Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erlbr2d Structured version   Visualization version   GIF version

Theorem erlbr2d 33264
Description: Deduce the ring localization equivalence relation. Pairs 𝐸, 𝐺 and 𝑇 · 𝐸, 𝑇 · 𝐺 for 𝑇𝑆 are equivalent under the localization relation. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
erlbr2d.b 𝐵 = (Base‘𝑅)
erlbr2d.q = (𝑅 ~RL 𝑆)
erlbr2d.r (𝜑𝑅 ∈ CRing)
erlbr2d.s (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
erlbr2d.m · = (.r𝑅)
erlbr2d.u (𝜑𝑈 = ⟨𝐸, 𝐺⟩)
erlbr2d.v (𝜑𝑉 = ⟨𝐹, 𝐻⟩)
erlbr2d.e (𝜑𝐸𝐵)
erlbr2d.f (𝜑𝐹𝐵)
erlbr2d.g (𝜑𝐺𝑆)
erlbr2d.h (𝜑𝐻𝑆)
erlbr2d.1 (𝜑𝑇𝑆)
erlbr2d.2 (𝜑𝐹 = (𝑇 · 𝐸))
erlbr2d.3 (𝜑𝐻 = (𝑇 · 𝐺))
Assertion
Ref Expression
erlbr2d (𝜑𝑈 𝑉)

Proof of Theorem erlbr2d
StepHypRef Expression
1 erlbr2d.b . 2 𝐵 = (Base‘𝑅)
2 erlbr2d.q . 2 = (𝑅 ~RL 𝑆)
3 erlbr2d.s . . 3 (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
4 eqid 2736 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
54, 1mgpbas 20110 . . . 4 𝐵 = (Base‘(mulGrp‘𝑅))
65submss 18792 . . 3 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆𝐵)
73, 6syl 17 . 2 (𝜑𝑆𝐵)
8 eqid 2736 . 2 (0g𝑅) = (0g𝑅)
9 erlbr2d.m . 2 · = (.r𝑅)
10 eqid 2736 . 2 (-g𝑅) = (-g𝑅)
11 erlbr2d.u . 2 (𝜑𝑈 = ⟨𝐸, 𝐺⟩)
12 erlbr2d.v . 2 (𝜑𝑉 = ⟨𝐹, 𝐻⟩)
13 erlbr2d.e . 2 (𝜑𝐸𝐵)
14 erlbr2d.f . 2 (𝜑𝐹𝐵)
15 erlbr2d.g . 2 (𝜑𝐺𝑆)
16 erlbr2d.h . 2 (𝜑𝐻𝑆)
17 eqid 2736 . . . . 5 (1r𝑅) = (1r𝑅)
184, 17ringidval 20148 . . . 4 (1r𝑅) = (0g‘(mulGrp‘𝑅))
1918subm0cl 18794 . . 3 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → (1r𝑅) ∈ 𝑆)
203, 19syl 17 . 2 (𝜑 → (1r𝑅) ∈ 𝑆)
21 erlbr2d.3 . . . . . . 7 (𝜑𝐻 = (𝑇 · 𝐺))
2221oveq2d 7426 . . . . . 6 (𝜑 → (𝐸 · 𝐻) = (𝐸 · (𝑇 · 𝐺)))
23 erlbr2d.2 . . . . . . 7 (𝜑𝐹 = (𝑇 · 𝐸))
2423oveq1d 7425 . . . . . 6 (𝜑 → (𝐹 · 𝐺) = ((𝑇 · 𝐸) · 𝐺))
2522, 24oveq12d 7428 . . . . 5 (𝜑 → ((𝐸 · 𝐻)(-g𝑅)(𝐹 · 𝐺)) = ((𝐸 · (𝑇 · 𝐺))(-g𝑅)((𝑇 · 𝐸) · 𝐺)))
26 erlbr2d.r . . . . . . . 8 (𝜑𝑅 ∈ CRing)
27 erlbr2d.1 . . . . . . . . 9 (𝜑𝑇𝑆)
287, 27sseldd 3964 . . . . . . . 8 (𝜑𝑇𝐵)
297, 15sseldd 3964 . . . . . . . 8 (𝜑𝐺𝐵)
301, 9, 26, 28, 13, 29crng32d 20224 . . . . . . 7 (𝜑 → ((𝑇 · 𝐸) · 𝐺) = ((𝑇 · 𝐺) · 𝐸))
3126crngringd 20211 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
321, 9, 31, 28, 29ringcld 20225 . . . . . . . 8 (𝜑 → (𝑇 · 𝐺) ∈ 𝐵)
331, 9, 26, 32, 13crngcomd 20220 . . . . . . 7 (𝜑 → ((𝑇 · 𝐺) · 𝐸) = (𝐸 · (𝑇 · 𝐺)))
3430, 33eqtrd 2771 . . . . . 6 (𝜑 → ((𝑇 · 𝐸) · 𝐺) = (𝐸 · (𝑇 · 𝐺)))
3534oveq2d 7426 . . . . 5 (𝜑 → ((𝐸 · (𝑇 · 𝐺))(-g𝑅)((𝑇 · 𝐸) · 𝐺)) = ((𝐸 · (𝑇 · 𝐺))(-g𝑅)(𝐸 · (𝑇 · 𝐺))))
3626crnggrpd 20212 . . . . . 6 (𝜑𝑅 ∈ Grp)
371, 9, 31, 13, 32ringcld 20225 . . . . . 6 (𝜑 → (𝐸 · (𝑇 · 𝐺)) ∈ 𝐵)
381, 8, 10grpsubid 19012 . . . . . 6 ((𝑅 ∈ Grp ∧ (𝐸 · (𝑇 · 𝐺)) ∈ 𝐵) → ((𝐸 · (𝑇 · 𝐺))(-g𝑅)(𝐸 · (𝑇 · 𝐺))) = (0g𝑅))
3936, 37, 38syl2anc 584 . . . . 5 (𝜑 → ((𝐸 · (𝑇 · 𝐺))(-g𝑅)(𝐸 · (𝑇 · 𝐺))) = (0g𝑅))
4025, 35, 393eqtrd 2775 . . . 4 (𝜑 → ((𝐸 · 𝐻)(-g𝑅)(𝐹 · 𝐺)) = (0g𝑅))
4140oveq2d 7426 . . 3 (𝜑 → ((1r𝑅) · ((𝐸 · 𝐻)(-g𝑅)(𝐹 · 𝐺))) = ((1r𝑅) · (0g𝑅)))
427, 20sseldd 3964 . . . 4 (𝜑 → (1r𝑅) ∈ 𝐵)
431, 9, 8, 31, 42ringrzd 20261 . . 3 (𝜑 → ((1r𝑅) · (0g𝑅)) = (0g𝑅))
4441, 43eqtrd 2771 . 2 (𝜑 → ((1r𝑅) · ((𝐸 · 𝐻)(-g𝑅)(𝐹 · 𝐺))) = (0g𝑅))
451, 2, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 44erlbrd 33263 1 (𝜑𝑈 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3931  cop 4612   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  .rcmulr 17277  0gc0g 17458  SubMndcsubmnd 18765  Grpcgrp 18921  -gcsg 18923  mulGrpcmgp 20105  1rcur 20146  CRingccrg 20199   ~RL cerl 33253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-erl 33255
This theorem is referenced by:  rloccring  33270
  Copyright terms: Public domain W3C validator