MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fermltlchr Structured version   Visualization version   GIF version

Theorem fermltlchr 21490
Description: A generalization of Fermat's little theorem in a commutative ring 𝐹 of prime characteristic. See fermltl 16803. (Contributed by Thierry Arnoux, 9-Jan-2024.)
Hypotheses
Ref Expression
fermltlchr.z 𝑃 = (chr‘𝐹)
fermltlchr.b 𝐵 = (Base‘𝐹)
fermltlchr.p = (.g‘(mulGrp‘𝐹))
fermltlchr.1 𝐴 = ((ℤRHom‘𝐹)‘𝐸)
fermltlchr.2 (𝜑𝑃 ∈ ℙ)
fermltlchr.3 (𝜑𝐸 ∈ ℤ)
fermltlchr.4 (𝜑𝐹 ∈ CRing)
Assertion
Ref Expression
fermltlchr (𝜑 → (𝑃 𝐴) = 𝐴)

Proof of Theorem fermltlchr
StepHypRef Expression
1 fermltlchr.1 . 2 𝐴 = ((ℤRHom‘𝐹)‘𝐸)
2 fermltlchr.2 . . . . . . . . 9 (𝜑𝑃 ∈ ℙ)
3 prmnn 16693 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
43nnnn0d 12562 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
52, 4syl 17 . . . . . . . 8 (𝜑𝑃 ∈ ℕ0)
65adantr 480 . . . . . . 7 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → 𝑃 ∈ ℕ0)
7 fermltlchr.3 . . . . . . . 8 (𝜑𝐸 ∈ ℤ)
87adantr 480 . . . . . . 7 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → 𝐸 ∈ ℤ)
9 eqid 2735 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s ℤ) = ((mulGrp‘ℂfld) ↾s ℤ)
10 zsscn 12596 . . . . . . . . 9 ℤ ⊆ ℂ
11 eqid 2735 . . . . . . . . . 10 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
12 cnfldbas 21319 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
1311, 12mgpbas 20105 . . . . . . . . 9 ℂ = (Base‘(mulGrp‘ℂfld))
1410, 13sseqtri 4007 . . . . . . . 8 ℤ ⊆ (Base‘(mulGrp‘ℂfld))
15 eqid 2735 . . . . . . . 8 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
16 eqid 2735 . . . . . . . 8 (invg‘(mulGrp‘ℂfld)) = (invg‘(mulGrp‘ℂfld))
17 cnring 21353 . . . . . . . . . 10 fld ∈ Ring
1811ringmgp 20199 . . . . . . . . . 10 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
1917, 18ax-mp 5 . . . . . . . . 9 (mulGrp‘ℂfld) ∈ Mnd
20 cnfld1 21356 . . . . . . . . . . 11 1 = (1r‘ℂfld)
2111, 20ringidval 20143 . . . . . . . . . 10 1 = (0g‘(mulGrp‘ℂfld))
22 1z 12622 . . . . . . . . . 10 1 ∈ ℤ
2321, 22eqeltrri 2831 . . . . . . . . 9 (0g‘(mulGrp‘ℂfld)) ∈ ℤ
24 eqid 2735 . . . . . . . . . 10 (0g‘(mulGrp‘ℂfld)) = (0g‘(mulGrp‘ℂfld))
259, 13, 24ress0g 18740 . . . . . . . . 9 (((mulGrp‘ℂfld) ∈ Mnd ∧ (0g‘(mulGrp‘ℂfld)) ∈ ℤ ∧ ℤ ⊆ ℂ) → (0g‘(mulGrp‘ℂfld)) = (0g‘((mulGrp‘ℂfld) ↾s ℤ)))
2619, 23, 10, 25mp3an 1463 . . . . . . . 8 (0g‘(mulGrp‘ℂfld)) = (0g‘((mulGrp‘ℂfld) ↾s ℤ))
279, 14, 15, 16, 26ressmulgnn0 19060 . . . . . . 7 ((𝑃 ∈ ℕ0𝐸 ∈ ℤ) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐸) = (𝑃(.g‘(mulGrp‘ℂfld))𝐸))
286, 8, 27syl2anc 584 . . . . . 6 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐸) = (𝑃(.g‘(mulGrp‘ℂfld))𝐸))
298zcnd 12698 . . . . . . 7 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → 𝐸 ∈ ℂ)
30 cnfldexp 21367 . . . . . . 7 ((𝐸 ∈ ℂ ∧ 𝑃 ∈ ℕ0) → (𝑃(.g‘(mulGrp‘ℂfld))𝐸) = (𝐸𝑃))
3129, 6, 30syl2anc 584 . . . . . 6 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → (𝑃(.g‘(mulGrp‘ℂfld))𝐸) = (𝐸𝑃))
3228, 31eqtrd 2770 . . . . 5 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐸) = (𝐸𝑃))
3332fveq2d 6880 . . . 4 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → ((ℤRHom‘𝐹)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐸)) = ((ℤRHom‘𝐹)‘(𝐸𝑃)))
34 fermltlchr.4 . . . . . . . . 9 (𝜑𝐹 ∈ CRing)
3534crngringd 20206 . . . . . . . 8 (𝜑𝐹 ∈ Ring)
36 eqid 2735 . . . . . . . . 9 (ℤRHom‘𝐹) = (ℤRHom‘𝐹)
3736zrhrhm 21472 . . . . . . . 8 (𝐹 ∈ Ring → (ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹))
3835, 37syl 17 . . . . . . 7 (𝜑 → (ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹))
39 zringmpg 21432 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
40 eqid 2735 . . . . . . . 8 (mulGrp‘𝐹) = (mulGrp‘𝐹)
4139, 40rhmmhm 20439 . . . . . . 7 ((ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹) → (ℤRHom‘𝐹) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝐹)))
4238, 41syl 17 . . . . . 6 (𝜑 → (ℤRHom‘𝐹) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝐹)))
4342adantr 480 . . . . 5 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → (ℤRHom‘𝐹) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝐹)))
449, 13ressbas2 17259 . . . . . . 7 (ℤ ⊆ ℂ → ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ)))
4510, 44ax-mp 5 . . . . . 6 ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ))
46 eqid 2735 . . . . . 6 (.g‘((mulGrp‘ℂfld) ↾s ℤ)) = (.g‘((mulGrp‘ℂfld) ↾s ℤ))
47 fermltlchr.p . . . . . 6 = (.g‘(mulGrp‘𝐹))
4845, 46, 47mhmmulg 19098 . . . . 5 (((ℤRHom‘𝐹) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝐹)) ∧ 𝑃 ∈ ℕ0𝐸 ∈ ℤ) → ((ℤRHom‘𝐹)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐸)) = (𝑃 ((ℤRHom‘𝐹)‘𝐸)))
4943, 6, 8, 48syl3anc 1373 . . . 4 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → ((ℤRHom‘𝐹)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐸)) = (𝑃 ((ℤRHom‘𝐹)‘𝐸)))
507, 5zexpcld 14105 . . . . . . . . 9 (𝜑 → (𝐸𝑃) ∈ ℤ)
51 eqid 2735 . . . . . . . . . 10 (-g‘ℤring) = (-g‘ℤring)
5251zringsubgval 21431 . . . . . . . . 9 (((𝐸𝑃) ∈ ℤ ∧ 𝐸 ∈ ℤ) → ((𝐸𝑃) − 𝐸) = ((𝐸𝑃)(-g‘ℤring)𝐸))
5350, 7, 52syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐸𝑃) − 𝐸) = ((𝐸𝑃)(-g‘ℤring)𝐸))
5453fveq2d 6880 . . . . . . 7 (𝜑 → ((ℤRHom‘𝐹)‘((𝐸𝑃) − 𝐸)) = ((ℤRHom‘𝐹)‘((𝐸𝑃)(-g‘ℤring)𝐸)))
5550zred 12697 . . . . . . . . . . 11 (𝜑 → (𝐸𝑃) ∈ ℝ)
567zred 12697 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ)
572, 3syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ)
5857nnrpd 13049 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℝ+)
59 fermltl 16803 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐸 ∈ ℤ) → ((𝐸𝑃) mod 𝑃) = (𝐸 mod 𝑃))
602, 7, 59syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝐸𝑃) mod 𝑃) = (𝐸 mod 𝑃))
61 eqidd 2736 . . . . . . . . . . 11 (𝜑 → (𝐸 mod 𝑃) = (𝐸 mod 𝑃))
6255, 56, 56, 56, 58, 60, 61modsub12d 13946 . . . . . . . . . 10 (𝜑 → (((𝐸𝑃) − 𝐸) mod 𝑃) = ((𝐸𝐸) mod 𝑃))
63 zcn 12593 . . . . . . . . . . . . 13 (𝐸 ∈ ℤ → 𝐸 ∈ ℂ)
6463subidd 11582 . . . . . . . . . . . 12 (𝐸 ∈ ℤ → (𝐸𝐸) = 0)
657, 64syl 17 . . . . . . . . . . 11 (𝜑 → (𝐸𝐸) = 0)
6665oveq1d 7420 . . . . . . . . . 10 (𝜑 → ((𝐸𝐸) mod 𝑃) = (0 mod 𝑃))
67 0mod 13919 . . . . . . . . . . 11 (𝑃 ∈ ℝ+ → (0 mod 𝑃) = 0)
6858, 67syl 17 . . . . . . . . . 10 (𝜑 → (0 mod 𝑃) = 0)
6962, 66, 683eqtrd 2774 . . . . . . . . 9 (𝜑 → (((𝐸𝑃) − 𝐸) mod 𝑃) = 0)
7050, 7zsubcld 12702 . . . . . . . . . 10 (𝜑 → ((𝐸𝑃) − 𝐸) ∈ ℤ)
71 dvdsval3 16276 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ ((𝐸𝑃) − 𝐸) ∈ ℤ) → (𝑃 ∥ ((𝐸𝑃) − 𝐸) ↔ (((𝐸𝑃) − 𝐸) mod 𝑃) = 0))
7257, 70, 71syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑃 ∥ ((𝐸𝑃) − 𝐸) ↔ (((𝐸𝑃) − 𝐸) mod 𝑃) = 0))
7369, 72mpbird 257 . . . . . . . 8 (𝜑𝑃 ∥ ((𝐸𝑃) − 𝐸))
74 fermltlchr.z . . . . . . . . . 10 𝑃 = (chr‘𝐹)
75 eqid 2735 . . . . . . . . . 10 (0g𝐹) = (0g𝐹)
7674, 36, 75chrdvds 21487 . . . . . . . . 9 ((𝐹 ∈ Ring ∧ ((𝐸𝑃) − 𝐸) ∈ ℤ) → (𝑃 ∥ ((𝐸𝑃) − 𝐸) ↔ ((ℤRHom‘𝐹)‘((𝐸𝑃) − 𝐸)) = (0g𝐹)))
7735, 70, 76syl2anc 584 . . . . . . . 8 (𝜑 → (𝑃 ∥ ((𝐸𝑃) − 𝐸) ↔ ((ℤRHom‘𝐹)‘((𝐸𝑃) − 𝐸)) = (0g𝐹)))
7873, 77mpbid 232 . . . . . . 7 (𝜑 → ((ℤRHom‘𝐹)‘((𝐸𝑃) − 𝐸)) = (0g𝐹))
79 rhmghm 20444 . . . . . . . . 9 ((ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹) → (ℤRHom‘𝐹) ∈ (ℤring GrpHom 𝐹))
8038, 79syl 17 . . . . . . . 8 (𝜑 → (ℤRHom‘𝐹) ∈ (ℤring GrpHom 𝐹))
81 zringbas 21414 . . . . . . . . 9 ℤ = (Base‘ℤring)
82 eqid 2735 . . . . . . . . 9 (-g𝐹) = (-g𝐹)
8381, 51, 82ghmsub 19207 . . . . . . . 8 (((ℤRHom‘𝐹) ∈ (ℤring GrpHom 𝐹) ∧ (𝐸𝑃) ∈ ℤ ∧ 𝐸 ∈ ℤ) → ((ℤRHom‘𝐹)‘((𝐸𝑃)(-g‘ℤring)𝐸)) = (((ℤRHom‘𝐹)‘(𝐸𝑃))(-g𝐹)((ℤRHom‘𝐹)‘𝐸)))
8480, 50, 7, 83syl3anc 1373 . . . . . . 7 (𝜑 → ((ℤRHom‘𝐹)‘((𝐸𝑃)(-g‘ℤring)𝐸)) = (((ℤRHom‘𝐹)‘(𝐸𝑃))(-g𝐹)((ℤRHom‘𝐹)‘𝐸)))
8554, 78, 843eqtr3rd 2779 . . . . . 6 (𝜑 → (((ℤRHom‘𝐹)‘(𝐸𝑃))(-g𝐹)((ℤRHom‘𝐹)‘𝐸)) = (0g𝐹))
8634crnggrpd 20207 . . . . . . 7 (𝜑𝐹 ∈ Grp)
87 eqid 2735 . . . . . . . . . 10 (Base‘𝐹) = (Base‘𝐹)
8881, 87rhmf 20445 . . . . . . . . 9 ((ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹) → (ℤRHom‘𝐹):ℤ⟶(Base‘𝐹))
8938, 88syl 17 . . . . . . . 8 (𝜑 → (ℤRHom‘𝐹):ℤ⟶(Base‘𝐹))
9089, 50ffvelcdmd 7075 . . . . . . 7 (𝜑 → ((ℤRHom‘𝐹)‘(𝐸𝑃)) ∈ (Base‘𝐹))
9189, 7ffvelcdmd 7075 . . . . . . 7 (𝜑 → ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹))
9287, 75, 82grpsubeq0 19009 . . . . . . 7 ((𝐹 ∈ Grp ∧ ((ℤRHom‘𝐹)‘(𝐸𝑃)) ∈ (Base‘𝐹) ∧ ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹)) → ((((ℤRHom‘𝐹)‘(𝐸𝑃))(-g𝐹)((ℤRHom‘𝐹)‘𝐸)) = (0g𝐹) ↔ ((ℤRHom‘𝐹)‘(𝐸𝑃)) = ((ℤRHom‘𝐹)‘𝐸)))
9386, 90, 91, 92syl3anc 1373 . . . . . 6 (𝜑 → ((((ℤRHom‘𝐹)‘(𝐸𝑃))(-g𝐹)((ℤRHom‘𝐹)‘𝐸)) = (0g𝐹) ↔ ((ℤRHom‘𝐹)‘(𝐸𝑃)) = ((ℤRHom‘𝐹)‘𝐸)))
9485, 93mpbid 232 . . . . 5 (𝜑 → ((ℤRHom‘𝐹)‘(𝐸𝑃)) = ((ℤRHom‘𝐹)‘𝐸))
9594adantr 480 . . . 4 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → ((ℤRHom‘𝐹)‘(𝐸𝑃)) = ((ℤRHom‘𝐹)‘𝐸))
9633, 49, 953eqtr3d 2778 . . 3 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → (𝑃 ((ℤRHom‘𝐹)‘𝐸)) = ((ℤRHom‘𝐹)‘𝐸))
97 oveq2 7413 . . . 4 (𝐴 = ((ℤRHom‘𝐹)‘𝐸) → (𝑃 𝐴) = (𝑃 ((ℤRHom‘𝐹)‘𝐸)))
9897adantl 481 . . 3 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → (𝑃 𝐴) = (𝑃 ((ℤRHom‘𝐹)‘𝐸)))
99 simpr 484 . . 3 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → 𝐴 = ((ℤRHom‘𝐹)‘𝐸))
10096, 98, 993eqtr4d 2780 . 2 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → (𝑃 𝐴) = 𝐴)
1011, 100mpan2 691 1 (𝜑 → (𝑃 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wss 3926   class class class wbr 5119  wf 6527  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129  1c1 11130  cmin 11466  cn 12240  0cn0 12501  cz 12588  +crp 13008   mod cmo 13886  cexp 14079  cdvds 16272  cprime 16690  Basecbs 17228  s cress 17251  0gc0g 17453  Mndcmnd 18712   MndHom cmhm 18759  Grpcgrp 18916  invgcminusg 18917  -gcsg 18918  .gcmg 19050   GrpHom cghm 19195  mulGrpcmgp 20100  Ringcrg 20193  CRingccrg 20194   RingHom crh 20429  fldccnfld 21315  ringczring 21407  ℤRHomczrh 21460  chrcchr 21462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-gcd 16514  df-prm 16691  df-phi 16785  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-od 19509  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-drng 20691  df-cnfld 21316  df-zring 21408  df-zrh 21464  df-chr 21466
This theorem is referenced by:  ply1fermltlchr  22250  aks6d1c1p3  42123
  Copyright terms: Public domain W3C validator