| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1fermltlchr | Structured version Visualization version GIF version | ||
| Description: Fermat's little theorem for polynomials in a commutative ring 𝐹 of characteristic 𝑃 prime: we have the polynomial equation (𝑋 + 𝐴)↑𝑃 = ((𝑋↑𝑃) + 𝐴). (Contributed by Thierry Arnoux, 9-Jan-2025.) |
| Ref | Expression |
|---|---|
| ply1fermltlchr.w | ⊢ 𝑊 = (Poly1‘𝐹) |
| ply1fermltlchr.x | ⊢ 𝑋 = (var1‘𝐹) |
| ply1fermltlchr.l | ⊢ + = (+g‘𝑊) |
| ply1fermltlchr.n | ⊢ 𝑁 = (mulGrp‘𝑊) |
| ply1fermltlchr.t | ⊢ ↑ = (.g‘𝑁) |
| ply1fermltlchr.c | ⊢ 𝐶 = (algSc‘𝑊) |
| ply1fermltlchr.a | ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝐹)‘𝐸)) |
| ply1fermltlchr.p | ⊢ 𝑃 = (chr‘𝐹) |
| ply1fermltlchr.f | ⊢ (𝜑 → 𝐹 ∈ CRing) |
| ply1fermltlchr.1 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| ply1fermltlchr.2 | ⊢ (𝜑 → 𝐸 ∈ ℤ) |
| Ref | Expression |
|---|---|
| ply1fermltlchr | ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | ply1fermltlchr.l | . . 3 ⊢ + = (+g‘𝑊) | |
| 3 | ply1fermltlchr.t | . . . 4 ⊢ ↑ = (.g‘𝑁) | |
| 4 | ply1fermltlchr.n | . . . . 5 ⊢ 𝑁 = (mulGrp‘𝑊) | |
| 5 | 4 | fveq2i 6843 | . . . 4 ⊢ (.g‘𝑁) = (.g‘(mulGrp‘𝑊)) |
| 6 | 3, 5 | eqtri 2752 | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑊)) |
| 7 | eqid 2729 | . . 3 ⊢ (chr‘𝑊) = (chr‘𝑊) | |
| 8 | ply1fermltlchr.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ CRing) | |
| 9 | ply1fermltlchr.w | . . . . 5 ⊢ 𝑊 = (Poly1‘𝐹) | |
| 10 | 9 | ply1crng 22116 | . . . 4 ⊢ (𝐹 ∈ CRing → 𝑊 ∈ CRing) |
| 11 | 8, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ CRing) |
| 12 | 9 | ply1chr 22226 | . . . . . 6 ⊢ (𝐹 ∈ CRing → (chr‘𝑊) = (chr‘𝐹)) |
| 13 | 8, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → (chr‘𝑊) = (chr‘𝐹)) |
| 14 | ply1fermltlchr.p | . . . . 5 ⊢ 𝑃 = (chr‘𝐹) | |
| 15 | 13, 14 | eqtr4di 2782 | . . . 4 ⊢ (𝜑 → (chr‘𝑊) = 𝑃) |
| 16 | ply1fermltlchr.1 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
| 17 | 15, 16 | eqeltrd 2828 | . . 3 ⊢ (𝜑 → (chr‘𝑊) ∈ ℙ) |
| 18 | 8 | crngringd 20166 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ Ring) |
| 19 | ply1fermltlchr.x | . . . . 5 ⊢ 𝑋 = (var1‘𝐹) | |
| 20 | 19, 9, 1 | vr1cl 22135 | . . . 4 ⊢ (𝐹 ∈ Ring → 𝑋 ∈ (Base‘𝑊)) |
| 21 | 18, 20 | syl 17 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
| 22 | ply1fermltlchr.a | . . . 4 ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝐹)‘𝐸)) | |
| 23 | eqid 2729 | . . . . . . . 8 ⊢ (ℤRHom‘𝐹) = (ℤRHom‘𝐹) | |
| 24 | 23 | zrhrhm 21453 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → (ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹)) |
| 25 | zringbas 21395 | . . . . . . . 8 ⊢ ℤ = (Base‘ℤring) | |
| 26 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 27 | 25, 26 | rhmf 20405 | . . . . . . 7 ⊢ ((ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹) → (ℤRHom‘𝐹):ℤ⟶(Base‘𝐹)) |
| 28 | 18, 24, 27 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (ℤRHom‘𝐹):ℤ⟶(Base‘𝐹)) |
| 29 | ply1fermltlchr.2 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ ℤ) | |
| 30 | 28, 29 | ffvelcdmd 7039 | . . . . 5 ⊢ (𝜑 → ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹)) |
| 31 | ply1fermltlchr.c | . . . . . 6 ⊢ 𝐶 = (algSc‘𝑊) | |
| 32 | 9, 31, 26, 1 | ply1sclcl 22205 | . . . . 5 ⊢ ((𝐹 ∈ Ring ∧ ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹)) → (𝐶‘((ℤRHom‘𝐹)‘𝐸)) ∈ (Base‘𝑊)) |
| 33 | 18, 30, 32 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐶‘((ℤRHom‘𝐹)‘𝐸)) ∈ (Base‘𝑊)) |
| 34 | 22, 33 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝑊)) |
| 35 | 1, 2, 6, 7, 11, 17, 21, 34 | freshmansdream 21516 | . 2 ⊢ (𝜑 → ((chr‘𝑊) ↑ (𝑋 + 𝐴)) = (((chr‘𝑊) ↑ 𝑋) + ((chr‘𝑊) ↑ 𝐴))) |
| 36 | 15 | oveq1d 7384 | . 2 ⊢ (𝜑 → ((chr‘𝑊) ↑ (𝑋 + 𝐴)) = (𝑃 ↑ (𝑋 + 𝐴))) |
| 37 | 15 | oveq1d 7384 | . . 3 ⊢ (𝜑 → ((chr‘𝑊) ↑ 𝑋) = (𝑃 ↑ 𝑋)) |
| 38 | 15 | oveq1d 7384 | . . . 4 ⊢ (𝜑 → ((chr‘𝑊) ↑ 𝐴) = (𝑃 ↑ 𝐴)) |
| 39 | 9 | ply1assa 22117 | . . . . . . . . 9 ⊢ (𝐹 ∈ CRing → 𝑊 ∈ AssAlg) |
| 40 | eqid 2729 | . . . . . . . . . 10 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 41 | 31, 40 | asclrhm 21832 | . . . . . . . . 9 ⊢ (𝑊 ∈ AssAlg → 𝐶 ∈ ((Scalar‘𝑊) RingHom 𝑊)) |
| 42 | 8, 39, 41 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ((Scalar‘𝑊) RingHom 𝑊)) |
| 43 | 8 | crnggrpd 20167 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ∈ Grp) |
| 44 | 9 | ply1sca 22170 | . . . . . . . . . 10 ⊢ (𝐹 ∈ Grp → 𝐹 = (Scalar‘𝑊)) |
| 45 | 43, 44 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) |
| 46 | 45 | oveq1d 7384 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 RingHom 𝑊) = ((Scalar‘𝑊) RingHom 𝑊)) |
| 47 | 42, 46 | eleqtrrd 2831 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (𝐹 RingHom 𝑊)) |
| 48 | eqid 2729 | . . . . . . . 8 ⊢ (mulGrp‘𝐹) = (mulGrp‘𝐹) | |
| 49 | 48, 4 | rhmmhm 20399 | . . . . . . 7 ⊢ (𝐶 ∈ (𝐹 RingHom 𝑊) → 𝐶 ∈ ((mulGrp‘𝐹) MndHom 𝑁)) |
| 50 | 47, 49 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ((mulGrp‘𝐹) MndHom 𝑁)) |
| 51 | prmnn 16620 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 52 | nnnn0 12425 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
| 53 | 16, 51, 52 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
| 54 | 48, 26 | mgpbas 20065 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘(mulGrp‘𝐹)) |
| 55 | eqid 2729 | . . . . . . 7 ⊢ (.g‘(mulGrp‘𝐹)) = (.g‘(mulGrp‘𝐹)) | |
| 56 | 54, 55, 3 | mhmmulg 19029 | . . . . . 6 ⊢ ((𝐶 ∈ ((mulGrp‘𝐹) MndHom 𝑁) ∧ 𝑃 ∈ ℕ0 ∧ ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹)) → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝑃 ↑ (𝐶‘((ℤRHom‘𝐹)‘𝐸)))) |
| 57 | 50, 53, 30, 56 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝑃 ↑ (𝐶‘((ℤRHom‘𝐹)‘𝐸)))) |
| 58 | 22 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (𝐶‘((ℤRHom‘𝐹)‘𝐸))) |
| 59 | 58 | oveq2d 7385 | . . . . 5 ⊢ (𝜑 → (𝑃 ↑ 𝐴) = (𝑃 ↑ (𝐶‘((ℤRHom‘𝐹)‘𝐸)))) |
| 60 | 57, 59 | eqtr4d 2767 | . . . 4 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝑃 ↑ 𝐴)) |
| 61 | eqid 2729 | . . . . . . 7 ⊢ ((ℤRHom‘𝐹)‘𝐸) = ((ℤRHom‘𝐹)‘𝐸) | |
| 62 | 14, 26, 55, 61, 16, 29, 8 | fermltlchr 21471 | . . . . . 6 ⊢ (𝜑 → (𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸)) = ((ℤRHom‘𝐹)‘𝐸)) |
| 63 | 62 | fveq2d 6844 | . . . . 5 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝐶‘((ℤRHom‘𝐹)‘𝐸))) |
| 64 | 63, 22 | eqtr4di 2782 | . . . 4 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = 𝐴) |
| 65 | 38, 60, 64 | 3eqtr2d 2770 | . . 3 ⊢ (𝜑 → ((chr‘𝑊) ↑ 𝐴) = 𝐴) |
| 66 | 37, 65 | oveq12d 7387 | . 2 ⊢ (𝜑 → (((chr‘𝑊) ↑ 𝑋) + ((chr‘𝑊) ↑ 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
| 67 | 35, 36, 66 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℕcn 12162 ℕ0cn0 12418 ℤcz 12505 ℙcprime 16617 Basecbs 17155 +gcplusg 17196 Scalarcsca 17199 MndHom cmhm 18690 Grpcgrp 18847 .gcmg 18981 mulGrpcmgp 20060 Ringcrg 20153 CRingccrg 20154 RingHom crh 20389 ℤringczring 21388 ℤRHomczrh 21441 chrcchr 21443 AssAlgcasa 21792 algSccascl 21794 var1cv1 22093 Poly1cpl1 22094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-inf 9370 df-oi 9439 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-fac 14215 df-bc 14244 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-gcd 16441 df-prm 16618 df-phi 16712 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-submnd 18693 df-grp 18850 df-minusg 18851 df-sbg 18852 df-mulg 18982 df-subg 19037 df-ghm 19127 df-cntz 19231 df-od 19442 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-srg 20107 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-rhm 20392 df-subrng 20466 df-subrg 20490 df-drng 20651 df-lmod 20800 df-lss 20870 df-cnfld 21297 df-zring 21389 df-zrh 21445 df-chr 21447 df-assa 21795 df-ascl 21797 df-psr 21851 df-mvr 21852 df-mpl 21853 df-opsr 21855 df-psr1 22097 df-vr1 22098 df-ply1 22099 df-coe1 22100 |
| This theorem is referenced by: ply1fermltl 33546 aks6d1c1p2 42090 |
| Copyright terms: Public domain | W3C validator |