| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . 3
⊢
(od‘𝑃) =
(od‘𝑃) |
| 2 | | eqid 2736 |
. . 3
⊢
(1r‘𝑃) = (1r‘𝑃) |
| 3 | | eqid 2736 |
. . 3
⊢
(chr‘𝑃) =
(chr‘𝑃) |
| 4 | 1, 2, 3 | chrval 21489 |
. 2
⊢
((od‘𝑃)‘(1r‘𝑃)) = (chr‘𝑃) |
| 5 | | eqid 2736 |
. . . . . . . . . 10
⊢
(od‘𝑅) =
(od‘𝑅) |
| 6 | | eqid 2736 |
. . . . . . . . . 10
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 7 | | eqid 2736 |
. . . . . . . . . 10
⊢
(chr‘𝑅) =
(chr‘𝑅) |
| 8 | 5, 6, 7 | chrval 21489 |
. . . . . . . . 9
⊢
((od‘𝑅)‘(1r‘𝑅)) = (chr‘𝑅) |
| 9 | 8 | eqcomi 2745 |
. . . . . . . 8
⊢
(chr‘𝑅) =
((od‘𝑅)‘(1r‘𝑅)) |
| 10 | | id 22 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing → 𝑅 ∈ CRing) |
| 11 | 10 | crnggrpd 20212 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Grp) |
| 12 | | crngring 20210 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 13 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 14 | 13, 6 | ringidcl 20230 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
| 15 | 12, 14 | syl 17 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing →
(1r‘𝑅)
∈ (Base‘𝑅)) |
| 16 | 7 | chrcl 21490 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(chr‘𝑅) ∈
ℕ0) |
| 17 | 12, 16 | syl 17 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing →
(chr‘𝑅) ∈
ℕ0) |
| 18 | | eqid 2736 |
. . . . . . . . . 10
⊢
(.g‘𝑅) = (.g‘𝑅) |
| 19 | | eqid 2736 |
. . . . . . . . . 10
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 20 | 13, 5, 18, 19 | odeq 19536 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Grp ∧
(1r‘𝑅)
∈ (Base‘𝑅) ∧
(chr‘𝑅) ∈
ℕ0) → ((chr‘𝑅) = ((od‘𝑅)‘(1r‘𝑅)) ↔ ∀𝑛 ∈ ℕ0
((chr‘𝑅) ∥
𝑛 ↔ (𝑛(.g‘𝑅)(1r‘𝑅)) = (0g‘𝑅)))) |
| 21 | 11, 15, 17, 20 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝑅 ∈ CRing →
((chr‘𝑅) =
((od‘𝑅)‘(1r‘𝑅)) ↔ ∀𝑛 ∈ ℕ0
((chr‘𝑅) ∥
𝑛 ↔ (𝑛(.g‘𝑅)(1r‘𝑅)) = (0g‘𝑅)))) |
| 22 | 9, 21 | mpbii 233 |
. . . . . . 7
⊢ (𝑅 ∈ CRing →
∀𝑛 ∈
ℕ0 ((chr‘𝑅) ∥ 𝑛 ↔ (𝑛(.g‘𝑅)(1r‘𝑅)) = (0g‘𝑅))) |
| 23 | 22 | r19.21bi 3238 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0)
→ ((chr‘𝑅)
∥ 𝑛 ↔ (𝑛(.g‘𝑅)(1r‘𝑅)) = (0g‘𝑅))) |
| 24 | | ply1chr.1 |
. . . . . . 7
⊢ 𝑃 = (Poly1‘𝑅) |
| 25 | | eqid 2736 |
. . . . . . 7
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
| 26 | 12 | adantr 480 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0)
→ 𝑅 ∈
Ring) |
| 27 | 11 | grpmndd 18934 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Mnd) |
| 28 | 27 | adantr 480 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0)
→ 𝑅 ∈
Mnd) |
| 29 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0)
→ 𝑛 ∈
ℕ0) |
| 30 | 15 | adantr 480 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0)
→ (1r‘𝑅) ∈ (Base‘𝑅)) |
| 31 | 13, 18, 28, 29, 30 | mulgnn0cld 19083 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0)
→ (𝑛(.g‘𝑅)(1r‘𝑅)) ∈ (Base‘𝑅)) |
| 32 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0)
→ 𝑅 ∈
CRing) |
| 33 | 13, 19 | ring0cl 20232 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(0g‘𝑅)
∈ (Base‘𝑅)) |
| 34 | 32, 12, 33 | 3syl 18 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0)
→ (0g‘𝑅) ∈ (Base‘𝑅)) |
| 35 | 24, 13, 25, 26, 31, 34 | ply1scleq 22248 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0)
→ (((algSc‘𝑃)‘(𝑛(.g‘𝑅)(1r‘𝑅))) = ((algSc‘𝑃)‘(0g‘𝑅)) ↔ (𝑛(.g‘𝑅)(1r‘𝑅)) = (0g‘𝑅))) |
| 36 | 24 | ply1sca 22193 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃)) |
| 37 | 36 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0)
→ 𝑅 =
(Scalar‘𝑃)) |
| 38 | 37 | fveq2d 6885 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0)
→ (.g‘𝑅) = (.g‘(Scalar‘𝑃))) |
| 39 | 38 | oveqd 7427 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0)
→ (𝑛(.g‘𝑅)(1r‘𝑅)) = (𝑛(.g‘(Scalar‘𝑃))(1r‘𝑅))) |
| 40 | 39 | fveq2d 6885 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0)
→ ((algSc‘𝑃)‘(𝑛(.g‘𝑅)(1r‘𝑅))) = ((algSc‘𝑃)‘(𝑛(.g‘(Scalar‘𝑃))(1r‘𝑅)))) |
| 41 | 24 | ply1assa 22140 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing → 𝑃 ∈ AssAlg) |
| 42 | 41 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0)
→ 𝑃 ∈
AssAlg) |
| 43 | 37 | fveq2d 6885 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0)
→ (Base‘𝑅) =
(Base‘(Scalar‘𝑃))) |
| 44 | 30, 43 | eleqtrd 2837 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0)
→ (1r‘𝑅) ∈ (Base‘(Scalar‘𝑃))) |
| 45 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
| 46 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
| 47 | | eqid 2736 |
. . . . . . . . . 10
⊢
(.g‘𝑃) = (.g‘𝑃) |
| 48 | | eqid 2736 |
. . . . . . . . . 10
⊢
(.g‘(Scalar‘𝑃)) =
(.g‘(Scalar‘𝑃)) |
| 49 | 25, 45, 46, 47, 48 | asclmulg 21867 |
. . . . . . . . 9
⊢ ((𝑃 ∈ AssAlg ∧ 𝑛 ∈ ℕ0
∧ (1r‘𝑅) ∈ (Base‘(Scalar‘𝑃))) → ((algSc‘𝑃)‘(𝑛(.g‘(Scalar‘𝑃))(1r‘𝑅))) = (𝑛(.g‘𝑃)((algSc‘𝑃)‘(1r‘𝑅)))) |
| 50 | 42, 29, 44, 49 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0)
→ ((algSc‘𝑃)‘(𝑛(.g‘(Scalar‘𝑃))(1r‘𝑅))) = (𝑛(.g‘𝑃)((algSc‘𝑃)‘(1r‘𝑅)))) |
| 51 | 40, 50 | eqtrd 2771 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0)
→ ((algSc‘𝑃)‘(𝑛(.g‘𝑅)(1r‘𝑅))) = (𝑛(.g‘𝑃)((algSc‘𝑃)‘(1r‘𝑅)))) |
| 52 | | eqid 2736 |
. . . . . . . . 9
⊢
(0g‘𝑃) = (0g‘𝑃) |
| 53 | 24, 25, 19, 52 | ply1scl0 22232 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
((algSc‘𝑃)‘(0g‘𝑅)) = (0g‘𝑃)) |
| 54 | 32, 12, 53 | 3syl 18 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0)
→ ((algSc‘𝑃)‘(0g‘𝑅)) = (0g‘𝑃)) |
| 55 | 51, 54 | eqeq12d 2752 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0)
→ (((algSc‘𝑃)‘(𝑛(.g‘𝑅)(1r‘𝑅))) = ((algSc‘𝑃)‘(0g‘𝑅)) ↔ (𝑛(.g‘𝑃)((algSc‘𝑃)‘(1r‘𝑅))) = (0g‘𝑃))) |
| 56 | 23, 35, 55 | 3bitr2d 307 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0)
→ ((chr‘𝑅)
∥ 𝑛 ↔ (𝑛(.g‘𝑃)((algSc‘𝑃)‘(1r‘𝑅))) = (0g‘𝑃))) |
| 57 | 56 | ralrimiva 3133 |
. . . 4
⊢ (𝑅 ∈ CRing →
∀𝑛 ∈
ℕ0 ((chr‘𝑅) ∥ 𝑛 ↔ (𝑛(.g‘𝑃)((algSc‘𝑃)‘(1r‘𝑅))) = (0g‘𝑃))) |
| 58 | 24 | ply1crng 22139 |
. . . . . 6
⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
| 59 | 58 | crnggrpd 20212 |
. . . . 5
⊢ (𝑅 ∈ CRing → 𝑃 ∈ Grp) |
| 60 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 61 | 24, 25, 13, 60 | ply1sclcl 22228 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧
(1r‘𝑅)
∈ (Base‘𝑅))
→ ((algSc‘𝑃)‘(1r‘𝑅)) ∈ (Base‘𝑃)) |
| 62 | 12, 15, 61 | syl2anc 584 |
. . . . 5
⊢ (𝑅 ∈ CRing →
((algSc‘𝑃)‘(1r‘𝑅)) ∈ (Base‘𝑃)) |
| 63 | 60, 1, 47, 52 | odeq 19536 |
. . . . 5
⊢ ((𝑃 ∈ Grp ∧
((algSc‘𝑃)‘(1r‘𝑅)) ∈ (Base‘𝑃) ∧ (chr‘𝑅) ∈ ℕ0)
→ ((chr‘𝑅) =
((od‘𝑃)‘((algSc‘𝑃)‘(1r‘𝑅))) ↔ ∀𝑛 ∈ ℕ0
((chr‘𝑅) ∥
𝑛 ↔ (𝑛(.g‘𝑃)((algSc‘𝑃)‘(1r‘𝑅))) = (0g‘𝑃)))) |
| 64 | 59, 62, 17, 63 | syl3anc 1373 |
. . . 4
⊢ (𝑅 ∈ CRing →
((chr‘𝑅) =
((od‘𝑃)‘((algSc‘𝑃)‘(1r‘𝑅))) ↔ ∀𝑛 ∈ ℕ0
((chr‘𝑅) ∥
𝑛 ↔ (𝑛(.g‘𝑃)((algSc‘𝑃)‘(1r‘𝑅))) = (0g‘𝑃)))) |
| 65 | 57, 64 | mpbird 257 |
. . 3
⊢ (𝑅 ∈ CRing →
(chr‘𝑅) =
((od‘𝑃)‘((algSc‘𝑃)‘(1r‘𝑅)))) |
| 66 | 24, 25, 6, 2 | ply1scl1 22235 |
. . . . 5
⊢ (𝑅 ∈ Ring →
((algSc‘𝑃)‘(1r‘𝑅)) = (1r‘𝑃)) |
| 67 | 66 | fveq2d 6885 |
. . . 4
⊢ (𝑅 ∈ Ring →
((od‘𝑃)‘((algSc‘𝑃)‘(1r‘𝑅))) = ((od‘𝑃)‘(1r‘𝑃))) |
| 68 | 12, 67 | syl 17 |
. . 3
⊢ (𝑅 ∈ CRing →
((od‘𝑃)‘((algSc‘𝑃)‘(1r‘𝑅))) = ((od‘𝑃)‘(1r‘𝑃))) |
| 69 | 65, 68 | eqtr2d 2772 |
. 2
⊢ (𝑅 ∈ CRing →
((od‘𝑃)‘(1r‘𝑃)) = (chr‘𝑅)) |
| 70 | 4, 69 | eqtr3id 2785 |
1
⊢ (𝑅 ∈ CRing →
(chr‘𝑃) =
(chr‘𝑅)) |