MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1chr Structured version   Visualization version   GIF version

Theorem ply1chr 22311
Description: The characteristic of a polynomial ring is the characteristic of the underlying ring. (Contributed by Thierry Arnoux, 24-Jul-2024.)
Hypothesis
Ref Expression
ply1chr.1 𝑃 = (Poly1𝑅)
Assertion
Ref Expression
ply1chr (𝑅 ∈ CRing → (chr‘𝑃) = (chr‘𝑅))

Proof of Theorem ply1chr
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (od‘𝑃) = (od‘𝑃)
2 eqid 2736 . . 3 (1r𝑃) = (1r𝑃)
3 eqid 2736 . . 3 (chr‘𝑃) = (chr‘𝑃)
41, 2, 3chrval 21539 . 2 ((od‘𝑃)‘(1r𝑃)) = (chr‘𝑃)
5 eqid 2736 . . . . . . . . . 10 (od‘𝑅) = (od‘𝑅)
6 eqid 2736 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
7 eqid 2736 . . . . . . . . . 10 (chr‘𝑅) = (chr‘𝑅)
85, 6, 7chrval 21539 . . . . . . . . 9 ((od‘𝑅)‘(1r𝑅)) = (chr‘𝑅)
98eqcomi 2745 . . . . . . . 8 (chr‘𝑅) = ((od‘𝑅)‘(1r𝑅))
10 id 22 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ CRing)
1110crnggrpd 20245 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Grp)
12 crngring 20243 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
13 eqid 2736 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
1413, 6ringidcl 20263 . . . . . . . . . 10 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
1512, 14syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → (1r𝑅) ∈ (Base‘𝑅))
167chrcl 21540 . . . . . . . . . 10 (𝑅 ∈ Ring → (chr‘𝑅) ∈ ℕ0)
1712, 16syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → (chr‘𝑅) ∈ ℕ0)
18 eqid 2736 . . . . . . . . . 10 (.g𝑅) = (.g𝑅)
19 eqid 2736 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
2013, 5, 18, 19odeq 19569 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ (Base‘𝑅) ∧ (chr‘𝑅) ∈ ℕ0) → ((chr‘𝑅) = ((od‘𝑅)‘(1r𝑅)) ↔ ∀𝑛 ∈ ℕ0 ((chr‘𝑅) ∥ 𝑛 ↔ (𝑛(.g𝑅)(1r𝑅)) = (0g𝑅))))
2111, 15, 17, 20syl3anc 1372 . . . . . . . 8 (𝑅 ∈ CRing → ((chr‘𝑅) = ((od‘𝑅)‘(1r𝑅)) ↔ ∀𝑛 ∈ ℕ0 ((chr‘𝑅) ∥ 𝑛 ↔ (𝑛(.g𝑅)(1r𝑅)) = (0g𝑅))))
229, 21mpbii 233 . . . . . . 7 (𝑅 ∈ CRing → ∀𝑛 ∈ ℕ0 ((chr‘𝑅) ∥ 𝑛 ↔ (𝑛(.g𝑅)(1r𝑅)) = (0g𝑅)))
2322r19.21bi 3250 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → ((chr‘𝑅) ∥ 𝑛 ↔ (𝑛(.g𝑅)(1r𝑅)) = (0g𝑅)))
24 ply1chr.1 . . . . . . 7 𝑃 = (Poly1𝑅)
25 eqid 2736 . . . . . . 7 (algSc‘𝑃) = (algSc‘𝑃)
2612adantr 480 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
2711grpmndd 18965 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Mnd)
2827adantr 480 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Mnd)
29 simpr 484 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
3015adantr 480 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → (1r𝑅) ∈ (Base‘𝑅))
3113, 18, 28, 29, 30mulgnn0cld 19114 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → (𝑛(.g𝑅)(1r𝑅)) ∈ (Base‘𝑅))
32 simpl 482 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ CRing)
3313, 19ring0cl 20265 . . . . . . . 8 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
3432, 12, 333syl 18 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → (0g𝑅) ∈ (Base‘𝑅))
3524, 13, 25, 26, 31, 34ply1scleq 22310 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → (((algSc‘𝑃)‘(𝑛(.g𝑅)(1r𝑅))) = ((algSc‘𝑃)‘(0g𝑅)) ↔ (𝑛(.g𝑅)(1r𝑅)) = (0g𝑅)))
3624ply1sca 22255 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
3736adantr 480 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → 𝑅 = (Scalar‘𝑃))
3837fveq2d 6909 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → (.g𝑅) = (.g‘(Scalar‘𝑃)))
3938oveqd 7449 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → (𝑛(.g𝑅)(1r𝑅)) = (𝑛(.g‘(Scalar‘𝑃))(1r𝑅)))
4039fveq2d 6909 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → ((algSc‘𝑃)‘(𝑛(.g𝑅)(1r𝑅))) = ((algSc‘𝑃)‘(𝑛(.g‘(Scalar‘𝑃))(1r𝑅))))
4124ply1assa 22202 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
4241adantr 480 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ AssAlg)
4337fveq2d 6909 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
4430, 43eleqtrd 2842 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → (1r𝑅) ∈ (Base‘(Scalar‘𝑃)))
45 eqid 2736 . . . . . . . . . 10 (Scalar‘𝑃) = (Scalar‘𝑃)
46 eqid 2736 . . . . . . . . . 10 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
47 eqid 2736 . . . . . . . . . 10 (.g𝑃) = (.g𝑃)
48 eqid 2736 . . . . . . . . . 10 (.g‘(Scalar‘𝑃)) = (.g‘(Scalar‘𝑃))
4925, 45, 46, 47, 48asclmulg 21923 . . . . . . . . 9 ((𝑃 ∈ AssAlg ∧ 𝑛 ∈ ℕ0 ∧ (1r𝑅) ∈ (Base‘(Scalar‘𝑃))) → ((algSc‘𝑃)‘(𝑛(.g‘(Scalar‘𝑃))(1r𝑅))) = (𝑛(.g𝑃)((algSc‘𝑃)‘(1r𝑅))))
5042, 29, 44, 49syl3anc 1372 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → ((algSc‘𝑃)‘(𝑛(.g‘(Scalar‘𝑃))(1r𝑅))) = (𝑛(.g𝑃)((algSc‘𝑃)‘(1r𝑅))))
5140, 50eqtrd 2776 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → ((algSc‘𝑃)‘(𝑛(.g𝑅)(1r𝑅))) = (𝑛(.g𝑃)((algSc‘𝑃)‘(1r𝑅))))
52 eqid 2736 . . . . . . . . 9 (0g𝑃) = (0g𝑃)
5324, 25, 19, 52ply1scl0 22294 . . . . . . . 8 (𝑅 ∈ Ring → ((algSc‘𝑃)‘(0g𝑅)) = (0g𝑃))
5432, 12, 533syl 18 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → ((algSc‘𝑃)‘(0g𝑅)) = (0g𝑃))
5551, 54eqeq12d 2752 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → (((algSc‘𝑃)‘(𝑛(.g𝑅)(1r𝑅))) = ((algSc‘𝑃)‘(0g𝑅)) ↔ (𝑛(.g𝑃)((algSc‘𝑃)‘(1r𝑅))) = (0g𝑃)))
5623, 35, 553bitr2d 307 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0) → ((chr‘𝑅) ∥ 𝑛 ↔ (𝑛(.g𝑃)((algSc‘𝑃)‘(1r𝑅))) = (0g𝑃)))
5756ralrimiva 3145 . . . 4 (𝑅 ∈ CRing → ∀𝑛 ∈ ℕ0 ((chr‘𝑅) ∥ 𝑛 ↔ (𝑛(.g𝑃)((algSc‘𝑃)‘(1r𝑅))) = (0g𝑃)))
5824ply1crng 22201 . . . . . 6 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
5958crnggrpd 20245 . . . . 5 (𝑅 ∈ CRing → 𝑃 ∈ Grp)
60 eqid 2736 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
6124, 25, 13, 60ply1sclcl 22290 . . . . . 6 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘(1r𝑅)) ∈ (Base‘𝑃))
6212, 15, 61syl2anc 584 . . . . 5 (𝑅 ∈ CRing → ((algSc‘𝑃)‘(1r𝑅)) ∈ (Base‘𝑃))
6360, 1, 47, 52odeq 19569 . . . . 5 ((𝑃 ∈ Grp ∧ ((algSc‘𝑃)‘(1r𝑅)) ∈ (Base‘𝑃) ∧ (chr‘𝑅) ∈ ℕ0) → ((chr‘𝑅) = ((od‘𝑃)‘((algSc‘𝑃)‘(1r𝑅))) ↔ ∀𝑛 ∈ ℕ0 ((chr‘𝑅) ∥ 𝑛 ↔ (𝑛(.g𝑃)((algSc‘𝑃)‘(1r𝑅))) = (0g𝑃))))
6459, 62, 17, 63syl3anc 1372 . . . 4 (𝑅 ∈ CRing → ((chr‘𝑅) = ((od‘𝑃)‘((algSc‘𝑃)‘(1r𝑅))) ↔ ∀𝑛 ∈ ℕ0 ((chr‘𝑅) ∥ 𝑛 ↔ (𝑛(.g𝑃)((algSc‘𝑃)‘(1r𝑅))) = (0g𝑃))))
6557, 64mpbird 257 . . 3 (𝑅 ∈ CRing → (chr‘𝑅) = ((od‘𝑃)‘((algSc‘𝑃)‘(1r𝑅))))
6624, 25, 6, 2ply1scl1 22297 . . . . 5 (𝑅 ∈ Ring → ((algSc‘𝑃)‘(1r𝑅)) = (1r𝑃))
6766fveq2d 6909 . . . 4 (𝑅 ∈ Ring → ((od‘𝑃)‘((algSc‘𝑃)‘(1r𝑅))) = ((od‘𝑃)‘(1r𝑃)))
6812, 67syl 17 . . 3 (𝑅 ∈ CRing → ((od‘𝑃)‘((algSc‘𝑃)‘(1r𝑅))) = ((od‘𝑃)‘(1r𝑃)))
6965, 68eqtr2d 2777 . 2 (𝑅 ∈ CRing → ((od‘𝑃)‘(1r𝑃)) = (chr‘𝑅))
704, 69eqtr3id 2790 1 (𝑅 ∈ CRing → (chr‘𝑃) = (chr‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3060   class class class wbr 5142  cfv 6560  (class class class)co 7432  0cn0 12528  cdvds 16291  Basecbs 17248  Scalarcsca 17301  0gc0g 17485  Mndcmnd 18748  Grpcgrp 18952  .gcmg 19086  odcod 19543  1rcur 20179  Ringcrg 20231  CRingccrg 20232  chrcchr 21513  AssAlgcasa 21871  algSccascl 21873  Poly1cpl1 22179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-dvds 16292  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-ghm 19232  df-cntz 19336  df-od 19547  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-srg 20185  df-ring 20233  df-cring 20234  df-subrng 20547  df-subrg 20571  df-lmod 20861  df-lss 20931  df-chr 21517  df-assa 21874  df-ascl 21876  df-psr 21930  df-mvr 21931  df-mpl 21932  df-opsr 21934  df-psr1 22182  df-vr1 22183  df-ply1 22184  df-coe1 22185
This theorem is referenced by:  ply1fermltlchr  22317
  Copyright terms: Public domain W3C validator