MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fermltlchr Structured version   Visualization version   GIF version

Theorem fermltlchr 21476
Description: A generalization of Fermat's little theorem in a commutative ring 𝐹 of prime characteristic. See fermltl 16756. (Contributed by Thierry Arnoux, 9-Jan-2024.)
Hypotheses
Ref Expression
fermltlchr.z 𝑃 = (chr‘𝐹)
fermltlchr.b 𝐵 = (Base‘𝐹)
fermltlchr.p = (.g‘(mulGrp‘𝐹))
fermltlchr.1 𝐴 = ((ℤRHom‘𝐹)‘𝐸)
fermltlchr.2 (𝜑𝑃 ∈ ℙ)
fermltlchr.3 (𝜑𝐸 ∈ ℤ)
fermltlchr.4 (𝜑𝐹 ∈ CRing)
Assertion
Ref Expression
fermltlchr (𝜑 → (𝑃 𝐴) = 𝐴)

Proof of Theorem fermltlchr
StepHypRef Expression
1 fermltlchr.1 . 2 𝐴 = ((ℤRHom‘𝐹)‘𝐸)
2 fermltlchr.2 . . . . . . . . 9 (𝜑𝑃 ∈ ℙ)
3 prmnn 16648 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
43nnnn0d 12565 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
52, 4syl 17 . . . . . . . 8 (𝜑𝑃 ∈ ℕ0)
65adantr 479 . . . . . . 7 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → 𝑃 ∈ ℕ0)
7 fermltlchr.3 . . . . . . . 8 (𝜑𝐸 ∈ ℤ)
87adantr 479 . . . . . . 7 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → 𝐸 ∈ ℤ)
9 eqid 2725 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s ℤ) = ((mulGrp‘ℂfld) ↾s ℤ)
10 zsscn 12599 . . . . . . . . 9 ℤ ⊆ ℂ
11 eqid 2725 . . . . . . . . . 10 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
12 cnfldbas 21300 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
1311, 12mgpbas 20092 . . . . . . . . 9 ℂ = (Base‘(mulGrp‘ℂfld))
1410, 13sseqtri 4013 . . . . . . . 8 ℤ ⊆ (Base‘(mulGrp‘ℂfld))
15 eqid 2725 . . . . . . . 8 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
16 eqid 2725 . . . . . . . 8 (invg‘(mulGrp‘ℂfld)) = (invg‘(mulGrp‘ℂfld))
17 cnring 21335 . . . . . . . . . 10 fld ∈ Ring
1811ringmgp 20191 . . . . . . . . . 10 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
1917, 18ax-mp 5 . . . . . . . . 9 (mulGrp‘ℂfld) ∈ Mnd
20 cnfld1 21338 . . . . . . . . . . 11 1 = (1r‘ℂfld)
2111, 20ringidval 20135 . . . . . . . . . 10 1 = (0g‘(mulGrp‘ℂfld))
22 1z 12625 . . . . . . . . . 10 1 ∈ ℤ
2321, 22eqeltrri 2822 . . . . . . . . 9 (0g‘(mulGrp‘ℂfld)) ∈ ℤ
24 eqid 2725 . . . . . . . . . 10 (0g‘(mulGrp‘ℂfld)) = (0g‘(mulGrp‘ℂfld))
259, 13, 24ress0g 18725 . . . . . . . . 9 (((mulGrp‘ℂfld) ∈ Mnd ∧ (0g‘(mulGrp‘ℂfld)) ∈ ℤ ∧ ℤ ⊆ ℂ) → (0g‘(mulGrp‘ℂfld)) = (0g‘((mulGrp‘ℂfld) ↾s ℤ)))
2619, 23, 10, 25mp3an 1457 . . . . . . . 8 (0g‘(mulGrp‘ℂfld)) = (0g‘((mulGrp‘ℂfld) ↾s ℤ))
279, 14, 15, 16, 26ressmulgnn0 19041 . . . . . . 7 ((𝑃 ∈ ℕ0𝐸 ∈ ℤ) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐸) = (𝑃(.g‘(mulGrp‘ℂfld))𝐸))
286, 8, 27syl2anc 582 . . . . . 6 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐸) = (𝑃(.g‘(mulGrp‘ℂfld))𝐸))
298zcnd 12700 . . . . . . 7 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → 𝐸 ∈ ℂ)
30 cnfldexp 21349 . . . . . . 7 ((𝐸 ∈ ℂ ∧ 𝑃 ∈ ℕ0) → (𝑃(.g‘(mulGrp‘ℂfld))𝐸) = (𝐸𝑃))
3129, 6, 30syl2anc 582 . . . . . 6 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → (𝑃(.g‘(mulGrp‘ℂfld))𝐸) = (𝐸𝑃))
3228, 31eqtrd 2765 . . . . 5 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐸) = (𝐸𝑃))
3332fveq2d 6900 . . . 4 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → ((ℤRHom‘𝐹)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐸)) = ((ℤRHom‘𝐹)‘(𝐸𝑃)))
34 fermltlchr.4 . . . . . . . . 9 (𝜑𝐹 ∈ CRing)
3534crngringd 20198 . . . . . . . 8 (𝜑𝐹 ∈ Ring)
36 eqid 2725 . . . . . . . . 9 (ℤRHom‘𝐹) = (ℤRHom‘𝐹)
3736zrhrhm 21454 . . . . . . . 8 (𝐹 ∈ Ring → (ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹))
3835, 37syl 17 . . . . . . 7 (𝜑 → (ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹))
39 zringmpg 21414 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
40 eqid 2725 . . . . . . . 8 (mulGrp‘𝐹) = (mulGrp‘𝐹)
4139, 40rhmmhm 20430 . . . . . . 7 ((ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹) → (ℤRHom‘𝐹) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝐹)))
4238, 41syl 17 . . . . . 6 (𝜑 → (ℤRHom‘𝐹) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝐹)))
4342adantr 479 . . . . 5 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → (ℤRHom‘𝐹) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝐹)))
449, 13ressbas2 17221 . . . . . . 7 (ℤ ⊆ ℂ → ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ)))
4510, 44ax-mp 5 . . . . . 6 ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ))
46 eqid 2725 . . . . . 6 (.g‘((mulGrp‘ℂfld) ↾s ℤ)) = (.g‘((mulGrp‘ℂfld) ↾s ℤ))
47 fermltlchr.p . . . . . 6 = (.g‘(mulGrp‘𝐹))
4845, 46, 47mhmmulg 19078 . . . . 5 (((ℤRHom‘𝐹) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝐹)) ∧ 𝑃 ∈ ℕ0𝐸 ∈ ℤ) → ((ℤRHom‘𝐹)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐸)) = (𝑃 ((ℤRHom‘𝐹)‘𝐸)))
4943, 6, 8, 48syl3anc 1368 . . . 4 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → ((ℤRHom‘𝐹)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐸)) = (𝑃 ((ℤRHom‘𝐹)‘𝐸)))
507, 5zexpcld 14088 . . . . . . . . 9 (𝜑 → (𝐸𝑃) ∈ ℤ)
51 eqid 2725 . . . . . . . . . 10 (-g‘ℤring) = (-g‘ℤring)
5251zringsubgval 21413 . . . . . . . . 9 (((𝐸𝑃) ∈ ℤ ∧ 𝐸 ∈ ℤ) → ((𝐸𝑃) − 𝐸) = ((𝐸𝑃)(-g‘ℤring)𝐸))
5350, 7, 52syl2anc 582 . . . . . . . 8 (𝜑 → ((𝐸𝑃) − 𝐸) = ((𝐸𝑃)(-g‘ℤring)𝐸))
5453fveq2d 6900 . . . . . . 7 (𝜑 → ((ℤRHom‘𝐹)‘((𝐸𝑃) − 𝐸)) = ((ℤRHom‘𝐹)‘((𝐸𝑃)(-g‘ℤring)𝐸)))
5550zred 12699 . . . . . . . . . . 11 (𝜑 → (𝐸𝑃) ∈ ℝ)
567zred 12699 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ)
572, 3syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ)
5857nnrpd 13049 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℝ+)
59 fermltl 16756 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐸 ∈ ℤ) → ((𝐸𝑃) mod 𝑃) = (𝐸 mod 𝑃))
602, 7, 59syl2anc 582 . . . . . . . . . . 11 (𝜑 → ((𝐸𝑃) mod 𝑃) = (𝐸 mod 𝑃))
61 eqidd 2726 . . . . . . . . . . 11 (𝜑 → (𝐸 mod 𝑃) = (𝐸 mod 𝑃))
6255, 56, 56, 56, 58, 60, 61modsub12d 13929 . . . . . . . . . 10 (𝜑 → (((𝐸𝑃) − 𝐸) mod 𝑃) = ((𝐸𝐸) mod 𝑃))
63 zcn 12596 . . . . . . . . . . . . 13 (𝐸 ∈ ℤ → 𝐸 ∈ ℂ)
6463subidd 11591 . . . . . . . . . . . 12 (𝐸 ∈ ℤ → (𝐸𝐸) = 0)
657, 64syl 17 . . . . . . . . . . 11 (𝜑 → (𝐸𝐸) = 0)
6665oveq1d 7434 . . . . . . . . . 10 (𝜑 → ((𝐸𝐸) mod 𝑃) = (0 mod 𝑃))
67 0mod 13903 . . . . . . . . . . 11 (𝑃 ∈ ℝ+ → (0 mod 𝑃) = 0)
6858, 67syl 17 . . . . . . . . . 10 (𝜑 → (0 mod 𝑃) = 0)
6962, 66, 683eqtrd 2769 . . . . . . . . 9 (𝜑 → (((𝐸𝑃) − 𝐸) mod 𝑃) = 0)
7050, 7zsubcld 12704 . . . . . . . . . 10 (𝜑 → ((𝐸𝑃) − 𝐸) ∈ ℤ)
71 dvdsval3 16238 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ ((𝐸𝑃) − 𝐸) ∈ ℤ) → (𝑃 ∥ ((𝐸𝑃) − 𝐸) ↔ (((𝐸𝑃) − 𝐸) mod 𝑃) = 0))
7257, 70, 71syl2anc 582 . . . . . . . . 9 (𝜑 → (𝑃 ∥ ((𝐸𝑃) − 𝐸) ↔ (((𝐸𝑃) − 𝐸) mod 𝑃) = 0))
7369, 72mpbird 256 . . . . . . . 8 (𝜑𝑃 ∥ ((𝐸𝑃) − 𝐸))
74 fermltlchr.z . . . . . . . . . 10 𝑃 = (chr‘𝐹)
75 eqid 2725 . . . . . . . . . 10 (0g𝐹) = (0g𝐹)
7674, 36, 75chrdvds 21473 . . . . . . . . 9 ((𝐹 ∈ Ring ∧ ((𝐸𝑃) − 𝐸) ∈ ℤ) → (𝑃 ∥ ((𝐸𝑃) − 𝐸) ↔ ((ℤRHom‘𝐹)‘((𝐸𝑃) − 𝐸)) = (0g𝐹)))
7735, 70, 76syl2anc 582 . . . . . . . 8 (𝜑 → (𝑃 ∥ ((𝐸𝑃) − 𝐸) ↔ ((ℤRHom‘𝐹)‘((𝐸𝑃) − 𝐸)) = (0g𝐹)))
7873, 77mpbid 231 . . . . . . 7 (𝜑 → ((ℤRHom‘𝐹)‘((𝐸𝑃) − 𝐸)) = (0g𝐹))
79 rhmghm 20435 . . . . . . . . 9 ((ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹) → (ℤRHom‘𝐹) ∈ (ℤring GrpHom 𝐹))
8038, 79syl 17 . . . . . . . 8 (𝜑 → (ℤRHom‘𝐹) ∈ (ℤring GrpHom 𝐹))
81 zringbas 21396 . . . . . . . . 9 ℤ = (Base‘ℤring)
82 eqid 2725 . . . . . . . . 9 (-g𝐹) = (-g𝐹)
8381, 51, 82ghmsub 19187 . . . . . . . 8 (((ℤRHom‘𝐹) ∈ (ℤring GrpHom 𝐹) ∧ (𝐸𝑃) ∈ ℤ ∧ 𝐸 ∈ ℤ) → ((ℤRHom‘𝐹)‘((𝐸𝑃)(-g‘ℤring)𝐸)) = (((ℤRHom‘𝐹)‘(𝐸𝑃))(-g𝐹)((ℤRHom‘𝐹)‘𝐸)))
8480, 50, 7, 83syl3anc 1368 . . . . . . 7 (𝜑 → ((ℤRHom‘𝐹)‘((𝐸𝑃)(-g‘ℤring)𝐸)) = (((ℤRHom‘𝐹)‘(𝐸𝑃))(-g𝐹)((ℤRHom‘𝐹)‘𝐸)))
8554, 78, 843eqtr3rd 2774 . . . . . 6 (𝜑 → (((ℤRHom‘𝐹)‘(𝐸𝑃))(-g𝐹)((ℤRHom‘𝐹)‘𝐸)) = (0g𝐹))
8634crnggrpd 20199 . . . . . . 7 (𝜑𝐹 ∈ Grp)
87 eqid 2725 . . . . . . . . . 10 (Base‘𝐹) = (Base‘𝐹)
8881, 87rhmf 20436 . . . . . . . . 9 ((ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹) → (ℤRHom‘𝐹):ℤ⟶(Base‘𝐹))
8938, 88syl 17 . . . . . . . 8 (𝜑 → (ℤRHom‘𝐹):ℤ⟶(Base‘𝐹))
9089, 50ffvelcdmd 7094 . . . . . . 7 (𝜑 → ((ℤRHom‘𝐹)‘(𝐸𝑃)) ∈ (Base‘𝐹))
9189, 7ffvelcdmd 7094 . . . . . . 7 (𝜑 → ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹))
9287, 75, 82grpsubeq0 18990 . . . . . . 7 ((𝐹 ∈ Grp ∧ ((ℤRHom‘𝐹)‘(𝐸𝑃)) ∈ (Base‘𝐹) ∧ ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹)) → ((((ℤRHom‘𝐹)‘(𝐸𝑃))(-g𝐹)((ℤRHom‘𝐹)‘𝐸)) = (0g𝐹) ↔ ((ℤRHom‘𝐹)‘(𝐸𝑃)) = ((ℤRHom‘𝐹)‘𝐸)))
9386, 90, 91, 92syl3anc 1368 . . . . . 6 (𝜑 → ((((ℤRHom‘𝐹)‘(𝐸𝑃))(-g𝐹)((ℤRHom‘𝐹)‘𝐸)) = (0g𝐹) ↔ ((ℤRHom‘𝐹)‘(𝐸𝑃)) = ((ℤRHom‘𝐹)‘𝐸)))
9485, 93mpbid 231 . . . . 5 (𝜑 → ((ℤRHom‘𝐹)‘(𝐸𝑃)) = ((ℤRHom‘𝐹)‘𝐸))
9594adantr 479 . . . 4 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → ((ℤRHom‘𝐹)‘(𝐸𝑃)) = ((ℤRHom‘𝐹)‘𝐸))
9633, 49, 953eqtr3d 2773 . . 3 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → (𝑃 ((ℤRHom‘𝐹)‘𝐸)) = ((ℤRHom‘𝐹)‘𝐸))
97 oveq2 7427 . . . 4 (𝐴 = ((ℤRHom‘𝐹)‘𝐸) → (𝑃 𝐴) = (𝑃 ((ℤRHom‘𝐹)‘𝐸)))
9897adantl 480 . . 3 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → (𝑃 𝐴) = (𝑃 ((ℤRHom‘𝐹)‘𝐸)))
99 simpr 483 . . 3 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → 𝐴 = ((ℤRHom‘𝐹)‘𝐸))
10096, 98, 993eqtr4d 2775 . 2 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → (𝑃 𝐴) = 𝐴)
1011, 100mpan2 689 1 (𝜑 → (𝑃 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wss 3944   class class class wbr 5149  wf 6545  cfv 6549  (class class class)co 7419  cc 11138  0cc0 11140  1c1 11141  cmin 11476  cn 12245  0cn0 12505  cz 12591  +crp 13009   mod cmo 13870  cexp 14062  cdvds 16234  cprime 16645  Basecbs 17183  s cress 17212  0gc0g 17424  Mndcmnd 18697   MndHom cmhm 18741  Grpcgrp 18898  invgcminusg 18899  -gcsg 18900  .gcmg 19031   GrpHom cghm 19175  mulGrpcmgp 20086  Ringcrg 20185  CRingccrg 20186   RingHom crh 20420  fldccnfld 21296  ringczring 21389  ℤRHomczrh 21442  chrcchr 21444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219  ax-mulf 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-dju 9926  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-xnn0 12578  df-z 12592  df-dec 12711  df-uz 12856  df-rp 13010  df-fz 13520  df-fzo 13663  df-fl 13793  df-mod 13871  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-dvds 16235  df-gcd 16473  df-prm 16646  df-phi 16738  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-grp 18901  df-minusg 18902  df-sbg 18903  df-mulg 19032  df-subg 19086  df-ghm 19176  df-od 19495  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-dvr 20352  df-rhm 20423  df-subrng 20495  df-subrg 20520  df-drng 20638  df-cnfld 21297  df-zring 21390  df-zrh 21446  df-chr 21448
This theorem is referenced by:  ply1fermltlchr  22256  aks6d1c1p3  41713
  Copyright terms: Public domain W3C validator