 20252 RingHom crh 20486 ℤringczring 21475 ℤRHomczrh 21528 chrcchr 21530 AssAlgcasa 21888 algSccascl 21890 var1cv1 22193 Poly1cpl1 22194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-xnn0 12598 df-z 12612 df-dec 12732 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-fac 14310 df-bc 14339 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-gcd 16529 df-prm 16706 df-phi 16800 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-ghm 19244 df-cntz 19348 df-od 19561 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-srg 20205 df-ring 20253 df-cring 20254 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-dvr 20418 df-rhm 20489 df-subrng 20563 df-subrg 20587 df-drng 20748 df-lmod 20877 df-lss 20948 df-cnfld 21383 df-zring 21476 df-zrh 21532 df-chr 21534 df-assa 21891 df-ascl 21893 df-psr 21947 df-mvr 21948 df-mpl 21949 df-opsr 21951 df-psr1 22197 df-vr1 22198 df-ply1 22199 df-coe1 22200 |
This theorem is referenced by: ply1fermltl 33589 aks6d1c1p2 42091 |
Copyright terms: Public domain | W3C validator |