MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fermltlchr Structured version   Visualization version   GIF version

Theorem fermltlchr 21466
Description: A generalization of Fermat's little theorem in a commutative ring 𝐹 of prime characteristic. See fermltl 16695. (Contributed by Thierry Arnoux, 9-Jan-2024.)
Hypotheses
Ref Expression
fermltlchr.z 𝑃 = (chr‘𝐹)
fermltlchr.b 𝐵 = (Base‘𝐹)
fermltlchr.p = (.g‘(mulGrp‘𝐹))
fermltlchr.1 𝐴 = ((ℤRHom‘𝐹)‘𝐸)
fermltlchr.2 (𝜑𝑃 ∈ ℙ)
fermltlchr.3 (𝜑𝐸 ∈ ℤ)
fermltlchr.4 (𝜑𝐹 ∈ CRing)
Assertion
Ref Expression
fermltlchr (𝜑 → (𝑃 𝐴) = 𝐴)

Proof of Theorem fermltlchr
StepHypRef Expression
1 fermltlchr.1 . 2 𝐴 = ((ℤRHom‘𝐹)‘𝐸)
2 fermltlchr.2 . . . . . . . . 9 (𝜑𝑃 ∈ ℙ)
3 prmnn 16585 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
43nnnn0d 12442 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
52, 4syl 17 . . . . . . . 8 (𝜑𝑃 ∈ ℕ0)
65adantr 480 . . . . . . 7 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → 𝑃 ∈ ℕ0)
7 fermltlchr.3 . . . . . . . 8 (𝜑𝐸 ∈ ℤ)
87adantr 480 . . . . . . 7 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → 𝐸 ∈ ℤ)
9 eqid 2731 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s ℤ) = ((mulGrp‘ℂfld) ↾s ℤ)
10 zsscn 12476 . . . . . . . . 9 ℤ ⊆ ℂ
11 eqid 2731 . . . . . . . . . 10 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
12 cnfldbas 21295 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
1311, 12mgpbas 20063 . . . . . . . . 9 ℂ = (Base‘(mulGrp‘ℂfld))
1410, 13sseqtri 3978 . . . . . . . 8 ℤ ⊆ (Base‘(mulGrp‘ℂfld))
15 eqid 2731 . . . . . . . 8 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
16 eqid 2731 . . . . . . . 8 (invg‘(mulGrp‘ℂfld)) = (invg‘(mulGrp‘ℂfld))
17 cnring 21327 . . . . . . . . . 10 fld ∈ Ring
1811ringmgp 20157 . . . . . . . . . 10 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
1917, 18ax-mp 5 . . . . . . . . 9 (mulGrp‘ℂfld) ∈ Mnd
20 cnfld1 21330 . . . . . . . . . . 11 1 = (1r‘ℂfld)
2111, 20ringidval 20101 . . . . . . . . . 10 1 = (0g‘(mulGrp‘ℂfld))
22 1z 12502 . . . . . . . . . 10 1 ∈ ℤ
2321, 22eqeltrri 2828 . . . . . . . . 9 (0g‘(mulGrp‘ℂfld)) ∈ ℤ
24 eqid 2731 . . . . . . . . . 10 (0g‘(mulGrp‘ℂfld)) = (0g‘(mulGrp‘ℂfld))
259, 13, 24ress0g 18670 . . . . . . . . 9 (((mulGrp‘ℂfld) ∈ Mnd ∧ (0g‘(mulGrp‘ℂfld)) ∈ ℤ ∧ ℤ ⊆ ℂ) → (0g‘(mulGrp‘ℂfld)) = (0g‘((mulGrp‘ℂfld) ↾s ℤ)))
2619, 23, 10, 25mp3an 1463 . . . . . . . 8 (0g‘(mulGrp‘ℂfld)) = (0g‘((mulGrp‘ℂfld) ↾s ℤ))
279, 14, 15, 16, 26ressmulgnn0 18990 . . . . . . 7 ((𝑃 ∈ ℕ0𝐸 ∈ ℤ) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐸) = (𝑃(.g‘(mulGrp‘ℂfld))𝐸))
286, 8, 27syl2anc 584 . . . . . 6 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐸) = (𝑃(.g‘(mulGrp‘ℂfld))𝐸))
298zcnd 12578 . . . . . . 7 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → 𝐸 ∈ ℂ)
30 cnfldexp 21341 . . . . . . 7 ((𝐸 ∈ ℂ ∧ 𝑃 ∈ ℕ0) → (𝑃(.g‘(mulGrp‘ℂfld))𝐸) = (𝐸𝑃))
3129, 6, 30syl2anc 584 . . . . . 6 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → (𝑃(.g‘(mulGrp‘ℂfld))𝐸) = (𝐸𝑃))
3228, 31eqtrd 2766 . . . . 5 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐸) = (𝐸𝑃))
3332fveq2d 6826 . . . 4 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → ((ℤRHom‘𝐹)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐸)) = ((ℤRHom‘𝐹)‘(𝐸𝑃)))
34 fermltlchr.4 . . . . . . . . 9 (𝜑𝐹 ∈ CRing)
3534crngringd 20164 . . . . . . . 8 (𝜑𝐹 ∈ Ring)
36 eqid 2731 . . . . . . . . 9 (ℤRHom‘𝐹) = (ℤRHom‘𝐹)
3736zrhrhm 21448 . . . . . . . 8 (𝐹 ∈ Ring → (ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹))
3835, 37syl 17 . . . . . . 7 (𝜑 → (ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹))
39 zringmpg 21408 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
40 eqid 2731 . . . . . . . 8 (mulGrp‘𝐹) = (mulGrp‘𝐹)
4139, 40rhmmhm 20397 . . . . . . 7 ((ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹) → (ℤRHom‘𝐹) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝐹)))
4238, 41syl 17 . . . . . 6 (𝜑 → (ℤRHom‘𝐹) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝐹)))
4342adantr 480 . . . . 5 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → (ℤRHom‘𝐹) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝐹)))
449, 13ressbas2 17149 . . . . . . 7 (ℤ ⊆ ℂ → ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ)))
4510, 44ax-mp 5 . . . . . 6 ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ))
46 eqid 2731 . . . . . 6 (.g‘((mulGrp‘ℂfld) ↾s ℤ)) = (.g‘((mulGrp‘ℂfld) ↾s ℤ))
47 fermltlchr.p . . . . . 6 = (.g‘(mulGrp‘𝐹))
4845, 46, 47mhmmulg 19028 . . . . 5 (((ℤRHom‘𝐹) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝐹)) ∧ 𝑃 ∈ ℕ0𝐸 ∈ ℤ) → ((ℤRHom‘𝐹)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐸)) = (𝑃 ((ℤRHom‘𝐹)‘𝐸)))
4943, 6, 8, 48syl3anc 1373 . . . 4 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → ((ℤRHom‘𝐹)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐸)) = (𝑃 ((ℤRHom‘𝐹)‘𝐸)))
507, 5zexpcld 13994 . . . . . . . . 9 (𝜑 → (𝐸𝑃) ∈ ℤ)
51 eqid 2731 . . . . . . . . . 10 (-g‘ℤring) = (-g‘ℤring)
5251zringsubgval 21407 . . . . . . . . 9 (((𝐸𝑃) ∈ ℤ ∧ 𝐸 ∈ ℤ) → ((𝐸𝑃) − 𝐸) = ((𝐸𝑃)(-g‘ℤring)𝐸))
5350, 7, 52syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐸𝑃) − 𝐸) = ((𝐸𝑃)(-g‘ℤring)𝐸))
5453fveq2d 6826 . . . . . . 7 (𝜑 → ((ℤRHom‘𝐹)‘((𝐸𝑃) − 𝐸)) = ((ℤRHom‘𝐹)‘((𝐸𝑃)(-g‘ℤring)𝐸)))
5550zred 12577 . . . . . . . . . . 11 (𝜑 → (𝐸𝑃) ∈ ℝ)
567zred 12577 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ)
572, 3syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ)
5857nnrpd 12932 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℝ+)
59 fermltl 16695 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐸 ∈ ℤ) → ((𝐸𝑃) mod 𝑃) = (𝐸 mod 𝑃))
602, 7, 59syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝐸𝑃) mod 𝑃) = (𝐸 mod 𝑃))
61 eqidd 2732 . . . . . . . . . . 11 (𝜑 → (𝐸 mod 𝑃) = (𝐸 mod 𝑃))
6255, 56, 56, 56, 58, 60, 61modsub12d 13835 . . . . . . . . . 10 (𝜑 → (((𝐸𝑃) − 𝐸) mod 𝑃) = ((𝐸𝐸) mod 𝑃))
63 zcn 12473 . . . . . . . . . . . . 13 (𝐸 ∈ ℤ → 𝐸 ∈ ℂ)
6463subidd 11460 . . . . . . . . . . . 12 (𝐸 ∈ ℤ → (𝐸𝐸) = 0)
657, 64syl 17 . . . . . . . . . . 11 (𝜑 → (𝐸𝐸) = 0)
6665oveq1d 7361 . . . . . . . . . 10 (𝜑 → ((𝐸𝐸) mod 𝑃) = (0 mod 𝑃))
67 0mod 13806 . . . . . . . . . . 11 (𝑃 ∈ ℝ+ → (0 mod 𝑃) = 0)
6858, 67syl 17 . . . . . . . . . 10 (𝜑 → (0 mod 𝑃) = 0)
6962, 66, 683eqtrd 2770 . . . . . . . . 9 (𝜑 → (((𝐸𝑃) − 𝐸) mod 𝑃) = 0)
7050, 7zsubcld 12582 . . . . . . . . . 10 (𝜑 → ((𝐸𝑃) − 𝐸) ∈ ℤ)
71 dvdsval3 16167 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ ((𝐸𝑃) − 𝐸) ∈ ℤ) → (𝑃 ∥ ((𝐸𝑃) − 𝐸) ↔ (((𝐸𝑃) − 𝐸) mod 𝑃) = 0))
7257, 70, 71syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑃 ∥ ((𝐸𝑃) − 𝐸) ↔ (((𝐸𝑃) − 𝐸) mod 𝑃) = 0))
7369, 72mpbird 257 . . . . . . . 8 (𝜑𝑃 ∥ ((𝐸𝑃) − 𝐸))
74 fermltlchr.z . . . . . . . . . 10 𝑃 = (chr‘𝐹)
75 eqid 2731 . . . . . . . . . 10 (0g𝐹) = (0g𝐹)
7674, 36, 75chrdvds 21463 . . . . . . . . 9 ((𝐹 ∈ Ring ∧ ((𝐸𝑃) − 𝐸) ∈ ℤ) → (𝑃 ∥ ((𝐸𝑃) − 𝐸) ↔ ((ℤRHom‘𝐹)‘((𝐸𝑃) − 𝐸)) = (0g𝐹)))
7735, 70, 76syl2anc 584 . . . . . . . 8 (𝜑 → (𝑃 ∥ ((𝐸𝑃) − 𝐸) ↔ ((ℤRHom‘𝐹)‘((𝐸𝑃) − 𝐸)) = (0g𝐹)))
7873, 77mpbid 232 . . . . . . 7 (𝜑 → ((ℤRHom‘𝐹)‘((𝐸𝑃) − 𝐸)) = (0g𝐹))
79 rhmghm 20401 . . . . . . . . 9 ((ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹) → (ℤRHom‘𝐹) ∈ (ℤring GrpHom 𝐹))
8038, 79syl 17 . . . . . . . 8 (𝜑 → (ℤRHom‘𝐹) ∈ (ℤring GrpHom 𝐹))
81 zringbas 21390 . . . . . . . . 9 ℤ = (Base‘ℤring)
82 eqid 2731 . . . . . . . . 9 (-g𝐹) = (-g𝐹)
8381, 51, 82ghmsub 19136 . . . . . . . 8 (((ℤRHom‘𝐹) ∈ (ℤring GrpHom 𝐹) ∧ (𝐸𝑃) ∈ ℤ ∧ 𝐸 ∈ ℤ) → ((ℤRHom‘𝐹)‘((𝐸𝑃)(-g‘ℤring)𝐸)) = (((ℤRHom‘𝐹)‘(𝐸𝑃))(-g𝐹)((ℤRHom‘𝐹)‘𝐸)))
8480, 50, 7, 83syl3anc 1373 . . . . . . 7 (𝜑 → ((ℤRHom‘𝐹)‘((𝐸𝑃)(-g‘ℤring)𝐸)) = (((ℤRHom‘𝐹)‘(𝐸𝑃))(-g𝐹)((ℤRHom‘𝐹)‘𝐸)))
8554, 78, 843eqtr3rd 2775 . . . . . 6 (𝜑 → (((ℤRHom‘𝐹)‘(𝐸𝑃))(-g𝐹)((ℤRHom‘𝐹)‘𝐸)) = (0g𝐹))
8634crnggrpd 20165 . . . . . . 7 (𝜑𝐹 ∈ Grp)
87 eqid 2731 . . . . . . . . . 10 (Base‘𝐹) = (Base‘𝐹)
8881, 87rhmf 20402 . . . . . . . . 9 ((ℤRHom‘𝐹) ∈ (ℤring RingHom 𝐹) → (ℤRHom‘𝐹):ℤ⟶(Base‘𝐹))
8938, 88syl 17 . . . . . . . 8 (𝜑 → (ℤRHom‘𝐹):ℤ⟶(Base‘𝐹))
9089, 50ffvelcdmd 7018 . . . . . . 7 (𝜑 → ((ℤRHom‘𝐹)‘(𝐸𝑃)) ∈ (Base‘𝐹))
9189, 7ffvelcdmd 7018 . . . . . . 7 (𝜑 → ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹))
9287, 75, 82grpsubeq0 18939 . . . . . . 7 ((𝐹 ∈ Grp ∧ ((ℤRHom‘𝐹)‘(𝐸𝑃)) ∈ (Base‘𝐹) ∧ ((ℤRHom‘𝐹)‘𝐸) ∈ (Base‘𝐹)) → ((((ℤRHom‘𝐹)‘(𝐸𝑃))(-g𝐹)((ℤRHom‘𝐹)‘𝐸)) = (0g𝐹) ↔ ((ℤRHom‘𝐹)‘(𝐸𝑃)) = ((ℤRHom‘𝐹)‘𝐸)))
9386, 90, 91, 92syl3anc 1373 . . . . . 6 (𝜑 → ((((ℤRHom‘𝐹)‘(𝐸𝑃))(-g𝐹)((ℤRHom‘𝐹)‘𝐸)) = (0g𝐹) ↔ ((ℤRHom‘𝐹)‘(𝐸𝑃)) = ((ℤRHom‘𝐹)‘𝐸)))
9485, 93mpbid 232 . . . . 5 (𝜑 → ((ℤRHom‘𝐹)‘(𝐸𝑃)) = ((ℤRHom‘𝐹)‘𝐸))
9594adantr 480 . . . 4 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → ((ℤRHom‘𝐹)‘(𝐸𝑃)) = ((ℤRHom‘𝐹)‘𝐸))
9633, 49, 953eqtr3d 2774 . . 3 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → (𝑃 ((ℤRHom‘𝐹)‘𝐸)) = ((ℤRHom‘𝐹)‘𝐸))
97 oveq2 7354 . . . 4 (𝐴 = ((ℤRHom‘𝐹)‘𝐸) → (𝑃 𝐴) = (𝑃 ((ℤRHom‘𝐹)‘𝐸)))
9897adantl 481 . . 3 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → (𝑃 𝐴) = (𝑃 ((ℤRHom‘𝐹)‘𝐸)))
99 simpr 484 . . 3 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → 𝐴 = ((ℤRHom‘𝐹)‘𝐸))
10096, 98, 993eqtr4d 2776 . 2 ((𝜑𝐴 = ((ℤRHom‘𝐹)‘𝐸)) → (𝑃 𝐴) = 𝐴)
1011, 100mpan2 691 1 (𝜑 → (𝑃 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wss 3897   class class class wbr 5089  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007  cmin 11344  cn 12125  0cn0 12381  cz 12468  +crp 12890   mod cmo 13773  cexp 13968  cdvds 16163  cprime 16582  Basecbs 17120  s cress 17141  0gc0g 17343  Mndcmnd 18642   MndHom cmhm 18689  Grpcgrp 18846  invgcminusg 18847  -gcsg 18848  .gcmg 18980   GrpHom cghm 19124  mulGrpcmgp 20058  Ringcrg 20151  CRingccrg 20152   RingHom crh 20387  fldccnfld 21291  ringczring 21383  ℤRHomczrh 21436  chrcchr 21438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583  df-phi 16677  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-od 19440  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-drng 20646  df-cnfld 21292  df-zring 21384  df-zrh 21440  df-chr 21442
This theorem is referenced by:  ply1fermltlchr  22227  aks6d1c1p3  42213
  Copyright terms: Public domain W3C validator