MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1fermltlchr Structured version   Visualization version   GIF version

Theorem ply1fermltlchr 22206
Description: Fermat's little theorem for polynomials in a commutative ring 𝐹 of characteristic 𝑃 prime: we have the polynomial equation (𝑋 + 𝐴)↑𝑃 = ((𝑋𝑃) + 𝐴). (Contributed by Thierry Arnoux, 9-Jan-2025.)
Hypotheses
Ref Expression
ply1fermltlchr.w 𝑊 = (Poly1𝐹)
ply1fermltlchr.x 𝑋 = (var1𝐹)
ply1fermltlchr.l + = (+g𝑊)
ply1fermltlchr.n 𝑁 = (mulGrp‘𝑊)
ply1fermltlchr.t = (.g𝑁)
ply1fermltlchr.c 𝐶 = (algSc‘𝑊)
ply1fermltlchr.a 𝐴 = (𝐶‘((ℤRHom‘𝐹)‘𝐸))
ply1fermltlchr.p 𝑃 = (chr‘𝐹)
ply1fermltlchr.f (𝜑𝐹 ∈ CRing)
ply1fermltlchr.1 (𝜑𝑃 ∈ ℙ)
ply1fermltlchr.2 (𝜑𝐸 ∈ ℤ)
Assertion
Ref Expression
ply1fermltlchr (𝜑 → (𝑃 (𝑋 + 𝐴)) = ((𝑃 𝑋) + 𝐴))

Proof of Theorem ply1fermltlchr
StepHypRef Expression
1 eqid 2730 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 ply1fermltlchr.l . . 3 + = (+g𝑊)
3 ply1fermltlchr.t . . . 4 = (.g𝑁)
4 ply1fermltlchr.n . . . . 5 𝑁 = (mulGrp‘𝑊)
54fveq2i 6864 . . . 4 (.g𝑁) = (.g‘(mulGrp‘𝑊))
63, 5eqtri 2753 . . 3 = (.g‘(mulGrp‘𝑊))
7 eqid 2730 . . 3 (chr‘𝑊) = (chr‘𝑊)
8 ply1fermltlchr.f . . . 4 (𝜑𝐹 ∈ CRing)
9 ply1fermltlchr.w . . . . 5 𝑊 = (Poly1𝐹)
109ply1crng 22090 . . . 4 (𝐹 ∈ CRing → 𝑊 ∈ CRing)
118, 10syl 17 . . 3 (𝜑𝑊 ∈ CRing)
129ply1chr 22200 . . . . . 6 (𝐹 ∈ CRing → (chr‘𝑊) = (chr‘𝐹))
138, 12syl 17 . . . . 5 (𝜑 → (chr‘𝑊) = (chr‘𝐹))
14 ply1fermltlchr.p . . . . 5 𝑃 = (chr‘𝐹)
1513, 14eqtr4di 2783 . . . 4 (𝜑 → (chr‘𝑊) = 𝑃)
16 ply1fermltlchr.1 . . . 4 (𝜑𝑃 ∈ ℙ)
1715, 16eqeltrd 2829 . . 3 (𝜑 → (chr‘𝑊) ∈ ℙ)
188crngringd 20162 . . . 4 (𝜑𝐹 ∈ Ring)
19 ply1fermltlchr.x . . . . 5 𝑋 = (var1𝐹)
2019, 9, 1vr1cl 22109 . . . 4 (𝐹 ∈ Ring → 𝑋 ∈ (Base‘𝑊))
2118, 20syl 17 . . 3 (𝜑𝑋 ∈ (Base‘𝑊))
22 ply1fermltlchr.a . . . 4 𝐴 = (𝐶‘((ℤRHom‘𝐹)‘𝐸))
23 eqid 2730 . . . . . . . 8 (ℤRHom‘𝐹) = (ℤRHom‘𝐹)
2423zrhrhm 21428 . . . . . . 7 (𝐹 ∈ Ring → (ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹))
25 zringbas 21370 . . . . . . . 8 ℤ = (Base‘ℤring)
26 eqid 2730 . . . . . . . 8 (Base‘𝐹) = (Base‘𝐹)
2725, 26rhmf 20401 . . . . . . 7 ((ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹) → (ℤRHom‘𝐹):ℤ⟶(Base‘𝐹))
2818, 24, 273syl 18 . . . . . 6 (𝜑 → (ℤRHom‘𝐹):ℤ⟶(Base‘𝐹))
29 ply1fermltlchr.2 . . . . . 6 (𝜑𝐸 ∈ ℤ)
3028, 29ffvelcdmd 7060 . . . . 5 (𝜑 → ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹))
31 ply1fermltlchr.c . . . . . 6 𝐶 = (algSc‘𝑊)
329, 31, 26, 1ply1sclcl 22179 . . . . 5 ((𝐹 ∈ Ring ∧ ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹)) → (𝐶‘((ℤRHom‘𝐹)‘𝐸)) ∈ (Base‘𝑊))
3318, 30, 32syl2anc 584 . . . 4 (𝜑 → (𝐶‘((ℤRHom‘𝐹)‘𝐸)) ∈ (Base‘𝑊))
3422, 33eqeltrid 2833 . . 3 (𝜑𝐴 ∈ (Base‘𝑊))
351, 2, 6, 7, 11, 17, 21, 34freshmansdream 21491 . 2 (𝜑 → ((chr‘𝑊) (𝑋 + 𝐴)) = (((chr‘𝑊) 𝑋) + ((chr‘𝑊) 𝐴)))
3615oveq1d 7405 . 2 (𝜑 → ((chr‘𝑊) (𝑋 + 𝐴)) = (𝑃 (𝑋 + 𝐴)))
3715oveq1d 7405 . . 3 (𝜑 → ((chr‘𝑊) 𝑋) = (𝑃 𝑋))
3815oveq1d 7405 . . . 4 (𝜑 → ((chr‘𝑊) 𝐴) = (𝑃 𝐴))
399ply1assa 22091 . . . . . . . . 9 (𝐹 ∈ CRing → 𝑊 ∈ AssAlg)
40 eqid 2730 . . . . . . . . . 10 (Scalar‘𝑊) = (Scalar‘𝑊)
4131, 40asclrhm 21806 . . . . . . . . 9 (𝑊 ∈ AssAlg → 𝐶 ∈ ((Scalar‘𝑊) RingHom 𝑊))
428, 39, 413syl 18 . . . . . . . 8 (𝜑𝐶 ∈ ((Scalar‘𝑊) RingHom 𝑊))
438crnggrpd 20163 . . . . . . . . . 10 (𝜑𝐹 ∈ Grp)
449ply1sca 22144 . . . . . . . . . 10 (𝐹 ∈ Grp → 𝐹 = (Scalar‘𝑊))
4543, 44syl 17 . . . . . . . . 9 (𝜑𝐹 = (Scalar‘𝑊))
4645oveq1d 7405 . . . . . . . 8 (𝜑 → (𝐹 RingHom 𝑊) = ((Scalar‘𝑊) RingHom 𝑊))
4742, 46eleqtrrd 2832 . . . . . . 7 (𝜑𝐶 ∈ (𝐹 RingHom 𝑊))
48 eqid 2730 . . . . . . . 8 (mulGrp‘𝐹) = (mulGrp‘𝐹)
4948, 4rhmmhm 20395 . . . . . . 7 (𝐶 ∈ (𝐹 RingHom 𝑊) → 𝐶 ∈ ((mulGrp‘𝐹) MndHom 𝑁))
5047, 49syl 17 . . . . . 6 (𝜑𝐶 ∈ ((mulGrp‘𝐹) MndHom 𝑁))
51 prmnn 16651 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
52 nnnn0 12456 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
5316, 51, 523syl 18 . . . . . 6 (𝜑𝑃 ∈ ℕ0)
5448, 26mgpbas 20061 . . . . . . 7 (Base‘𝐹) = (Base‘(mulGrp‘𝐹))
55 eqid 2730 . . . . . . 7 (.g‘(mulGrp‘𝐹)) = (.g‘(mulGrp‘𝐹))
5654, 55, 3mhmmulg 19054 . . . . . 6 ((𝐶 ∈ ((mulGrp‘𝐹) MndHom 𝑁) ∧ 𝑃 ∈ ℕ0 ∧ ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹)) → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝑃 (𝐶‘((ℤRHom‘𝐹)‘𝐸))))
5750, 53, 30, 56syl3anc 1373 . . . . 5 (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝑃 (𝐶‘((ℤRHom‘𝐹)‘𝐸))))
5822a1i 11 . . . . . 6 (𝜑𝐴 = (𝐶‘((ℤRHom‘𝐹)‘𝐸)))
5958oveq2d 7406 . . . . 5 (𝜑 → (𝑃 𝐴) = (𝑃 (𝐶‘((ℤRHom‘𝐹)‘𝐸))))
6057, 59eqtr4d 2768 . . . 4 (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝑃 𝐴))
61 eqid 2730 . . . . . . 7 ((ℤRHom‘𝐹)‘𝐸) = ((ℤRHom‘𝐹)‘𝐸)
6214, 26, 55, 61, 16, 29, 8fermltlchr 21446 . . . . . 6 (𝜑 → (𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸)) = ((ℤRHom‘𝐹)‘𝐸))
6362fveq2d 6865 . . . . 5 (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = (𝐶‘((ℤRHom‘𝐹)‘𝐸)))
6463, 22eqtr4di 2783 . . . 4 (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝐹))((ℤRHom‘𝐹)‘𝐸))) = 𝐴)
6538, 60, 643eqtr2d 2771 . . 3 (𝜑 → ((chr‘𝑊) 𝐴) = 𝐴)
6637, 65oveq12d 7408 . 2 (𝜑 → (((chr‘𝑊) 𝑋) + ((chr‘𝑊) 𝐴)) = ((𝑃 𝑋) + 𝐴))
6735, 36, 663eqtr3d 2773 1 (𝜑 → (𝑃 (𝑋 + 𝐴)) = ((𝑃 𝑋) + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wf 6510  cfv 6514  (class class class)co 7390  cn 12193  0cn0 12449  cz 12536  cprime 16648  Basecbs 17186  +gcplusg 17227  Scalarcsca 17230   MndHom cmhm 18715  Grpcgrp 18872  .gcmg 19006  mulGrpcmgp 20056  Ringcrg 20149  CRingccrg 20150   RingHom crh 20385  ringczring 21363  ℤRHomczrh 21416  chrcchr 21418  AssAlgcasa 21766  algSccascl 21768  var1cv1 22067  Poly1cpl1 22068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-prm 16649  df-phi 16743  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-od 19465  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-drng 20647  df-lmod 20775  df-lss 20845  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-chr 21422  df-assa 21769  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074
This theorem is referenced by:  ply1fermltl  33560  aks6d1c1p2  42104
  Copyright terms: Public domain W3C validator