| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erlbr2d | Structured version Visualization version GIF version | ||
| Description: Deduce the ring localization equivalence relation. Pairs 〈𝐸, 𝐺〉 and 〈𝑇 · 𝐸, 𝑇 · 𝐺〉 for 𝑇 ∈ 𝑆 are equivalent under the localization relation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| Ref | Expression |
|---|---|
| erlbr2d.b | ⊢ 𝐵 = (Base‘𝑅) |
| erlbr2d.q | ⊢ ∼ = (𝑅 ~RL 𝑆) |
| erlbr2d.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| erlbr2d.s | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) |
| erlbr2d.m | ⊢ · = (.r‘𝑅) |
| erlbr2d.u | ⊢ (𝜑 → 𝑈 = 〈𝐸, 𝐺〉) |
| erlbr2d.v | ⊢ (𝜑 → 𝑉 = 〈𝐹, 𝐻〉) |
| erlbr2d.e | ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| erlbr2d.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| erlbr2d.g | ⊢ (𝜑 → 𝐺 ∈ 𝑆) |
| erlbr2d.h | ⊢ (𝜑 → 𝐻 ∈ 𝑆) |
| erlbr2d.1 | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| erlbr2d.2 | ⊢ (𝜑 → 𝐹 = (𝑇 · 𝐸)) |
| erlbr2d.3 | ⊢ (𝜑 → 𝐻 = (𝑇 · 𝐺)) |
| Ref | Expression |
|---|---|
| erlbr2d | ⊢ (𝜑 → 𝑈 ∼ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erlbr2d.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | erlbr2d.q | . 2 ⊢ ∼ = (𝑅 ~RL 𝑆) | |
| 3 | erlbr2d.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) | |
| 4 | eqid 2731 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 5 | 4, 1 | mgpbas 20058 | . . . 4 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
| 6 | 5 | submss 18712 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆 ⊆ 𝐵) |
| 7 | 3, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 8 | eqid 2731 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 9 | erlbr2d.m | . 2 ⊢ · = (.r‘𝑅) | |
| 10 | eqid 2731 | . 2 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
| 11 | erlbr2d.u | . 2 ⊢ (𝜑 → 𝑈 = 〈𝐸, 𝐺〉) | |
| 12 | erlbr2d.v | . 2 ⊢ (𝜑 → 𝑉 = 〈𝐹, 𝐻〉) | |
| 13 | erlbr2d.e | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝐵) | |
| 14 | erlbr2d.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 15 | erlbr2d.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑆) | |
| 16 | erlbr2d.h | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑆) | |
| 17 | eqid 2731 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 18 | 4, 17 | ringidval 20096 | . . . 4 ⊢ (1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
| 19 | 18 | subm0cl 18714 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → (1r‘𝑅) ∈ 𝑆) |
| 20 | 3, 19 | syl 17 | . 2 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝑆) |
| 21 | erlbr2d.3 | . . . . . . 7 ⊢ (𝜑 → 𝐻 = (𝑇 · 𝐺)) | |
| 22 | 21 | oveq2d 7357 | . . . . . 6 ⊢ (𝜑 → (𝐸 · 𝐻) = (𝐸 · (𝑇 · 𝐺))) |
| 23 | erlbr2d.2 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝑇 · 𝐸)) | |
| 24 | 23 | oveq1d 7356 | . . . . . 6 ⊢ (𝜑 → (𝐹 · 𝐺) = ((𝑇 · 𝐸) · 𝐺)) |
| 25 | 22, 24 | oveq12d 7359 | . . . . 5 ⊢ (𝜑 → ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺)) = ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)((𝑇 · 𝐸) · 𝐺))) |
| 26 | erlbr2d.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 27 | erlbr2d.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
| 28 | 7, 27 | sseldd 3930 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
| 29 | 7, 15 | sseldd 3930 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| 30 | 1, 9, 26, 28, 13, 29 | crng32d 20172 | . . . . . . 7 ⊢ (𝜑 → ((𝑇 · 𝐸) · 𝐺) = ((𝑇 · 𝐺) · 𝐸)) |
| 31 | 26 | crngringd 20159 | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 32 | 1, 9, 31, 28, 29 | ringcld 20173 | . . . . . . . 8 ⊢ (𝜑 → (𝑇 · 𝐺) ∈ 𝐵) |
| 33 | 1, 9, 26, 32, 13 | crngcomd 20168 | . . . . . . 7 ⊢ (𝜑 → ((𝑇 · 𝐺) · 𝐸) = (𝐸 · (𝑇 · 𝐺))) |
| 34 | 30, 33 | eqtrd 2766 | . . . . . 6 ⊢ (𝜑 → ((𝑇 · 𝐸) · 𝐺) = (𝐸 · (𝑇 · 𝐺))) |
| 35 | 34 | oveq2d 7357 | . . . . 5 ⊢ (𝜑 → ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)((𝑇 · 𝐸) · 𝐺)) = ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)(𝐸 · (𝑇 · 𝐺)))) |
| 36 | 26 | crnggrpd 20160 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 37 | 1, 9, 31, 13, 32 | ringcld 20173 | . . . . . 6 ⊢ (𝜑 → (𝐸 · (𝑇 · 𝐺)) ∈ 𝐵) |
| 38 | 1, 8, 10 | grpsubid 18932 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ (𝐸 · (𝑇 · 𝐺)) ∈ 𝐵) → ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)(𝐸 · (𝑇 · 𝐺))) = (0g‘𝑅)) |
| 39 | 36, 37, 38 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)(𝐸 · (𝑇 · 𝐺))) = (0g‘𝑅)) |
| 40 | 25, 35, 39 | 3eqtrd 2770 | . . . 4 ⊢ (𝜑 → ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺)) = (0g‘𝑅)) |
| 41 | 40 | oveq2d 7357 | . . 3 ⊢ (𝜑 → ((1r‘𝑅) · ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺))) = ((1r‘𝑅) · (0g‘𝑅))) |
| 42 | 7, 20 | sseldd 3930 | . . . 4 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐵) |
| 43 | 1, 9, 8, 31, 42 | ringrzd 20209 | . . 3 ⊢ (𝜑 → ((1r‘𝑅) · (0g‘𝑅)) = (0g‘𝑅)) |
| 44 | 41, 43 | eqtrd 2766 | . 2 ⊢ (𝜑 → ((1r‘𝑅) · ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺))) = (0g‘𝑅)) |
| 45 | 1, 2, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 44 | erlbrd 33222 | 1 ⊢ (𝜑 → 𝑈 ∼ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 〈cop 4577 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 .rcmulr 17157 0gc0g 17338 SubMndcsubmnd 18685 Grpcgrp 18841 -gcsg 18843 mulGrpcmgp 20053 1rcur 20094 CRingccrg 20147 ~RL cerl 33212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-cring 20149 df-erl 33214 |
| This theorem is referenced by: rloccring 33229 |
| Copyright terms: Public domain | W3C validator |