Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erlbr2d Structured version   Visualization version   GIF version

Theorem erlbr2d 33223
Description: Deduce the ring localization equivalence relation. Pairs 𝐸, 𝐺 and 𝑇 · 𝐸, 𝑇 · 𝐺 for 𝑇𝑆 are equivalent under the localization relation. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
erlbr2d.b 𝐵 = (Base‘𝑅)
erlbr2d.q = (𝑅 ~RL 𝑆)
erlbr2d.r (𝜑𝑅 ∈ CRing)
erlbr2d.s (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
erlbr2d.m · = (.r𝑅)
erlbr2d.u (𝜑𝑈 = ⟨𝐸, 𝐺⟩)
erlbr2d.v (𝜑𝑉 = ⟨𝐹, 𝐻⟩)
erlbr2d.e (𝜑𝐸𝐵)
erlbr2d.f (𝜑𝐹𝐵)
erlbr2d.g (𝜑𝐺𝑆)
erlbr2d.h (𝜑𝐻𝑆)
erlbr2d.1 (𝜑𝑇𝑆)
erlbr2d.2 (𝜑𝐹 = (𝑇 · 𝐸))
erlbr2d.3 (𝜑𝐻 = (𝑇 · 𝐺))
Assertion
Ref Expression
erlbr2d (𝜑𝑈 𝑉)

Proof of Theorem erlbr2d
StepHypRef Expression
1 erlbr2d.b . 2 𝐵 = (Base‘𝑅)
2 erlbr2d.q . 2 = (𝑅 ~RL 𝑆)
3 erlbr2d.s . . 3 (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
4 eqid 2731 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
54, 1mgpbas 20058 . . . 4 𝐵 = (Base‘(mulGrp‘𝑅))
65submss 18712 . . 3 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆𝐵)
73, 6syl 17 . 2 (𝜑𝑆𝐵)
8 eqid 2731 . 2 (0g𝑅) = (0g𝑅)
9 erlbr2d.m . 2 · = (.r𝑅)
10 eqid 2731 . 2 (-g𝑅) = (-g𝑅)
11 erlbr2d.u . 2 (𝜑𝑈 = ⟨𝐸, 𝐺⟩)
12 erlbr2d.v . 2 (𝜑𝑉 = ⟨𝐹, 𝐻⟩)
13 erlbr2d.e . 2 (𝜑𝐸𝐵)
14 erlbr2d.f . 2 (𝜑𝐹𝐵)
15 erlbr2d.g . 2 (𝜑𝐺𝑆)
16 erlbr2d.h . 2 (𝜑𝐻𝑆)
17 eqid 2731 . . . . 5 (1r𝑅) = (1r𝑅)
184, 17ringidval 20096 . . . 4 (1r𝑅) = (0g‘(mulGrp‘𝑅))
1918subm0cl 18714 . . 3 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → (1r𝑅) ∈ 𝑆)
203, 19syl 17 . 2 (𝜑 → (1r𝑅) ∈ 𝑆)
21 erlbr2d.3 . . . . . . 7 (𝜑𝐻 = (𝑇 · 𝐺))
2221oveq2d 7357 . . . . . 6 (𝜑 → (𝐸 · 𝐻) = (𝐸 · (𝑇 · 𝐺)))
23 erlbr2d.2 . . . . . . 7 (𝜑𝐹 = (𝑇 · 𝐸))
2423oveq1d 7356 . . . . . 6 (𝜑 → (𝐹 · 𝐺) = ((𝑇 · 𝐸) · 𝐺))
2522, 24oveq12d 7359 . . . . 5 (𝜑 → ((𝐸 · 𝐻)(-g𝑅)(𝐹 · 𝐺)) = ((𝐸 · (𝑇 · 𝐺))(-g𝑅)((𝑇 · 𝐸) · 𝐺)))
26 erlbr2d.r . . . . . . . 8 (𝜑𝑅 ∈ CRing)
27 erlbr2d.1 . . . . . . . . 9 (𝜑𝑇𝑆)
287, 27sseldd 3930 . . . . . . . 8 (𝜑𝑇𝐵)
297, 15sseldd 3930 . . . . . . . 8 (𝜑𝐺𝐵)
301, 9, 26, 28, 13, 29crng32d 20172 . . . . . . 7 (𝜑 → ((𝑇 · 𝐸) · 𝐺) = ((𝑇 · 𝐺) · 𝐸))
3126crngringd 20159 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
321, 9, 31, 28, 29ringcld 20173 . . . . . . . 8 (𝜑 → (𝑇 · 𝐺) ∈ 𝐵)
331, 9, 26, 32, 13crngcomd 20168 . . . . . . 7 (𝜑 → ((𝑇 · 𝐺) · 𝐸) = (𝐸 · (𝑇 · 𝐺)))
3430, 33eqtrd 2766 . . . . . 6 (𝜑 → ((𝑇 · 𝐸) · 𝐺) = (𝐸 · (𝑇 · 𝐺)))
3534oveq2d 7357 . . . . 5 (𝜑 → ((𝐸 · (𝑇 · 𝐺))(-g𝑅)((𝑇 · 𝐸) · 𝐺)) = ((𝐸 · (𝑇 · 𝐺))(-g𝑅)(𝐸 · (𝑇 · 𝐺))))
3626crnggrpd 20160 . . . . . 6 (𝜑𝑅 ∈ Grp)
371, 9, 31, 13, 32ringcld 20173 . . . . . 6 (𝜑 → (𝐸 · (𝑇 · 𝐺)) ∈ 𝐵)
381, 8, 10grpsubid 18932 . . . . . 6 ((𝑅 ∈ Grp ∧ (𝐸 · (𝑇 · 𝐺)) ∈ 𝐵) → ((𝐸 · (𝑇 · 𝐺))(-g𝑅)(𝐸 · (𝑇 · 𝐺))) = (0g𝑅))
3936, 37, 38syl2anc 584 . . . . 5 (𝜑 → ((𝐸 · (𝑇 · 𝐺))(-g𝑅)(𝐸 · (𝑇 · 𝐺))) = (0g𝑅))
4025, 35, 393eqtrd 2770 . . . 4 (𝜑 → ((𝐸 · 𝐻)(-g𝑅)(𝐹 · 𝐺)) = (0g𝑅))
4140oveq2d 7357 . . 3 (𝜑 → ((1r𝑅) · ((𝐸 · 𝐻)(-g𝑅)(𝐹 · 𝐺))) = ((1r𝑅) · (0g𝑅)))
427, 20sseldd 3930 . . . 4 (𝜑 → (1r𝑅) ∈ 𝐵)
431, 9, 8, 31, 42ringrzd 20209 . . 3 (𝜑 → ((1r𝑅) · (0g𝑅)) = (0g𝑅))
4441, 43eqtrd 2766 . 2 (𝜑 → ((1r𝑅) · ((𝐸 · 𝐻)(-g𝑅)(𝐹 · 𝐺))) = (0g𝑅))
451, 2, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 44erlbrd 33222 1 (𝜑𝑈 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wss 3897  cop 4577   class class class wbr 5086  cfv 6476  (class class class)co 7341  Basecbs 17115  .rcmulr 17157  0gc0g 17338  SubMndcsubmnd 18685  Grpcgrp 18841  -gcsg 18843  mulGrpcmgp 20053  1rcur 20094  CRingccrg 20147   ~RL cerl 33212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-cring 20149  df-erl 33214
This theorem is referenced by:  rloccring  33229
  Copyright terms: Public domain W3C validator