| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1fermltlchr | Structured version Visualization version GIF version | ||
| Description: Fermat's little theorem for polynomials in a commutative ring 𝐹 of characteristic 𝑃 prime: we have the polynomial equation (𝑋 + 𝐴)↑𝑃 = ((𝑋↑𝑃) + 𝐴). (Contributed by Thierry Arnoux, 9-Jan-2025.) |
| Ref | Expression |
|---|---|
| ply1fermltlchr.w | ⊢ 𝑊 = (Poly1‘𝐹) |
| ply1fermltlchr.x | ⊢ 𝑋 = (var1‘𝐹) |
| ply1fermltlchr.l | ⊢ + = (+g‘𝑊) |
| ply1fermltlchr.n | ⊢ 𝑁 = (mulGrp‘𝑊) |
| ply1fermltlchr.t | ⊢ ↑ = (.g‘𝑁) |
| ply1fermltlchr.c | ⊢ 𝐶 = (algSc‘𝑊) |
| ply1fermltlchr.a | ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝐹)‘𝐸)) |
| ply1fermltlchr.p | ⊢ 𝑃 = (chr‘𝐹) |
| ply1fermltlchr.f | ⊢ (𝜑 → 𝐹 ∈ CRing) |
| ply1fermltlchr.1 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| ply1fermltlchr.2 | ⊢ (𝜑 → 𝐸 ∈ ℤ) |
| Ref | Expression |
|---|---|
| ply1fermltlchr | ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | ply1fermltlchr.l | . . 3 ⊢ + = (+g‘𝑊) | |
| 3 | ply1fermltlchr.t | . . . 4 ⊢ ↑ = (.g‘𝑁) | |
| 4 | ply1fermltlchr.n | . . . . 5 ⊢ 𝑁 = (mulGrp‘𝑊) | |
| 5 | 4 | fveq2i 6825 | . . . 4 ⊢ (.g‘𝑁) = (.g‘(mulGrp‘𝑊)) |
| 6 | 3, 5 | eqtri 2754 | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑊)) |
| 7 | eqid 2731 | . . 3 ⊢ (chr‘𝑊) = (chr‘𝑊) | |
| 8 | ply1fermltlchr.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ CRing) | |
| 9 | ply1fermltlchr.w | . . . . 5 ⊢ 𝑊 = (Poly1‘𝐹) | |
| 10 | 9 | ply1crng 22111 | . . . 4 ⊢ (𝐹 ∈ CRing → 𝑊 ∈ CRing) |
| 11 | 8, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ CRing) |
| 12 | 9 | ply1chr 22221 | . . . . . 6 ⊢ (𝐹 ∈ CRing → (chr‘𝑊) = (chr‘𝐹)) |
| 13 | 8, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → (chr‘𝑊) = (chr‘𝐹)) |
| 14 | ply1fermltlchr.p | . . . . 5 ⊢ 𝑃 = (chr‘𝐹) | |
| 15 | 13, 14 | eqtr4di 2784 | . . . 4 ⊢ (𝜑 → (chr‘𝑊) = 𝑃) |
| 16 | ply1fermltlchr.1 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
| 17 | 15, 16 | eqeltrd 2831 | . . 3 ⊢ (𝜑 → (chr‘𝑊) ∈ ℙ) |
| 18 | 8 | crngringd 20164 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ Ring) |
| 19 | ply1fermltlchr.x | . . . . 5 ⊢ 𝑋 = (var1‘𝐹) | |
| 20 | 19, 9, 1 | vr1cl 22130 | . . . 4 ⊢ (𝐹 ∈ Ring → 𝑋 ∈ (Base‘𝑊)) |
| 21 | 18, 20 | syl 17 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
| 22 | ply1fermltlchr.a | . . . 4 ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝐹)‘𝐸)) | |
| 23 | eqid 2731 | . . . . . . . 8 ⊢ (ℤRHom‘𝐹) = (ℤRHom‘𝐹) | |
| 24 | 23 | zrhrhm 21448 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → (ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹)) |
| 25 | zringbas 21390 | . . . . . . . 8 ⊢ ℤ = (Base‘ℤring) | |
| 26 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 27 | 25, 26 | rhmf 20402 | . . . . . . 7 ⊢ ((ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹) → (ℤRHom‘𝐹):ℤ⟶(Base‘𝐹)) |
| 28 | 18, 24, 27 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (ℤRHom‘𝐹):ℤ⟶(Base‘𝐹)) |
| 29 | ply1fermltlchr.2 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ ℤ) | |
| 30 | 28, 29 | ffvelcdmd 7018 | . . . . 5 ⊢ (𝜑 → ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹)) |
| 31 | ply1fermltlchr.c | . . . . . 6 ⊢ 𝐶 = (algSc‘𝑊) | |
| 32 | 9, 31, 26, 1 | ply1sclcl 22200 | . . . . 5 ⊢ ((𝐹 ∈ Ring ∧ ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹)) → (𝐶‘((ℤRHom‘𝐹)‘𝐸)) ∈ (Base‘𝑊)) |
| 33 | 18, 30, 32 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐶‘((ℤRHom‘𝐹)‘𝐸)) ∈ (Base‘𝑊)) |
| 34 | 22, 33 | eqeltrid 2835 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝑊)) |
| 35 | 1, 2, 6, 7, 11, 17, 21, 34 | freshmansdream 21511 | . 2 ⊢ (𝜑 → ((chr‘𝑊) ↑ (𝑋 + 𝐴)) = (((chr‘𝑊) ↑ 𝑋) + ((chr‘𝑊) ↑ 𝐴))) |
| 36 | 15 | oveq1d 7361 | . 2 ⊢ (𝜑 → ((chr‘𝑊) ↑ (𝑋 + 𝐴)) = (𝑃 ↑ (𝑋 + 𝐴))) |
| 37 | 15 | oveq1d 7361 | . . 3 ⊢ (𝜑 → ((chr‘𝑊) ↑ 𝑋) = (𝑃 ↑ 𝑋)) |
| 38 | 15 | oveq1d 7361 | . . . 4 ⊢ (𝜑 → ((chr‘𝑊) ↑ 𝐴) = (𝑃 ↑ 𝐴)) |
| 39 | 9 | ply1assa 22112 | . . . . . . . . 9 ⊢ (𝐹 ∈ CRing → 𝑊 ∈ AssAlg) |
| 40 | eqid 2731 | . . . . . . . . . 10 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 41 | 31, 40 | asclrhm 21827 | . . . . . . . . 9 ⊢ (𝑊 ∈ AssAlg → 𝐶 ∈ ((Scalar‘𝑊) RingHom 𝑊)) |
| 42 | 8, 39, 41 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ((Scalar‘𝑊) RingHom 𝑊)) |
| 43 | 8 | crnggrpd 20165 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ∈ Grp) |
| 44 | 9 | ply1sca 22165 | . . . . . . . . . 10 ⊢ (𝐹 ∈ Grp → 𝐹 = (Scalar‘𝑊)) |
| 45 | 43, 44 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) |
| 46 | 45 | oveq1d 7361 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 RingHom 𝑊) = ((Scalar‘𝑊) RingHom 𝑊)) |
| 47 | 42, 46 | eleqtrrd 2834 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (𝐹 RingHom 𝑊)) |
| 48 | eqid 2731 | . . . . . . . 8 ⊢ (mulGrp‘𝐹) = (mulGrp‘𝐹) | |
| 49 | 48, 4 | rhmmhm 20397 | . . . . . . 7 ⊢ (𝐶 ∈ (𝐹 RingHom 𝑊) → 𝐶 ∈ ((mulGrp‘𝐹) MndHom 𝑁)) |
| 50 | 47, 49 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ((mulGrp‘𝐹) MndHom 𝑁)) |
| 51 | prmnn 16585 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 52 | nnnn0 12388 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
| 53 | 16, 51, 52 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
| 54 | 48, 26 | mgpbas 20063 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘(mulGrp‘𝐹)) |
| 55 | eqid 2731 | . . . . . . 7 ⊢ (.g‘(mulGrp‘𝐹)) = (.g‘(mulGrp‘𝐹)) | |
| 56 | 54, 55, 3 | mhmmulg 19028 | . . . . . 6 ⊢ ((𝐶 ∈ ((mulGrp‘𝐹) MndHom 𝑁) ∧ 𝑃 ∈ ℕ0 ∧ ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹)) → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝑃 ↑ (𝐶‘((ℤRHom‘𝐹)‘𝐸)))) |
| 57 | 50, 53, 30, 56 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝑃 ↑ (𝐶‘((ℤRHom‘𝐹)‘𝐸)))) |
| 58 | 22 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (𝐶‘((ℤRHom‘𝐹)‘𝐸))) |
| 59 | 58 | oveq2d 7362 | . . . . 5 ⊢ (𝜑 → (𝑃 ↑ 𝐴) = (𝑃 ↑ (𝐶‘((ℤRHom‘𝐹)‘𝐸)))) |
| 60 | 57, 59 | eqtr4d 2769 | . . . 4 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝑃 ↑ 𝐴)) |
| 61 | eqid 2731 | . . . . . . 7 ⊢ ((ℤRHom‘𝐹)‘𝐸) = ((ℤRHom‘𝐹)‘𝐸) | |
| 62 | 14, 26, 55, 61, 16, 29, 8 | fermltlchr 21466 | . . . . . 6 ⊢ (𝜑 → (𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸)) = ((ℤRHom‘𝐹)‘𝐸)) |
| 63 | 62 | fveq2d 6826 | . . . . 5 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝐶‘((ℤRHom‘𝐹)‘𝐸))) |
| 64 | 63, 22 | eqtr4di 2784 | . . . 4 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = 𝐴) |
| 65 | 38, 60, 64 | 3eqtr2d 2772 | . . 3 ⊢ (𝜑 → ((chr‘𝑊) ↑ 𝐴) = 𝐴) |
| 66 | 37, 65 | oveq12d 7364 | . 2 ⊢ (𝜑 → (((chr‘𝑊) ↑ 𝑋) + ((chr‘𝑊) ↑ 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
| 67 | 35, 36, 66 | 3eqtr3d 2774 | 1 ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℕcn 12125 ℕ0cn0 12381 ℤcz 12468 ℙcprime 16582 Basecbs 17120 +gcplusg 17161 Scalarcsca 17164 MndHom cmhm 18689 Grpcgrp 18846 .gcmg 18980 mulGrpcmgp 20058 Ringcrg 20151 CRingccrg 20152 RingHom crh 20387 ℤringczring 21383 ℤRHomczrh 21436 chrcchr 21438 AssAlgcasa 21787 algSccascl 21789 var1cv1 22088 Poly1cpl1 22089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-prm 16583 df-phi 16677 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19125 df-cntz 19229 df-od 19440 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-srg 20105 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-rhm 20390 df-subrng 20461 df-subrg 20485 df-drng 20646 df-lmod 20795 df-lss 20865 df-cnfld 21292 df-zring 21384 df-zrh 21440 df-chr 21442 df-assa 21790 df-ascl 21792 df-psr 21846 df-mvr 21847 df-mpl 21848 df-opsr 21850 df-psr1 22092 df-vr1 22093 df-ply1 22094 df-coe1 22095 |
| This theorem is referenced by: ply1fermltl 33548 aks6d1c1p2 42201 |
| Copyright terms: Public domain | W3C validator |