| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erlbr2d | Structured version Visualization version GIF version | ||
| Description: Deduce the ring localization equivalence relation. Pairs 〈𝐸, 𝐺〉 and 〈𝑇 · 𝐸, 𝑇 · 𝐺〉 for 𝑇 ∈ 𝑆 are equivalent under the localization relation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| Ref | Expression |
|---|---|
| erlbr2d.b | ⊢ 𝐵 = (Base‘𝑅) |
| erlbr2d.q | ⊢ ∼ = (𝑅 ~RL 𝑆) |
| erlbr2d.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| erlbr2d.s | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) |
| erlbr2d.m | ⊢ · = (.r‘𝑅) |
| erlbr2d.u | ⊢ (𝜑 → 𝑈 = 〈𝐸, 𝐺〉) |
| erlbr2d.v | ⊢ (𝜑 → 𝑉 = 〈𝐹, 𝐻〉) |
| erlbr2d.e | ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| erlbr2d.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| erlbr2d.g | ⊢ (𝜑 → 𝐺 ∈ 𝑆) |
| erlbr2d.h | ⊢ (𝜑 → 𝐻 ∈ 𝑆) |
| erlbr2d.1 | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| erlbr2d.2 | ⊢ (𝜑 → 𝐹 = (𝑇 · 𝐸)) |
| erlbr2d.3 | ⊢ (𝜑 → 𝐻 = (𝑇 · 𝐺)) |
| Ref | Expression |
|---|---|
| erlbr2d | ⊢ (𝜑 → 𝑈 ∼ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erlbr2d.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | erlbr2d.q | . 2 ⊢ ∼ = (𝑅 ~RL 𝑆) | |
| 3 | erlbr2d.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 5 | 4, 1 | mgpbas 20048 | . . . 4 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
| 6 | 5 | submss 18701 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆 ⊆ 𝐵) |
| 7 | 3, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 8 | eqid 2729 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 9 | erlbr2d.m | . 2 ⊢ · = (.r‘𝑅) | |
| 10 | eqid 2729 | . 2 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
| 11 | erlbr2d.u | . 2 ⊢ (𝜑 → 𝑈 = 〈𝐸, 𝐺〉) | |
| 12 | erlbr2d.v | . 2 ⊢ (𝜑 → 𝑉 = 〈𝐹, 𝐻〉) | |
| 13 | erlbr2d.e | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝐵) | |
| 14 | erlbr2d.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 15 | erlbr2d.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑆) | |
| 16 | erlbr2d.h | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑆) | |
| 17 | eqid 2729 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 18 | 4, 17 | ringidval 20086 | . . . 4 ⊢ (1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
| 19 | 18 | subm0cl 18703 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → (1r‘𝑅) ∈ 𝑆) |
| 20 | 3, 19 | syl 17 | . 2 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝑆) |
| 21 | erlbr2d.3 | . . . . . . 7 ⊢ (𝜑 → 𝐻 = (𝑇 · 𝐺)) | |
| 22 | 21 | oveq2d 7369 | . . . . . 6 ⊢ (𝜑 → (𝐸 · 𝐻) = (𝐸 · (𝑇 · 𝐺))) |
| 23 | erlbr2d.2 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝑇 · 𝐸)) | |
| 24 | 23 | oveq1d 7368 | . . . . . 6 ⊢ (𝜑 → (𝐹 · 𝐺) = ((𝑇 · 𝐸) · 𝐺)) |
| 25 | 22, 24 | oveq12d 7371 | . . . . 5 ⊢ (𝜑 → ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺)) = ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)((𝑇 · 𝐸) · 𝐺))) |
| 26 | erlbr2d.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 27 | erlbr2d.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
| 28 | 7, 27 | sseldd 3938 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
| 29 | 7, 15 | sseldd 3938 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| 30 | 1, 9, 26, 28, 13, 29 | crng32d 20162 | . . . . . . 7 ⊢ (𝜑 → ((𝑇 · 𝐸) · 𝐺) = ((𝑇 · 𝐺) · 𝐸)) |
| 31 | 26 | crngringd 20149 | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 32 | 1, 9, 31, 28, 29 | ringcld 20163 | . . . . . . . 8 ⊢ (𝜑 → (𝑇 · 𝐺) ∈ 𝐵) |
| 33 | 1, 9, 26, 32, 13 | crngcomd 20158 | . . . . . . 7 ⊢ (𝜑 → ((𝑇 · 𝐺) · 𝐸) = (𝐸 · (𝑇 · 𝐺))) |
| 34 | 30, 33 | eqtrd 2764 | . . . . . 6 ⊢ (𝜑 → ((𝑇 · 𝐸) · 𝐺) = (𝐸 · (𝑇 · 𝐺))) |
| 35 | 34 | oveq2d 7369 | . . . . 5 ⊢ (𝜑 → ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)((𝑇 · 𝐸) · 𝐺)) = ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)(𝐸 · (𝑇 · 𝐺)))) |
| 36 | 26 | crnggrpd 20150 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 37 | 1, 9, 31, 13, 32 | ringcld 20163 | . . . . . 6 ⊢ (𝜑 → (𝐸 · (𝑇 · 𝐺)) ∈ 𝐵) |
| 38 | 1, 8, 10 | grpsubid 18921 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ (𝐸 · (𝑇 · 𝐺)) ∈ 𝐵) → ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)(𝐸 · (𝑇 · 𝐺))) = (0g‘𝑅)) |
| 39 | 36, 37, 38 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)(𝐸 · (𝑇 · 𝐺))) = (0g‘𝑅)) |
| 40 | 25, 35, 39 | 3eqtrd 2768 | . . . 4 ⊢ (𝜑 → ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺)) = (0g‘𝑅)) |
| 41 | 40 | oveq2d 7369 | . . 3 ⊢ (𝜑 → ((1r‘𝑅) · ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺))) = ((1r‘𝑅) · (0g‘𝑅))) |
| 42 | 7, 20 | sseldd 3938 | . . . 4 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐵) |
| 43 | 1, 9, 8, 31, 42 | ringrzd 20199 | . . 3 ⊢ (𝜑 → ((1r‘𝑅) · (0g‘𝑅)) = (0g‘𝑅)) |
| 44 | 41, 43 | eqtrd 2764 | . 2 ⊢ (𝜑 → ((1r‘𝑅) · ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺))) = (0g‘𝑅)) |
| 45 | 1, 2, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 44 | erlbrd 33216 | 1 ⊢ (𝜑 → 𝑈 ∼ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 〈cop 4585 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 .rcmulr 17180 0gc0g 17361 SubMndcsubmnd 18674 Grpcgrp 18830 -gcsg 18832 mulGrpcmgp 20043 1rcur 20084 CRingccrg 20137 ~RL cerl 33206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-erl 33208 |
| This theorem is referenced by: rloccring 33223 |
| Copyright terms: Public domain | W3C validator |