![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erlbr2d | Structured version Visualization version GIF version |
Description: Deduce the ring localization equivalence relation. Pairs 〈𝐸, 𝐺〉 and 〈𝑇 · 𝐸, 𝑇 · 𝐺〉 for 𝑇 ∈ 𝑆 are equivalent under the localization relation. (Contributed by Thierry Arnoux, 4-May-2025.) |
Ref | Expression |
---|---|
erlbr2d.b | ⊢ 𝐵 = (Base‘𝑅) |
erlbr2d.q | ⊢ ∼ = (𝑅 ~RL 𝑆) |
erlbr2d.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
erlbr2d.s | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) |
erlbr2d.m | ⊢ · = (.r‘𝑅) |
erlbr2d.u | ⊢ (𝜑 → 𝑈 = 〈𝐸, 𝐺〉) |
erlbr2d.v | ⊢ (𝜑 → 𝑉 = 〈𝐹, 𝐻〉) |
erlbr2d.e | ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
erlbr2d.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
erlbr2d.g | ⊢ (𝜑 → 𝐺 ∈ 𝑆) |
erlbr2d.h | ⊢ (𝜑 → 𝐻 ∈ 𝑆) |
erlbr2d.1 | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
erlbr2d.2 | ⊢ (𝜑 → 𝐹 = (𝑇 · 𝐸)) |
erlbr2d.3 | ⊢ (𝜑 → 𝐻 = (𝑇 · 𝐺)) |
Ref | Expression |
---|---|
erlbr2d | ⊢ (𝜑 → 𝑈 ∼ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erlbr2d.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | erlbr2d.q | . 2 ⊢ ∼ = (𝑅 ~RL 𝑆) | |
3 | erlbr2d.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) | |
4 | eqid 2740 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
5 | 4, 1 | mgpbas 20167 | . . . 4 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
6 | 5 | submss 18844 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆 ⊆ 𝐵) |
7 | 3, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
8 | eqid 2740 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
9 | erlbr2d.m | . 2 ⊢ · = (.r‘𝑅) | |
10 | eqid 2740 | . 2 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
11 | erlbr2d.u | . 2 ⊢ (𝜑 → 𝑈 = 〈𝐸, 𝐺〉) | |
12 | erlbr2d.v | . 2 ⊢ (𝜑 → 𝑉 = 〈𝐹, 𝐻〉) | |
13 | erlbr2d.e | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝐵) | |
14 | erlbr2d.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
15 | erlbr2d.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑆) | |
16 | erlbr2d.h | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑆) | |
17 | eqid 2740 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
18 | 4, 17 | ringidval 20210 | . . . 4 ⊢ (1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
19 | 18 | subm0cl 18846 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → (1r‘𝑅) ∈ 𝑆) |
20 | 3, 19 | syl 17 | . 2 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝑆) |
21 | erlbr2d.3 | . . . . . . 7 ⊢ (𝜑 → 𝐻 = (𝑇 · 𝐺)) | |
22 | 21 | oveq2d 7464 | . . . . . 6 ⊢ (𝜑 → (𝐸 · 𝐻) = (𝐸 · (𝑇 · 𝐺))) |
23 | erlbr2d.2 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝑇 · 𝐸)) | |
24 | 23 | oveq1d 7463 | . . . . . 6 ⊢ (𝜑 → (𝐹 · 𝐺) = ((𝑇 · 𝐸) · 𝐺)) |
25 | 22, 24 | oveq12d 7466 | . . . . 5 ⊢ (𝜑 → ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺)) = ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)((𝑇 · 𝐸) · 𝐺))) |
26 | erlbr2d.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
27 | erlbr2d.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
28 | 7, 27 | sseldd 4009 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
29 | 7, 15 | sseldd 4009 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
30 | 1, 9, 26, 28, 13, 29 | cringmul32d 33208 | . . . . . . 7 ⊢ (𝜑 → ((𝑇 · 𝐸) · 𝐺) = ((𝑇 · 𝐺) · 𝐸)) |
31 | 26 | crngringd 20273 | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ Ring) |
32 | 1, 9, 31, 28, 29 | ringcld 20286 | . . . . . . . 8 ⊢ (𝜑 → (𝑇 · 𝐺) ∈ 𝐵) |
33 | 1, 9, 26, 32, 13 | crngcomd 20282 | . . . . . . 7 ⊢ (𝜑 → ((𝑇 · 𝐺) · 𝐸) = (𝐸 · (𝑇 · 𝐺))) |
34 | 30, 33 | eqtrd 2780 | . . . . . 6 ⊢ (𝜑 → ((𝑇 · 𝐸) · 𝐺) = (𝐸 · (𝑇 · 𝐺))) |
35 | 34 | oveq2d 7464 | . . . . 5 ⊢ (𝜑 → ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)((𝑇 · 𝐸) · 𝐺)) = ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)(𝐸 · (𝑇 · 𝐺)))) |
36 | 26 | crnggrpd 20274 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
37 | 1, 9, 31, 13, 32 | ringcld 20286 | . . . . . 6 ⊢ (𝜑 → (𝐸 · (𝑇 · 𝐺)) ∈ 𝐵) |
38 | 1, 8, 10 | grpsubid 19064 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ (𝐸 · (𝑇 · 𝐺)) ∈ 𝐵) → ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)(𝐸 · (𝑇 · 𝐺))) = (0g‘𝑅)) |
39 | 36, 37, 38 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)(𝐸 · (𝑇 · 𝐺))) = (0g‘𝑅)) |
40 | 25, 35, 39 | 3eqtrd 2784 | . . . 4 ⊢ (𝜑 → ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺)) = (0g‘𝑅)) |
41 | 40 | oveq2d 7464 | . . 3 ⊢ (𝜑 → ((1r‘𝑅) · ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺))) = ((1r‘𝑅) · (0g‘𝑅))) |
42 | 7, 20 | sseldd 4009 | . . . 4 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐵) |
43 | 1, 9, 8, 31, 42 | ringrzd 20319 | . . 3 ⊢ (𝜑 → ((1r‘𝑅) · (0g‘𝑅)) = (0g‘𝑅)) |
44 | 41, 43 | eqtrd 2780 | . 2 ⊢ (𝜑 → ((1r‘𝑅) · ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺))) = (0g‘𝑅)) |
45 | 1, 2, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 44 | erlbrd 33235 | 1 ⊢ (𝜑 → 𝑈 ∼ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 〈cop 4654 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 0gc0g 17499 SubMndcsubmnd 18817 Grpcgrp 18973 -gcsg 18975 mulGrpcmgp 20161 1rcur 20208 CRingccrg 20261 ~RL cerl 33225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-erl 33227 |
This theorem is referenced by: rloccring 33242 |
Copyright terms: Public domain | W3C validator |