MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1fermltlchr Structured version   Visualization version   GIF version

Theorem ply1fermltlchr 22232
Description: Fermat's little theorem for polynomials in a commutative ring 𝐹 of characteristic 𝑃 prime: we have the polynomial equation (𝑋 + 𝐴)↑𝑃 = ((𝑋𝑃) + 𝐴). (Contributed by Thierry Arnoux, 9-Jan-2025.)
Hypotheses
Ref Expression
ply1fermltlchr.w 𝑊 = (Poly1𝐹)
ply1fermltlchr.x 𝑋 = (var1𝐹)
ply1fermltlchr.l + = (+g𝑊)
ply1fermltlchr.n 𝑁 = (mulGrp‘𝑊)
ply1fermltlchr.t = (.g𝑁)
ply1fermltlchr.c 𝐶 = (algSc‘𝑊)
ply1fermltlchr.a 𝐴 = (𝐶‘((ℤRHom‘𝐹)‘𝐸))
ply1fermltlchr.p 𝑃 = (chr‘𝐹)
ply1fermltlchr.f (𝜑𝐹 ∈ CRing)
ply1fermltlchr.1 (𝜑𝑃 ∈ ℙ)
ply1fermltlchr.2 (𝜑𝐸 ∈ ℤ)
Assertion
Ref Expression
ply1fermltlchr (𝜑 → (𝑃 (𝑋 + 𝐴)) = ((𝑃 𝑋) + 𝐴))

Proof of Theorem ply1fermltlchr
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 ply1fermltlchr.l . . 3 + = (+g𝑊)
3 ply1fermltlchr.t . . . 4 = (.g𝑁)
4 ply1fermltlchr.n . . . . 5 𝑁 = (mulGrp‘𝑊)
54fveq2i 6843 . . . 4 (.g𝑁) = (.g‘(mulGrp‘𝑊))
63, 5eqtri 2752 . . 3 = (.g‘(mulGrp‘𝑊))
7 eqid 2729 . . 3 (chr‘𝑊) = (chr‘𝑊)
8 ply1fermltlchr.f . . . 4 (𝜑𝐹 ∈ CRing)
9 ply1fermltlchr.w . . . . 5 𝑊 = (Poly1𝐹)
109ply1crng 22116 . . . 4 (𝐹 ∈ CRing → 𝑊 ∈ CRing)
118, 10syl 17 . . 3 (𝜑𝑊 ∈ CRing)
129ply1chr 22226 . . . . . 6 (𝐹 ∈ CRing → (chr‘𝑊) = (chr‘𝐹))
138, 12syl 17 . . . . 5 (𝜑 → (chr‘𝑊) = (chr‘𝐹))
14 ply1fermltlchr.p . . . . 5 𝑃 = (chr‘𝐹)
1513, 14eqtr4di 2782 . . . 4 (𝜑 → (chr‘𝑊) = 𝑃)
16 ply1fermltlchr.1 . . . 4 (𝜑𝑃 ∈ ℙ)
1715, 16eqeltrd 2828 . . 3 (𝜑 → (chr‘𝑊) ∈ ℙ)
188crngringd 20166 . . . 4 (𝜑𝐹 ∈ Ring)
19 ply1fermltlchr.x . . . . 5 𝑋 = (var1𝐹)
2019, 9, 1vr1cl 22135 . . . 4 (𝐹 ∈ Ring → 𝑋 ∈ (Base‘𝑊))
2118, 20syl 17 . . 3 (𝜑𝑋 ∈ (Base‘𝑊))
22 ply1fermltlchr.a . . . 4 𝐴 = (𝐶‘((ℤRHom‘𝐹)‘𝐸))
23 eqid 2729 . . . . . . . 8 (ℤRHom‘𝐹) = (ℤRHom‘𝐹)
2423zrhrhm 21453 . . . . . . 7 (𝐹 ∈ Ring → (ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹))
25 zringbas 21395 . . . . . . . 8 ℤ = (Base‘ℤring)
26 eqid 2729 . . . . . . . 8 (Base‘𝐹) = (Base‘𝐹)
2725, 26rhmf 20405 . . . . . . 7 ((ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹) → (ℤRHom‘𝐹):ℤ⟶(Base‘𝐹))
2818, 24, 273syl 18 . . . . . 6 (𝜑 → (ℤRHom‘𝐹):ℤ⟶(Base‘𝐹))
29 ply1fermltlchr.2 . . . . . 6 (𝜑𝐸 ∈ ℤ)
3028, 29ffvelcdmd 7039 . . . . 5 (𝜑 → ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹))
31 ply1fermltlchr.c . . . . . 6 𝐶 = (algSc‘𝑊)
329, 31, 26, 1ply1sclcl 22205 . . . . 5 ((𝐹 ∈ Ring ∧ ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹)) → (𝐶‘((ℤRHom‘𝐹)‘𝐸)) ∈ (Base‘𝑊))
3318, 30, 32syl2anc 584 . . . 4 (𝜑 → (𝐶‘((ℤRHom‘𝐹)‘𝐸)) ∈ (Base‘𝑊))
3422, 33eqeltrid 2832 . . 3 (𝜑𝐴 ∈ (Base‘𝑊))
351, 2, 6, 7, 11, 17, 21, 34freshmansdream 21516 . 2 (𝜑 → ((chr‘𝑊) (𝑋 + 𝐴)) = (((chr‘𝑊) 𝑋) + ((chr‘𝑊) 𝐴)))
3615oveq1d 7384 . 2 (𝜑 → ((chr‘𝑊) (𝑋 + 𝐴)) = (𝑃 (𝑋 + 𝐴)))
3715oveq1d 7384 . . 3 (𝜑 → ((chr‘𝑊) 𝑋) = (𝑃 𝑋))
3815oveq1d 7384 . . . 4 (𝜑 → ((chr‘𝑊) 𝐴) = (𝑃 𝐴))
399ply1assa 22117 . . . . . . . . 9 (𝐹 ∈ CRing → 𝑊 ∈ AssAlg)
40 eqid 2729 . . . . . . . . . 10 (Scalar‘𝑊) = (Scalar‘𝑊)
4131, 40asclrhm 21832 . . . . . . . . 9 (𝑊 ∈ AssAlg → 𝐶 ∈ ((Scalar‘𝑊) RingHom 𝑊))
428, 39, 413syl 18 . . . . . . . 8 (𝜑𝐶 ∈ ((Scalar‘𝑊) RingHom 𝑊))
438crnggrpd 20167 . . . . . . . . . 10 (𝜑𝐹 ∈ Grp)
449ply1sca 22170 . . . . . . . . . 10 (𝐹 ∈ Grp → 𝐹 = (Scalar‘𝑊))
4543, 44syl 17 . . . . . . . . 9 (𝜑𝐹 = (Scalar‘𝑊))
4645oveq1d 7384 . . . . . . . 8 (𝜑 → (𝐹 RingHom 𝑊) = ((Scalar‘𝑊) RingHom 𝑊))
4742, 46eleqtrrd 2831 . . . . . . 7 (𝜑𝐶 ∈ (𝐹 RingHom 𝑊))
48 eqid 2729 . . . . . . . 8 (mulGrp‘𝐹) = (mulGrp‘𝐹)
4948, 4rhmmhm 20399 . . . . . . 7 (𝐶 ∈ (𝐹 RingHom 𝑊) → 𝐶 ∈ ((mulGrp‘𝐹) MndHom 𝑁))
5047, 49syl 17 . . . . . 6 (𝜑𝐶 ∈ ((mulGrp‘𝐹) MndHom 𝑁))
51 prmnn 16620 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
52 nnnn0 12425 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
5316, 51, 523syl 18 . . . . . 6 (𝜑𝑃 ∈ ℕ0)
5448, 26mgpbas 20065 . . . . . . 7 (Base‘𝐹) = (Base‘(mulGrp‘𝐹))
55 eqid 2729 . . . . . . 7 (.g‘(mulGrp‘𝐹)) = (.g‘(mulGrp‘𝐹))
5654, 55, 3mhmmulg 19029 . . . . . 6 ((𝐶 ∈ ((mulGrp‘𝐹) MndHom 𝑁) ∧ 𝑃 ∈ ℕ0 ∧ ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹)) → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝑃 (𝐶‘((ℤRHom‘𝐹)‘𝐸))))
5750, 53, 30, 56syl3anc 1373 . . . . 5 (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝑃 (𝐶‘((ℤRHom‘𝐹)‘𝐸))))
5822a1i 11 . . . . . 6 (𝜑𝐴 = (𝐶‘((ℤRHom‘𝐹)‘𝐸)))
5958oveq2d 7385 . . . . 5 (𝜑 → (𝑃 𝐴) = (𝑃 (𝐶‘((ℤRHom‘𝐹)‘𝐸))))
6057, 59eqtr4d 2767 . . . 4 (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝑃 𝐴))
61 eqid 2729 . . . . . . 7 ((ℤRHom‘𝐹)‘𝐸) = ((ℤRHom‘𝐹)‘𝐸)
6214, 26, 55, 61, 16, 29, 8fermltlchr 21471 . . . . . 6 (𝜑 → (𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸)) = ((ℤRHom‘𝐹)‘𝐸))
6362fveq2d 6844 . . . . 5 (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝐶‘((ℤRHom‘𝐹)‘𝐸)))
6463, 22eqtr4di 2782 . . . 4 (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = 𝐴)
6538, 60, 643eqtr2d 2770 . . 3 (𝜑 → ((chr‘𝑊) 𝐴) = 𝐴)
6637, 65oveq12d 7387 . 2 (𝜑 → (((chr‘𝑊) 𝑋) + ((chr‘𝑊) 𝐴)) = ((𝑃 𝑋) + 𝐴))
6735, 36, 663eqtr3d 2772 1 (𝜑 → (𝑃 (𝑋 + 𝐴)) = ((𝑃 𝑋) + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wf 6495  cfv 6499  (class class class)co 7369  cn 12162  0cn0 12418  cz 12505  cprime 16617  Basecbs 17155  +gcplusg 17196  Scalarcsca 17199   MndHom cmhm 18690  Grpcgrp 18847  .gcmg 18981  mulGrpcmgp 20060  Ringcrg 20153  CRingccrg 20154   RingHom crh 20389  ringczring 21388  ℤRHomczrh 21441  chrcchr 21443  AssAlgcasa 21792  algSccascl 21794  var1cv1 22093  Poly1cpl1 22094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441  df-prm 16618  df-phi 16712  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-od 19442  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-srg 20107  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-rhm 20392  df-subrng 20466  df-subrg 20490  df-drng 20651  df-lmod 20800  df-lss 20870  df-cnfld 21297  df-zring 21389  df-zrh 21445  df-chr 21447  df-assa 21795  df-ascl 21797  df-psr 21851  df-mvr 21852  df-mpl 21853  df-opsr 21855  df-psr1 22097  df-vr1 22098  df-ply1 22099  df-coe1 22100
This theorem is referenced by:  ply1fermltl  33546  aks6d1c1p2  42090
  Copyright terms: Public domain W3C validator