Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1chr Structured version   Visualization version   GIF version

Theorem ply1chr 31135
 Description: The characteristic of a polynomial ring is the characteristic of the underlying ring. (Contributed by Thierry Arnoux, 24-Jul-2024.)
Hypothesis
Ref Expression
ply1chr.1 𝑃 = (Poly1𝑅)
Assertion
Ref Expression
ply1chr (𝑅 ∈ CRing → (chr‘𝑃) = (chr‘𝑅))

Proof of Theorem ply1chr
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . 3 (od‘𝑃) = (od‘𝑃)
2 eqid 2798 . . 3 (1r𝑃) = (1r𝑃)
3 eqid 2798 . . 3 (chr‘𝑃) = (chr‘𝑃)
41, 2, 3chrval 20236 . 2 ((od‘𝑃)‘(1r𝑃)) = (chr‘𝑃)
5 eqid 2798 . . . . . . . . . 10 (od‘𝑅) = (od‘𝑅)
6 eqid 2798 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
7 eqid 2798 . . . . . . . . . 10 (chr‘𝑅) = (chr‘𝑅)
85, 6, 7chrval 20236 . . . . . . . . 9 ((od‘𝑅)‘(1r𝑅)) = (chr‘𝑅)
98eqcomi 2807 . . . . . . . 8 (chr‘𝑅) = ((od‘𝑅)‘(1r𝑅))
10 id 22 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ CRing)
1110crnggrpd 19322 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Grp)
12 crngring 19320 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
13 eqid 2798 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
1413, 6ringidcl 19332 . . . . . . . . . 10 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
1512, 14syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → (1r𝑅) ∈ (Base‘𝑅))
167chrcl 20237 . . . . . . . . . 10 (𝑅 ∈ Ring → (chr‘𝑅) ∈ ℕ0)
1712, 16syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → (chr‘𝑅) ∈ ℕ0)
18 eqid 2798 . . . . . . . . . 10 (.g𝑅) = (.g𝑅)
19 eqid 2798 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
2013, 5, 18, 19odeq 18688 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ (Base‘𝑅) ∧ (chr‘𝑅) ∈ ℕ0) → ((chr‘𝑅) = ((od‘𝑅)‘(1r𝑅)) ↔ ∀𝑛 ∈ ℕ0 ((chr‘𝑅) ∥ 𝑛 ↔ (𝑛(.g𝑅)(1r𝑅)) = (0g𝑅))))
2111, 15, 17, 20syl3anc 1368 . . . . . . . 8 (𝑅 ∈ CRing → ((chr‘𝑅) = ((od‘𝑅)‘(1r𝑅)) ↔ ∀𝑛 ∈ ℕ0 ((chr‘𝑅) ∥ 𝑛 ↔ (𝑛(.g𝑅)(1r𝑅)) = (0g𝑅))))
229, 21mpbii 236 . . . . . . 7 (𝑅 ∈ CRing → ∀𝑛 ∈ ℕ0 ((chr‘𝑅) ∥ 𝑛 ↔ (𝑛(.g𝑅)(1r𝑅)) = (0g𝑅)))
2322r19.21bi 3173 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → ((chr‘𝑅) ∥ 𝑛 ↔ (𝑛(.g𝑅)(1r𝑅)) = (0g𝑅)))
24 ply1chr.1 . . . . . . 7 𝑃 = (Poly1𝑅)
25 eqid 2798 . . . . . . 7 (algSc‘𝑃) = (algSc‘𝑃)
2612adantr 484 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
2711grpmndd 18124 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Mnd)
2827adantr 484 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Mnd)
29 simpr 488 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
3015adantr 484 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → (1r𝑅) ∈ (Base‘𝑅))
3113, 18mulgnn0cl 18254 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ (1r𝑅) ∈ (Base‘𝑅)) → (𝑛(.g𝑅)(1r𝑅)) ∈ (Base‘𝑅))
3228, 29, 30, 31syl3anc 1368 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → (𝑛(.g𝑅)(1r𝑅)) ∈ (Base‘𝑅))
33 simpl 486 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ CRing)
3413, 19ring0cl 19333 . . . . . . . 8 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
3533, 12, 343syl 18 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → (0g𝑅) ∈ (Base‘𝑅))
3624, 13, 25, 26, 32, 35ply1scleq 31134 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → (((algSc‘𝑃)‘(𝑛(.g𝑅)(1r𝑅))) = ((algSc‘𝑃)‘(0g𝑅)) ↔ (𝑛(.g𝑅)(1r𝑅)) = (0g𝑅)))
3724ply1sca 20920 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
3837adantr 484 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → 𝑅 = (Scalar‘𝑃))
3938fveq2d 6656 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → (.g𝑅) = (.g‘(Scalar‘𝑃)))
4039oveqd 7159 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → (𝑛(.g𝑅)(1r𝑅)) = (𝑛(.g‘(Scalar‘𝑃))(1r𝑅)))
4140fveq2d 6656 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → ((algSc‘𝑃)‘(𝑛(.g𝑅)(1r𝑅))) = ((algSc‘𝑃)‘(𝑛(.g‘(Scalar‘𝑃))(1r𝑅))))
4224ply1assa 20866 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
4342adantr 484 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ AssAlg)
4438fveq2d 6656 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
4530, 44eleqtrd 2892 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → (1r𝑅) ∈ (Base‘(Scalar‘𝑃)))
46 eqid 2798 . . . . . . . . . 10 (Scalar‘𝑃) = (Scalar‘𝑃)
47 eqid 2798 . . . . . . . . . 10 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
48 eqid 2798 . . . . . . . . . 10 (.g𝑃) = (.g𝑃)
49 eqid 2798 . . . . . . . . . 10 (.g‘(Scalar‘𝑃)) = (.g‘(Scalar‘𝑃))
5025, 46, 47, 48, 49asclmulg 31132 . . . . . . . . 9 ((𝑃 ∈ AssAlg ∧ 𝑛 ∈ ℕ0 ∧ (1r𝑅) ∈ (Base‘(Scalar‘𝑃))) → ((algSc‘𝑃)‘(𝑛(.g‘(Scalar‘𝑃))(1r𝑅))) = (𝑛(.g𝑃)((algSc‘𝑃)‘(1r𝑅))))
5143, 29, 45, 50syl3anc 1368 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → ((algSc‘𝑃)‘(𝑛(.g‘(Scalar‘𝑃))(1r𝑅))) = (𝑛(.g𝑃)((algSc‘𝑃)‘(1r𝑅))))
5241, 51eqtrd 2833 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → ((algSc‘𝑃)‘(𝑛(.g𝑅)(1r𝑅))) = (𝑛(.g𝑃)((algSc‘𝑃)‘(1r𝑅))))
53 eqid 2798 . . . . . . . . 9 (0g𝑃) = (0g𝑃)
5424, 25, 19, 53ply1scl0 20957 . . . . . . . 8 (𝑅 ∈ Ring → ((algSc‘𝑃)‘(0g𝑅)) = (0g𝑃))
5533, 12, 543syl 18 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → ((algSc‘𝑃)‘(0g𝑅)) = (0g𝑃))
5652, 55eqeq12d 2814 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → (((algSc‘𝑃)‘(𝑛(.g𝑅)(1r𝑅))) = ((algSc‘𝑃)‘(0g𝑅)) ↔ (𝑛(.g𝑃)((algSc‘𝑃)‘(1r𝑅))) = (0g𝑃)))
5723, 36, 563bitr2d 310 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → ((chr‘𝑅) ∥ 𝑛 ↔ (𝑛(.g𝑃)((algSc‘𝑃)‘(1r𝑅))) = (0g𝑃)))
5857ralrimiva 3149 . . . 4 (𝑅 ∈ CRing → ∀𝑛 ∈ ℕ0 ((chr‘𝑅) ∥ 𝑛 ↔ (𝑛(.g𝑃)((algSc‘𝑃)‘(1r𝑅))) = (0g𝑃)))
5924ply1crng 20865 . . . . . 6 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
6059crnggrpd 19322 . . . . 5 (𝑅 ∈ CRing → 𝑃 ∈ Grp)
61 eqid 2798 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
6224, 25, 13, 61ply1sclcl 20953 . . . . . 6 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘(1r𝑅)) ∈ (Base‘𝑃))
6312, 15, 62syl2anc 587 . . . . 5 (𝑅 ∈ CRing → ((algSc‘𝑃)‘(1r𝑅)) ∈ (Base‘𝑃))
6461, 1, 48, 53odeq 18688 . . . . 5 ((𝑃 ∈ Grp ∧ ((algSc‘𝑃)‘(1r𝑅)) ∈ (Base‘𝑃) ∧ (chr‘𝑅) ∈ ℕ0) → ((chr‘𝑅) = ((od‘𝑃)‘((algSc‘𝑃)‘(1r𝑅))) ↔ ∀𝑛 ∈ ℕ0 ((chr‘𝑅) ∥ 𝑛 ↔ (𝑛(.g𝑃)((algSc‘𝑃)‘(1r𝑅))) = (0g𝑃))))
6560, 63, 17, 64syl3anc 1368 . . . 4 (𝑅 ∈ CRing → ((chr‘𝑅) = ((od‘𝑃)‘((algSc‘𝑃)‘(1r𝑅))) ↔ ∀𝑛 ∈ ℕ0 ((chr‘𝑅) ∥ 𝑛 ↔ (𝑛(.g𝑃)((algSc‘𝑃)‘(1r𝑅))) = (0g𝑃))))
6658, 65mpbird 260 . . 3 (𝑅 ∈ CRing → (chr‘𝑅) = ((od‘𝑃)‘((algSc‘𝑃)‘(1r𝑅))))
6724, 25, 6, 2ply1scl1 20959 . . . . 5 (𝑅 ∈ Ring → ((algSc‘𝑃)‘(1r𝑅)) = (1r𝑃))
6867fveq2d 6656 . . . 4 (𝑅 ∈ Ring → ((od‘𝑃)‘((algSc‘𝑃)‘(1r𝑅))) = ((od‘𝑃)‘(1r𝑃)))
6912, 68syl 17 . . 3 (𝑅 ∈ CRing → ((od‘𝑃)‘((algSc‘𝑃)‘(1r𝑅))) = ((od‘𝑃)‘(1r𝑃)))
7066, 69eqtr2d 2834 . 2 (𝑅 ∈ CRing → ((od‘𝑃)‘(1r𝑃)) = (chr‘𝑅))
714, 70syl5eqr 2847 1 (𝑅 ∈ CRing → (chr‘𝑃) = (chr‘𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106   class class class wbr 5033  ‘cfv 6329  (class class class)co 7142  ℕ0cn0 11900   ∥ cdvds 15616  Basecbs 16492  Scalarcsca 16577  0gc0g 16722  Mndcmnd 17920  Grpcgrp 18112  .gcmg 18234  odcod 18662  1rcur 19262  Ringcrg 19308  CRingccrg 19309  chrcchr 20214  AssAlgcasa 20558  algSccascl 20560  Poly1cpl1 20844 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7451  ax-cnex 10597  ax-resscn 10598  ax-1cn 10599  ax-icn 10600  ax-addcl 10601  ax-addrcl 10602  ax-mulcl 10603  ax-mulrcl 10604  ax-mulcom 10605  ax-addass 10606  ax-mulass 10607  ax-distr 10608  ax-i2m1 10609  ax-1ne0 10610  ax-1rid 10611  ax-rnegex 10612  ax-rrecex 10613  ax-cnre 10614  ax-pre-lttri 10615  ax-pre-lttrn 10616  ax-pre-ltadd 10617  ax-pre-mulgt0 10618  ax-pre-sup 10619 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3722  df-csb 3830  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4246  df-if 4428  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-se 5482  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-isom 6338  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-of 7397  df-ofr 7398  df-om 7571  df-1st 7681  df-2nd 7682  df-supp 7824  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-2o 8101  df-oadd 8104  df-er 8287  df-map 8406  df-pm 8407  df-ixp 8460  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-fsupp 8833  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10681  df-mnf 10682  df-xr 10683  df-ltxr 10684  df-le 10685  df-sub 10876  df-neg 10877  df-div 11302  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11987  df-dec 12104  df-uz 12249  df-rp 12395  df-fz 12903  df-fzo 13046  df-fl 13174  df-mod 13250  df-seq 13382  df-exp 13443  df-hash 13704  df-cj 14467  df-re 14468  df-im 14469  df-sqrt 14603  df-abs 14604  df-dvds 15617  df-struct 16494  df-ndx 16495  df-slot 16496  df-base 16498  df-sets 16499  df-ress 16500  df-plusg 16587  df-mulr 16588  df-sca 16590  df-vsca 16591  df-tset 16593  df-ple 16594  df-0g 16724  df-gsum 16725  df-mre 16866  df-mrc 16867  df-acs 16869  df-mgm 17861  df-sgrp 17910  df-mnd 17921  df-mhm 17965  df-submnd 17966  df-grp 18115  df-minusg 18116  df-sbg 18117  df-mulg 18235  df-subg 18286  df-ghm 18366  df-cntz 18457  df-od 18666  df-cmn 18918  df-abl 18919  df-mgp 19251  df-ur 19263  df-srg 19267  df-ring 19310  df-cring 19311  df-subrg 19544  df-lmod 19647  df-lss 19715  df-chr 20218  df-assa 20561  df-ascl 20563  df-psr 20614  df-mvr 20615  df-mpl 20616  df-opsr 20618  df-psr1 20847  df-vr1 20848  df-ply1 20849  df-coe1 20850 This theorem is referenced by:  ply1fermltl  31136
 Copyright terms: Public domain W3C validator