|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erlbr2d | Structured version Visualization version GIF version | ||
| Description: Deduce the ring localization equivalence relation. Pairs 〈𝐸, 𝐺〉 and 〈𝑇 · 𝐸, 𝑇 · 𝐺〉 for 𝑇 ∈ 𝑆 are equivalent under the localization relation. (Contributed by Thierry Arnoux, 4-May-2025.) | 
| Ref | Expression | 
|---|---|
| erlbr2d.b | ⊢ 𝐵 = (Base‘𝑅) | 
| erlbr2d.q | ⊢ ∼ = (𝑅 ~RL 𝑆) | 
| erlbr2d.r | ⊢ (𝜑 → 𝑅 ∈ CRing) | 
| erlbr2d.s | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) | 
| erlbr2d.m | ⊢ · = (.r‘𝑅) | 
| erlbr2d.u | ⊢ (𝜑 → 𝑈 = 〈𝐸, 𝐺〉) | 
| erlbr2d.v | ⊢ (𝜑 → 𝑉 = 〈𝐹, 𝐻〉) | 
| erlbr2d.e | ⊢ (𝜑 → 𝐸 ∈ 𝐵) | 
| erlbr2d.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) | 
| erlbr2d.g | ⊢ (𝜑 → 𝐺 ∈ 𝑆) | 
| erlbr2d.h | ⊢ (𝜑 → 𝐻 ∈ 𝑆) | 
| erlbr2d.1 | ⊢ (𝜑 → 𝑇 ∈ 𝑆) | 
| erlbr2d.2 | ⊢ (𝜑 → 𝐹 = (𝑇 · 𝐸)) | 
| erlbr2d.3 | ⊢ (𝜑 → 𝐻 = (𝑇 · 𝐺)) | 
| Ref | Expression | 
|---|---|
| erlbr2d | ⊢ (𝜑 → 𝑈 ∼ 𝑉) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | erlbr2d.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | erlbr2d.q | . 2 ⊢ ∼ = (𝑅 ~RL 𝑆) | |
| 3 | erlbr2d.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) | |
| 4 | eqid 2736 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 5 | 4, 1 | mgpbas 20143 | . . . 4 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) | 
| 6 | 5 | submss 18823 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆 ⊆ 𝐵) | 
| 7 | 3, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | 
| 8 | eqid 2736 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 9 | erlbr2d.m | . 2 ⊢ · = (.r‘𝑅) | |
| 10 | eqid 2736 | . 2 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
| 11 | erlbr2d.u | . 2 ⊢ (𝜑 → 𝑈 = 〈𝐸, 𝐺〉) | |
| 12 | erlbr2d.v | . 2 ⊢ (𝜑 → 𝑉 = 〈𝐹, 𝐻〉) | |
| 13 | erlbr2d.e | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝐵) | |
| 14 | erlbr2d.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 15 | erlbr2d.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑆) | |
| 16 | erlbr2d.h | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑆) | |
| 17 | eqid 2736 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 18 | 4, 17 | ringidval 20181 | . . . 4 ⊢ (1r‘𝑅) = (0g‘(mulGrp‘𝑅)) | 
| 19 | 18 | subm0cl 18825 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → (1r‘𝑅) ∈ 𝑆) | 
| 20 | 3, 19 | syl 17 | . 2 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝑆) | 
| 21 | erlbr2d.3 | . . . . . . 7 ⊢ (𝜑 → 𝐻 = (𝑇 · 𝐺)) | |
| 22 | 21 | oveq2d 7448 | . . . . . 6 ⊢ (𝜑 → (𝐸 · 𝐻) = (𝐸 · (𝑇 · 𝐺))) | 
| 23 | erlbr2d.2 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝑇 · 𝐸)) | |
| 24 | 23 | oveq1d 7447 | . . . . . 6 ⊢ (𝜑 → (𝐹 · 𝐺) = ((𝑇 · 𝐸) · 𝐺)) | 
| 25 | 22, 24 | oveq12d 7450 | . . . . 5 ⊢ (𝜑 → ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺)) = ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)((𝑇 · 𝐸) · 𝐺))) | 
| 26 | erlbr2d.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 27 | erlbr2d.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
| 28 | 7, 27 | sseldd 3983 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ 𝐵) | 
| 29 | 7, 15 | sseldd 3983 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | 
| 30 | 1, 9, 26, 28, 13, 29 | crng32d 20257 | . . . . . . 7 ⊢ (𝜑 → ((𝑇 · 𝐸) · 𝐺) = ((𝑇 · 𝐺) · 𝐸)) | 
| 31 | 26 | crngringd 20244 | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 32 | 1, 9, 31, 28, 29 | ringcld 20258 | . . . . . . . 8 ⊢ (𝜑 → (𝑇 · 𝐺) ∈ 𝐵) | 
| 33 | 1, 9, 26, 32, 13 | crngcomd 20253 | . . . . . . 7 ⊢ (𝜑 → ((𝑇 · 𝐺) · 𝐸) = (𝐸 · (𝑇 · 𝐺))) | 
| 34 | 30, 33 | eqtrd 2776 | . . . . . 6 ⊢ (𝜑 → ((𝑇 · 𝐸) · 𝐺) = (𝐸 · (𝑇 · 𝐺))) | 
| 35 | 34 | oveq2d 7448 | . . . . 5 ⊢ (𝜑 → ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)((𝑇 · 𝐸) · 𝐺)) = ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)(𝐸 · (𝑇 · 𝐺)))) | 
| 36 | 26 | crnggrpd 20245 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) | 
| 37 | 1, 9, 31, 13, 32 | ringcld 20258 | . . . . . 6 ⊢ (𝜑 → (𝐸 · (𝑇 · 𝐺)) ∈ 𝐵) | 
| 38 | 1, 8, 10 | grpsubid 19043 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ (𝐸 · (𝑇 · 𝐺)) ∈ 𝐵) → ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)(𝐸 · (𝑇 · 𝐺))) = (0g‘𝑅)) | 
| 39 | 36, 37, 38 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)(𝐸 · (𝑇 · 𝐺))) = (0g‘𝑅)) | 
| 40 | 25, 35, 39 | 3eqtrd 2780 | . . . 4 ⊢ (𝜑 → ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺)) = (0g‘𝑅)) | 
| 41 | 40 | oveq2d 7448 | . . 3 ⊢ (𝜑 → ((1r‘𝑅) · ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺))) = ((1r‘𝑅) · (0g‘𝑅))) | 
| 42 | 7, 20 | sseldd 3983 | . . . 4 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐵) | 
| 43 | 1, 9, 8, 31, 42 | ringrzd 20294 | . . 3 ⊢ (𝜑 → ((1r‘𝑅) · (0g‘𝑅)) = (0g‘𝑅)) | 
| 44 | 41, 43 | eqtrd 2776 | . 2 ⊢ (𝜑 → ((1r‘𝑅) · ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺))) = (0g‘𝑅)) | 
| 45 | 1, 2, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 44 | erlbrd 33268 | 1 ⊢ (𝜑 → 𝑈 ∼ 𝑉) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ⊆ wss 3950 〈cop 4631 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 .rcmulr 17299 0gc0g 17485 SubMndcsubmnd 18796 Grpcgrp 18952 -gcsg 18954 mulGrpcmgp 20138 1rcur 20179 CRingccrg 20232 ~RL cerl 33258 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-submnd 18798 df-grp 18955 df-minusg 18956 df-sbg 18957 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-cring 20234 df-erl 33260 | 
| This theorem is referenced by: rloccring 33275 | 
| Copyright terms: Public domain | W3C validator |