| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erlbr2d | Structured version Visualization version GIF version | ||
| Description: Deduce the ring localization equivalence relation. Pairs 〈𝐸, 𝐺〉 and 〈𝑇 · 𝐸, 𝑇 · 𝐺〉 for 𝑇 ∈ 𝑆 are equivalent under the localization relation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| Ref | Expression |
|---|---|
| erlbr2d.b | ⊢ 𝐵 = (Base‘𝑅) |
| erlbr2d.q | ⊢ ∼ = (𝑅 ~RL 𝑆) |
| erlbr2d.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| erlbr2d.s | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) |
| erlbr2d.m | ⊢ · = (.r‘𝑅) |
| erlbr2d.u | ⊢ (𝜑 → 𝑈 = 〈𝐸, 𝐺〉) |
| erlbr2d.v | ⊢ (𝜑 → 𝑉 = 〈𝐹, 𝐻〉) |
| erlbr2d.e | ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| erlbr2d.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| erlbr2d.g | ⊢ (𝜑 → 𝐺 ∈ 𝑆) |
| erlbr2d.h | ⊢ (𝜑 → 𝐻 ∈ 𝑆) |
| erlbr2d.1 | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| erlbr2d.2 | ⊢ (𝜑 → 𝐹 = (𝑇 · 𝐸)) |
| erlbr2d.3 | ⊢ (𝜑 → 𝐻 = (𝑇 · 𝐺)) |
| Ref | Expression |
|---|---|
| erlbr2d | ⊢ (𝜑 → 𝑈 ∼ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erlbr2d.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | erlbr2d.q | . 2 ⊢ ∼ = (𝑅 ~RL 𝑆) | |
| 3 | erlbr2d.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) | |
| 4 | eqid 2733 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 5 | 4, 1 | mgpbas 20071 | . . . 4 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
| 6 | 5 | submss 18725 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆 ⊆ 𝐵) |
| 7 | 3, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 8 | eqid 2733 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 9 | erlbr2d.m | . 2 ⊢ · = (.r‘𝑅) | |
| 10 | eqid 2733 | . 2 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
| 11 | erlbr2d.u | . 2 ⊢ (𝜑 → 𝑈 = 〈𝐸, 𝐺〉) | |
| 12 | erlbr2d.v | . 2 ⊢ (𝜑 → 𝑉 = 〈𝐹, 𝐻〉) | |
| 13 | erlbr2d.e | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝐵) | |
| 14 | erlbr2d.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 15 | erlbr2d.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑆) | |
| 16 | erlbr2d.h | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑆) | |
| 17 | eqid 2733 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 18 | 4, 17 | ringidval 20109 | . . . 4 ⊢ (1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
| 19 | 18 | subm0cl 18727 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → (1r‘𝑅) ∈ 𝑆) |
| 20 | 3, 19 | syl 17 | . 2 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝑆) |
| 21 | erlbr2d.3 | . . . . . . 7 ⊢ (𝜑 → 𝐻 = (𝑇 · 𝐺)) | |
| 22 | 21 | oveq2d 7371 | . . . . . 6 ⊢ (𝜑 → (𝐸 · 𝐻) = (𝐸 · (𝑇 · 𝐺))) |
| 23 | erlbr2d.2 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝑇 · 𝐸)) | |
| 24 | 23 | oveq1d 7370 | . . . . . 6 ⊢ (𝜑 → (𝐹 · 𝐺) = ((𝑇 · 𝐸) · 𝐺)) |
| 25 | 22, 24 | oveq12d 7373 | . . . . 5 ⊢ (𝜑 → ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺)) = ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)((𝑇 · 𝐸) · 𝐺))) |
| 26 | erlbr2d.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 27 | erlbr2d.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
| 28 | 7, 27 | sseldd 3931 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
| 29 | 7, 15 | sseldd 3931 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| 30 | 1, 9, 26, 28, 13, 29 | crng32d 20185 | . . . . . . 7 ⊢ (𝜑 → ((𝑇 · 𝐸) · 𝐺) = ((𝑇 · 𝐺) · 𝐸)) |
| 31 | 26 | crngringd 20172 | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 32 | 1, 9, 31, 28, 29 | ringcld 20186 | . . . . . . . 8 ⊢ (𝜑 → (𝑇 · 𝐺) ∈ 𝐵) |
| 33 | 1, 9, 26, 32, 13 | crngcomd 20181 | . . . . . . 7 ⊢ (𝜑 → ((𝑇 · 𝐺) · 𝐸) = (𝐸 · (𝑇 · 𝐺))) |
| 34 | 30, 33 | eqtrd 2768 | . . . . . 6 ⊢ (𝜑 → ((𝑇 · 𝐸) · 𝐺) = (𝐸 · (𝑇 · 𝐺))) |
| 35 | 34 | oveq2d 7371 | . . . . 5 ⊢ (𝜑 → ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)((𝑇 · 𝐸) · 𝐺)) = ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)(𝐸 · (𝑇 · 𝐺)))) |
| 36 | 26 | crnggrpd 20173 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 37 | 1, 9, 31, 13, 32 | ringcld 20186 | . . . . . 6 ⊢ (𝜑 → (𝐸 · (𝑇 · 𝐺)) ∈ 𝐵) |
| 38 | 1, 8, 10 | grpsubid 18945 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ (𝐸 · (𝑇 · 𝐺)) ∈ 𝐵) → ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)(𝐸 · (𝑇 · 𝐺))) = (0g‘𝑅)) |
| 39 | 36, 37, 38 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)(𝐸 · (𝑇 · 𝐺))) = (0g‘𝑅)) |
| 40 | 25, 35, 39 | 3eqtrd 2772 | . . . 4 ⊢ (𝜑 → ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺)) = (0g‘𝑅)) |
| 41 | 40 | oveq2d 7371 | . . 3 ⊢ (𝜑 → ((1r‘𝑅) · ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺))) = ((1r‘𝑅) · (0g‘𝑅))) |
| 42 | 7, 20 | sseldd 3931 | . . . 4 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐵) |
| 43 | 1, 9, 8, 31, 42 | ringrzd 20222 | . . 3 ⊢ (𝜑 → ((1r‘𝑅) · (0g‘𝑅)) = (0g‘𝑅)) |
| 44 | 41, 43 | eqtrd 2768 | . 2 ⊢ (𝜑 → ((1r‘𝑅) · ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺))) = (0g‘𝑅)) |
| 45 | 1, 2, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 44 | erlbrd 33273 | 1 ⊢ (𝜑 → 𝑈 ∼ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 〈cop 4583 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 .rcmulr 17169 0gc0g 17350 SubMndcsubmnd 18698 Grpcgrp 18854 -gcsg 18856 mulGrpcmgp 20066 1rcur 20107 CRingccrg 20160 ~RL cerl 33263 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-cring 20162 df-erl 33265 |
| This theorem is referenced by: rloccring 33280 |
| Copyright terms: Public domain | W3C validator |