MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1fermltlchr Structured version   Visualization version   GIF version

Theorem ply1fermltlchr 22316
Description: Fermat's little theorem for polynomials in a commutative ring 𝐹 of characteristic 𝑃 prime: we have the polynomial equation (𝑋 + 𝐴)↑𝑃 = ((𝑋𝑃) + 𝐴). (Contributed by Thierry Arnoux, 9-Jan-2025.)
Hypotheses
Ref Expression
ply1fermltlchr.w 𝑊 = (Poly1𝐹)
ply1fermltlchr.x 𝑋 = (var1𝐹)
ply1fermltlchr.l + = (+g𝑊)
ply1fermltlchr.n 𝑁 = (mulGrp‘𝑊)
ply1fermltlchr.t = (.g𝑁)
ply1fermltlchr.c 𝐶 = (algSc‘𝑊)
ply1fermltlchr.a 𝐴 = (𝐶‘((ℤRHom‘𝐹)‘𝐸))
ply1fermltlchr.p 𝑃 = (chr‘𝐹)
ply1fermltlchr.f (𝜑𝐹 ∈ CRing)
ply1fermltlchr.1 (𝜑𝑃 ∈ ℙ)
ply1fermltlchr.2 (𝜑𝐸 ∈ ℤ)
Assertion
Ref Expression
ply1fermltlchr (𝜑 → (𝑃 (𝑋 + 𝐴)) = ((𝑃 𝑋) + 𝐴))

Proof of Theorem ply1fermltlchr
StepHypRef Expression
1 eqid 2737 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 ply1fermltlchr.l . . 3 + = (+g𝑊)
3 ply1fermltlchr.t . . . 4 = (.g𝑁)
4 ply1fermltlchr.n . . . . 5 𝑁 = (mulGrp‘𝑊)
54fveq2i 6909 . . . 4 (.g𝑁) = (.g‘(mulGrp‘𝑊))
63, 5eqtri 2765 . . 3 = (.g‘(mulGrp‘𝑊))
7 eqid 2737 . . 3 (chr‘𝑊) = (chr‘𝑊)
8 ply1fermltlchr.f . . . 4 (𝜑𝐹 ∈ CRing)
9 ply1fermltlchr.w . . . . 5 𝑊 = (Poly1𝐹)
109ply1crng 22200 . . . 4 (𝐹 ∈ CRing → 𝑊 ∈ CRing)
118, 10syl 17 . . 3 (𝜑𝑊 ∈ CRing)
129ply1chr 22310 . . . . . 6 (𝐹 ∈ CRing → (chr‘𝑊) = (chr‘𝐹))
138, 12syl 17 . . . . 5 (𝜑 → (chr‘𝑊) = (chr‘𝐹))
14 ply1fermltlchr.p . . . . 5 𝑃 = (chr‘𝐹)
1513, 14eqtr4di 2795 . . . 4 (𝜑 → (chr‘𝑊) = 𝑃)
16 ply1fermltlchr.1 . . . 4 (𝜑𝑃 ∈ ℙ)
1715, 16eqeltrd 2841 . . 3 (𝜑 → (chr‘𝑊) ∈ ℙ)
188crngringd 20243 . . . 4 (𝜑𝐹 ∈ Ring)
19 ply1fermltlchr.x . . . . 5 𝑋 = (var1𝐹)
2019, 9, 1vr1cl 22219 . . . 4 (𝐹 ∈ Ring → 𝑋 ∈ (Base‘𝑊))
2118, 20syl 17 . . 3 (𝜑𝑋 ∈ (Base‘𝑊))
22 ply1fermltlchr.a . . . 4 𝐴 = (𝐶‘((ℤRHom‘𝐹)‘𝐸))
23 eqid 2737 . . . . . . . 8 (ℤRHom‘𝐹) = (ℤRHom‘𝐹)
2423zrhrhm 21522 . . . . . . 7 (𝐹 ∈ Ring → (ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹))
25 zringbas 21464 . . . . . . . 8 ℤ = (Base‘ℤring)
26 eqid 2737 . . . . . . . 8 (Base‘𝐹) = (Base‘𝐹)
2725, 26rhmf 20485 . . . . . . 7 ((ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹) → (ℤRHom‘𝐹):ℤ⟶(Base‘𝐹))
2818, 24, 273syl 18 . . . . . 6 (𝜑 → (ℤRHom‘𝐹):ℤ⟶(Base‘𝐹))
29 ply1fermltlchr.2 . . . . . 6 (𝜑𝐸 ∈ ℤ)
3028, 29ffvelcdmd 7105 . . . . 5 (𝜑 → ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹))
31 ply1fermltlchr.c . . . . . 6 𝐶 = (algSc‘𝑊)
329, 31, 26, 1ply1sclcl 22289 . . . . 5 ((𝐹 ∈ Ring ∧ ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹)) → (𝐶‘((ℤRHom‘𝐹)‘𝐸)) ∈ (Base‘𝑊))
3318, 30, 32syl2anc 584 . . . 4 (𝜑 → (𝐶‘((ℤRHom‘𝐹)‘𝐸)) ∈ (Base‘𝑊))
3422, 33eqeltrid 2845 . . 3 (𝜑𝐴 ∈ (Base‘𝑊))
351, 2, 6, 7, 11, 17, 21, 34freshmansdream 21593 . 2 (𝜑 → ((chr‘𝑊) (𝑋 + 𝐴)) = (((chr‘𝑊) 𝑋) + ((chr‘𝑊) 𝐴)))
3615oveq1d 7446 . 2 (𝜑 → ((chr‘𝑊) (𝑋 + 𝐴)) = (𝑃 (𝑋 + 𝐴)))
3715oveq1d 7446 . . 3 (𝜑 → ((chr‘𝑊) 𝑋) = (𝑃 𝑋))
3815oveq1d 7446 . . . 4 (𝜑 → ((chr‘𝑊) 𝐴) = (𝑃 𝐴))
399ply1assa 22201 . . . . . . . . 9 (𝐹 ∈ CRing → 𝑊 ∈ AssAlg)
40 eqid 2737 . . . . . . . . . 10 (Scalar‘𝑊) = (Scalar‘𝑊)
4131, 40asclrhm 21910 . . . . . . . . 9 (𝑊 ∈ AssAlg → 𝐶 ∈ ((Scalar‘𝑊) RingHom 𝑊))
428, 39, 413syl 18 . . . . . . . 8 (𝜑𝐶 ∈ ((Scalar‘𝑊) RingHom 𝑊))
438crnggrpd 20244 . . . . . . . . . 10 (𝜑𝐹 ∈ Grp)
449ply1sca 22254 . . . . . . . . . 10 (𝐹 ∈ Grp → 𝐹 = (Scalar‘𝑊))
4543, 44syl 17 . . . . . . . . 9 (𝜑𝐹 = (Scalar‘𝑊))
4645oveq1d 7446 . . . . . . . 8 (𝜑 → (𝐹 RingHom 𝑊) = ((Scalar‘𝑊) RingHom 𝑊))
4742, 46eleqtrrd 2844 . . . . . . 7 (𝜑𝐶 ∈ (𝐹 RingHom 𝑊))
48 eqid 2737 . . . . . . . 8 (mulGrp‘𝐹) = (mulGrp‘𝐹)
4948, 4rhmmhm 20479 . . . . . . 7 (𝐶 ∈ (𝐹 RingHom 𝑊) → 𝐶 ∈ ((mulGrp‘𝐹) MndHom 𝑁))
5047, 49syl 17 . . . . . 6 (𝜑𝐶 ∈ ((mulGrp‘𝐹) MndHom 𝑁))
51 prmnn 16711 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
52 nnnn0 12533 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
5316, 51, 523syl 18 . . . . . 6 (𝜑𝑃 ∈ ℕ0)
5448, 26mgpbas 20142 . . . . . . 7 (Base‘𝐹) = (Base‘(mulGrp‘𝐹))
55 eqid 2737 . . . . . . 7 (.g‘(mulGrp‘𝐹)) = (.g‘(mulGrp‘𝐹))
5654, 55, 3mhmmulg 19133 . . . . . 6 ((𝐶 ∈ ((mulGrp‘𝐹) MndHom 𝑁) ∧ 𝑃 ∈ ℕ0 ∧ ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹)) → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝑃 (𝐶‘((ℤRHom‘𝐹)‘𝐸))))
5750, 53, 30, 56syl3anc 1373 . . . . 5 (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝑃 (𝐶‘((ℤRHom‘𝐹)‘𝐸))))
5822a1i 11 . . . . . 6 (𝜑𝐴 = (𝐶‘((ℤRHom‘𝐹)‘𝐸)))
5958oveq2d 7447 . . . . 5 (𝜑 → (𝑃 𝐴) = (𝑃 (𝐶‘((ℤRHom‘𝐹)‘𝐸))))
6057, 59eqtr4d 2780 . . . 4 (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝑃 𝐴))
61 eqid 2737 . . . . . . 7 ((ℤRHom‘𝐹)‘𝐸) = ((ℤRHom‘𝐹)‘𝐸)
6214, 26, 55, 61, 16, 29, 8fermltlchr 21544 . . . . . 6 (𝜑 → (𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸)) = ((ℤRHom‘𝐹)‘𝐸))
6362fveq2d 6910 . . . . 5 (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝐶‘((ℤRHom‘𝐹)‘𝐸)))
6463, 22eqtr4di 2795 . . . 4 (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = 𝐴)
6538, 60, 643eqtr2d 2783 . . 3 (𝜑 → ((chr‘𝑊) 𝐴) = 𝐴)
6637, 65oveq12d 7449 . 2 (𝜑 → (((chr‘𝑊) 𝑋) + ((chr‘𝑊) 𝐴)) = ((𝑃 𝑋) + 𝐴))
6735, 36, 663eqtr3d 2785 1 (𝜑 → (𝑃 (𝑋 + 𝐴)) = ((𝑃 𝑋) + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wf 6557  cfv 6561  (class class class)co 7431  cn 12266  0cn0 12526  cz 12613  cprime 16708  Basecbs 17247  +gcplusg 17297  Scalarcsca 17300   MndHom cmhm 18794  Grpcgrp 18951  .gcmg 19085  mulGrpcmgp 20137  Ringcrg 20230  CRingccrg 20231   RingHom crh 20469  ringczring 21457  ℤRHomczrh 21510  chrcchr 21512  AssAlgcasa 21870  algSccascl 21872  var1cv1 22177  Poly1cpl1 22178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-prm 16709  df-phi 16803  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-od 19546  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-drng 20731  df-lmod 20860  df-lss 20930  df-cnfld 21365  df-zring 21458  df-zrh 21514  df-chr 21516  df-assa 21873  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-coe1 22184
This theorem is referenced by:  ply1fermltl  33609  aks6d1c1p2  42110
  Copyright terms: Public domain W3C validator