Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erlbr2d Structured version   Visualization version   GIF version

Theorem erlbr2d 33215
Description: Deduce the ring localization equivalence relation. Pairs 𝐸, 𝐺 and 𝑇 · 𝐸, 𝑇 · 𝐺 for 𝑇𝑆 are equivalent under the localization relation. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
erlbr2d.b 𝐵 = (Base‘𝑅)
erlbr2d.q = (𝑅 ~RL 𝑆)
erlbr2d.r (𝜑𝑅 ∈ CRing)
erlbr2d.s (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
erlbr2d.m · = (.r𝑅)
erlbr2d.u (𝜑𝑈 = ⟨𝐸, 𝐺⟩)
erlbr2d.v (𝜑𝑉 = ⟨𝐹, 𝐻⟩)
erlbr2d.e (𝜑𝐸𝐵)
erlbr2d.f (𝜑𝐹𝐵)
erlbr2d.g (𝜑𝐺𝑆)
erlbr2d.h (𝜑𝐻𝑆)
erlbr2d.1 (𝜑𝑇𝑆)
erlbr2d.2 (𝜑𝐹 = (𝑇 · 𝐸))
erlbr2d.3 (𝜑𝐻 = (𝑇 · 𝐺))
Assertion
Ref Expression
erlbr2d (𝜑𝑈 𝑉)

Proof of Theorem erlbr2d
StepHypRef Expression
1 erlbr2d.b . 2 𝐵 = (Base‘𝑅)
2 erlbr2d.q . 2 = (𝑅 ~RL 𝑆)
3 erlbr2d.s . . 3 (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
4 eqid 2729 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
54, 1mgpbas 20054 . . . 4 𝐵 = (Base‘(mulGrp‘𝑅))
65submss 18736 . . 3 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆𝐵)
73, 6syl 17 . 2 (𝜑𝑆𝐵)
8 eqid 2729 . 2 (0g𝑅) = (0g𝑅)
9 erlbr2d.m . 2 · = (.r𝑅)
10 eqid 2729 . 2 (-g𝑅) = (-g𝑅)
11 erlbr2d.u . 2 (𝜑𝑈 = ⟨𝐸, 𝐺⟩)
12 erlbr2d.v . 2 (𝜑𝑉 = ⟨𝐹, 𝐻⟩)
13 erlbr2d.e . 2 (𝜑𝐸𝐵)
14 erlbr2d.f . 2 (𝜑𝐹𝐵)
15 erlbr2d.g . 2 (𝜑𝐺𝑆)
16 erlbr2d.h . 2 (𝜑𝐻𝑆)
17 eqid 2729 . . . . 5 (1r𝑅) = (1r𝑅)
184, 17ringidval 20092 . . . 4 (1r𝑅) = (0g‘(mulGrp‘𝑅))
1918subm0cl 18738 . . 3 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → (1r𝑅) ∈ 𝑆)
203, 19syl 17 . 2 (𝜑 → (1r𝑅) ∈ 𝑆)
21 erlbr2d.3 . . . . . . 7 (𝜑𝐻 = (𝑇 · 𝐺))
2221oveq2d 7403 . . . . . 6 (𝜑 → (𝐸 · 𝐻) = (𝐸 · (𝑇 · 𝐺)))
23 erlbr2d.2 . . . . . . 7 (𝜑𝐹 = (𝑇 · 𝐸))
2423oveq1d 7402 . . . . . 6 (𝜑 → (𝐹 · 𝐺) = ((𝑇 · 𝐸) · 𝐺))
2522, 24oveq12d 7405 . . . . 5 (𝜑 → ((𝐸 · 𝐻)(-g𝑅)(𝐹 · 𝐺)) = ((𝐸 · (𝑇 · 𝐺))(-g𝑅)((𝑇 · 𝐸) · 𝐺)))
26 erlbr2d.r . . . . . . . 8 (𝜑𝑅 ∈ CRing)
27 erlbr2d.1 . . . . . . . . 9 (𝜑𝑇𝑆)
287, 27sseldd 3947 . . . . . . . 8 (𝜑𝑇𝐵)
297, 15sseldd 3947 . . . . . . . 8 (𝜑𝐺𝐵)
301, 9, 26, 28, 13, 29crng32d 20168 . . . . . . 7 (𝜑 → ((𝑇 · 𝐸) · 𝐺) = ((𝑇 · 𝐺) · 𝐸))
3126crngringd 20155 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
321, 9, 31, 28, 29ringcld 20169 . . . . . . . 8 (𝜑 → (𝑇 · 𝐺) ∈ 𝐵)
331, 9, 26, 32, 13crngcomd 20164 . . . . . . 7 (𝜑 → ((𝑇 · 𝐺) · 𝐸) = (𝐸 · (𝑇 · 𝐺)))
3430, 33eqtrd 2764 . . . . . 6 (𝜑 → ((𝑇 · 𝐸) · 𝐺) = (𝐸 · (𝑇 · 𝐺)))
3534oveq2d 7403 . . . . 5 (𝜑 → ((𝐸 · (𝑇 · 𝐺))(-g𝑅)((𝑇 · 𝐸) · 𝐺)) = ((𝐸 · (𝑇 · 𝐺))(-g𝑅)(𝐸 · (𝑇 · 𝐺))))
3626crnggrpd 20156 . . . . . 6 (𝜑𝑅 ∈ Grp)
371, 9, 31, 13, 32ringcld 20169 . . . . . 6 (𝜑 → (𝐸 · (𝑇 · 𝐺)) ∈ 𝐵)
381, 8, 10grpsubid 18956 . . . . . 6 ((𝑅 ∈ Grp ∧ (𝐸 · (𝑇 · 𝐺)) ∈ 𝐵) → ((𝐸 · (𝑇 · 𝐺))(-g𝑅)(𝐸 · (𝑇 · 𝐺))) = (0g𝑅))
3936, 37, 38syl2anc 584 . . . . 5 (𝜑 → ((𝐸 · (𝑇 · 𝐺))(-g𝑅)(𝐸 · (𝑇 · 𝐺))) = (0g𝑅))
4025, 35, 393eqtrd 2768 . . . 4 (𝜑 → ((𝐸 · 𝐻)(-g𝑅)(𝐹 · 𝐺)) = (0g𝑅))
4140oveq2d 7403 . . 3 (𝜑 → ((1r𝑅) · ((𝐸 · 𝐻)(-g𝑅)(𝐹 · 𝐺))) = ((1r𝑅) · (0g𝑅)))
427, 20sseldd 3947 . . . 4 (𝜑 → (1r𝑅) ∈ 𝐵)
431, 9, 8, 31, 42ringrzd 20205 . . 3 (𝜑 → ((1r𝑅) · (0g𝑅)) = (0g𝑅))
4441, 43eqtrd 2764 . 2 (𝜑 → ((1r𝑅) · ((𝐸 · 𝐻)(-g𝑅)(𝐹 · 𝐺))) = (0g𝑅))
451, 2, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 44erlbrd 33214 1 (𝜑𝑈 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3914  cop 4595   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  .rcmulr 17221  0gc0g 17402  SubMndcsubmnd 18709  Grpcgrp 18865  -gcsg 18867  mulGrpcmgp 20049  1rcur 20090  CRingccrg 20143   ~RL cerl 33204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-erl 33206
This theorem is referenced by:  rloccring  33221
  Copyright terms: Public domain W3C validator