Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rlocf1 Structured version   Visualization version   GIF version

Theorem rlocf1 33231
Description: The embedding 𝐹 of a ring 𝑅 into its localization 𝐿. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
rlocf1.1 𝐵 = (Base‘𝑅)
rlocf1.2 1 = (1r𝑅)
rlocf1.3 𝐿 = (𝑅 RLocal 𝑆)
rlocf1.4 = (𝑅 ~RL 𝑆)
rlocf1.5 𝐹 = (𝑥𝐵 ↦ [⟨𝑥, 1 ⟩] )
rlocf1.6 (𝜑𝑅 ∈ CRing)
rlocf1.7 (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
rlocf1.8 (𝜑𝑆 ⊆ (RLReg‘𝑅))
Assertion
Ref Expression
rlocf1 (𝜑 → (𝐹:𝐵1-1→((𝐵 × 𝑆) / ) ∧ 𝐹 ∈ (𝑅 RingHom 𝐿)))
Distinct variable groups:   𝑥, 1   𝑥,   𝑥,𝐵   𝑥,𝐹   𝑥,𝐿   𝑥,𝑅   𝑥,𝑆   𝜑,𝑥

Proof of Theorem rlocf1
Dummy variables 𝑡 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥𝐵)
2 rlocf1.7 . . . . . . . 8 (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
3 eqid 2730 . . . . . . . . . 10 (mulGrp‘𝑅) = (mulGrp‘𝑅)
4 rlocf1.2 . . . . . . . . . 10 1 = (1r𝑅)
53, 4ringidval 20099 . . . . . . . . 9 1 = (0g‘(mulGrp‘𝑅))
65subm0cl 18745 . . . . . . . 8 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 1𝑆)
72, 6syl 17 . . . . . . 7 (𝜑1𝑆)
87adantr 480 . . . . . 6 ((𝜑𝑥𝐵) → 1𝑆)
91, 8opelxpd 5680 . . . . 5 ((𝜑𝑥𝐵) → ⟨𝑥, 1 ⟩ ∈ (𝐵 × 𝑆))
10 rlocf1.4 . . . . . . 7 = (𝑅 ~RL 𝑆)
1110ovexi 7424 . . . . . 6 ∈ V
1211ecelqsi 8746 . . . . 5 (⟨𝑥, 1 ⟩ ∈ (𝐵 × 𝑆) → [⟨𝑥, 1 ⟩] ∈ ((𝐵 × 𝑆) / ))
139, 12syl 17 . . . 4 ((𝜑𝑥𝐵) → [⟨𝑥, 1 ⟩] ∈ ((𝐵 × 𝑆) / ))
1413ralrimiva 3126 . . 3 (𝜑 → ∀𝑥𝐵 [⟨𝑥, 1 ⟩] ∈ ((𝐵 × 𝑆) / ))
15 rlocf1.6 . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
1615crnggrpd 20163 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
1716ad5antr 734 . . . . . . . 8 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → 𝑅 ∈ Grp)
18 simp-5r 785 . . . . . . . 8 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → 𝑥𝐵)
19 simp-4r 783 . . . . . . . 8 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → 𝑦𝐵)
20 vex 3454 . . . . . . . . . . . . . 14 𝑥 ∈ V
214fvexi 6875 . . . . . . . . . . . . . 14 1 ∈ V
2220, 21op1st 7979 . . . . . . . . . . . . 13 (1st ‘⟨𝑥, 1 ⟩) = 𝑥
2322a1i 11 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (1st ‘⟨𝑥, 1 ⟩) = 𝑥)
24 vex 3454 . . . . . . . . . . . . . 14 𝑦 ∈ V
2524, 21op2nd 7980 . . . . . . . . . . . . 13 (2nd ‘⟨𝑦, 1 ⟩) = 1
2625a1i 11 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (2nd ‘⟨𝑦, 1 ⟩) = 1 )
2723, 26oveq12d 7408 . . . . . . . . . . 11 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → ((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩)) = (𝑥(.r𝑅) 1 ))
28 rlocf1.1 . . . . . . . . . . . 12 𝐵 = (Base‘𝑅)
29 eqid 2730 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
3015crngringd 20162 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Ring)
3130ad5antr 734 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → 𝑅 ∈ Ring)
3228, 29, 4, 31, 18ringridmd 20189 . . . . . . . . . . 11 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (𝑥(.r𝑅) 1 ) = 𝑥)
3327, 32eqtrd 2765 . . . . . . . . . 10 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → ((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩)) = 𝑥)
3424, 21op1st 7979 . . . . . . . . . . . . 13 (1st ‘⟨𝑦, 1 ⟩) = 𝑦
3534a1i 11 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (1st ‘⟨𝑦, 1 ⟩) = 𝑦)
3620, 21op2nd 7980 . . . . . . . . . . . . 13 (2nd ‘⟨𝑥, 1 ⟩) = 1
3736a1i 11 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (2nd ‘⟨𝑥, 1 ⟩) = 1 )
3835, 37oveq12d 7408 . . . . . . . . . . 11 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → ((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)) = (𝑦(.r𝑅) 1 ))
3928, 29, 4, 31, 19ringridmd 20189 . . . . . . . . . . 11 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (𝑦(.r𝑅) 1 ) = 𝑦)
4038, 39eqtrd 2765 . . . . . . . . . 10 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → ((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)) = 𝑦)
4133, 40oveq12d 7408 . . . . . . . . 9 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩))) = (𝑥(-g𝑅)𝑦))
42 rlocf1.8 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ (RLReg‘𝑅))
4342ad5antr 734 . . . . . . . . . . 11 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → 𝑆 ⊆ (RLReg‘𝑅))
44 simplr 768 . . . . . . . . . . 11 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → 𝑡𝑆)
4543, 44sseldd 3950 . . . . . . . . . 10 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → 𝑡 ∈ (RLReg‘𝑅))
4623, 18eqeltrd 2829 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (1st ‘⟨𝑥, 1 ⟩) ∈ 𝐵)
473, 28mgpbas 20061 . . . . . . . . . . . . . . . . 17 𝐵 = (Base‘(mulGrp‘𝑅))
4847submss 18743 . . . . . . . . . . . . . . . 16 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆𝐵)
492, 48syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆𝐵)
5049, 7sseldd 3950 . . . . . . . . . . . . . 14 (𝜑1𝐵)
5150ad5antr 734 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → 1𝐵)
5226, 51eqeltrd 2829 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (2nd ‘⟨𝑦, 1 ⟩) ∈ 𝐵)
5328, 29, 31, 46, 52ringcld 20176 . . . . . . . . . . 11 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → ((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩)) ∈ 𝐵)
5435, 19eqeltrd 2829 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (1st ‘⟨𝑦, 1 ⟩) ∈ 𝐵)
5537, 51eqeltrd 2829 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (2nd ‘⟨𝑥, 1 ⟩) ∈ 𝐵)
5628, 29, 31, 54, 55ringcld 20176 . . . . . . . . . . 11 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → ((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)) ∈ 𝐵)
57 eqid 2730 . . . . . . . . . . . 12 (-g𝑅) = (-g𝑅)
5828, 57grpsubcl 18959 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ ((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩)) ∈ 𝐵 ∧ ((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)) ∈ 𝐵) → (((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩))) ∈ 𝐵)
5917, 53, 56, 58syl3anc 1373 . . . . . . . . . 10 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩))) ∈ 𝐵)
60 simpr 484 . . . . . . . . . 10 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅))
61 eqid 2730 . . . . . . . . . . . 12 (RLReg‘𝑅) = (RLReg‘𝑅)
62 eqid 2730 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
6361, 28, 29, 62rrgeq0i 20615 . . . . . . . . . . 11 ((𝑡 ∈ (RLReg‘𝑅) ∧ (((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩))) ∈ 𝐵) → ((𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅) → (((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩))) = (0g𝑅)))
6463imp 406 . . . . . . . . . 10 (((𝑡 ∈ (RLReg‘𝑅) ∧ (((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩))) ∈ 𝐵) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩))) = (0g𝑅))
6545, 59, 60, 64syl21anc 837 . . . . . . . . 9 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩))) = (0g𝑅))
6641, 65eqtr3d 2767 . . . . . . . 8 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (𝑥(-g𝑅)𝑦) = (0g𝑅))
6728, 62, 57grpsubeq0 18965 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((𝑥(-g𝑅)𝑦) = (0g𝑅) ↔ 𝑥 = 𝑦))
6867biimpa 476 . . . . . . . 8 (((𝑅 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) ∧ (𝑥(-g𝑅)𝑦) = (0g𝑅)) → 𝑥 = 𝑦)
6917, 18, 19, 66, 68syl31anc 1375 . . . . . . 7 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → 𝑥 = 𝑦)
7049ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) → 𝑆𝐵)
71 eqid 2730 . . . . . . . . . . 11 (𝐵 × 𝑆) = (𝐵 × 𝑆)
7215ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → 𝑅 ∈ CRing)
732ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
7428, 62, 4, 29, 57, 71, 10, 72, 73erler 33223 . . . . . . . . . 10 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → Er (𝐵 × 𝑆))
759adantr 480 . . . . . . . . . 10 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → ⟨𝑥, 1 ⟩ ∈ (𝐵 × 𝑆))
7674, 75erth 8728 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (⟨𝑥, 1𝑦, 1 ⟩ ↔ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ))
7776biimpar 477 . . . . . . . 8 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) → ⟨𝑥, 1𝑦, 1 ⟩)
7828, 10, 70, 62, 29, 57, 77erldi 33220 . . . . . . 7 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) → ∃𝑡𝑆 (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅))
7969, 78r19.29a 3142 . . . . . 6 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) → 𝑥 = 𝑦)
8079ex 412 . . . . 5 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → ([⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] 𝑥 = 𝑦))
8180anasss 466 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ([⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] 𝑥 = 𝑦))
8281ralrimivva 3181 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 ([⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] 𝑥 = 𝑦))
83 rlocf1.5 . . . 4 𝐹 = (𝑥𝐵 ↦ [⟨𝑥, 1 ⟩] )
84 opeq1 4840 . . . . 5 (𝑥 = 𝑦 → ⟨𝑥, 1 ⟩ = ⟨𝑦, 1 ⟩)
8584eceq1d 8714 . . . 4 (𝑥 = 𝑦 → [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] )
8683, 85f1mpt 7239 . . 3 (𝐹:𝐵1-1→((𝐵 × 𝑆) / ) ↔ (∀𝑥𝐵 [⟨𝑥, 1 ⟩] ∈ ((𝐵 × 𝑆) / ) ∧ ∀𝑥𝐵𝑦𝐵 ([⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] 𝑥 = 𝑦)))
8714, 82, 86sylanbrc 583 . 2 (𝜑𝐹:𝐵1-1→((𝐵 × 𝑆) / ))
88 eqid 2730 . . 3 (1r𝐿) = (1r𝐿)
89 eqid 2730 . . 3 (.r𝐿) = (.r𝐿)
90 eqid 2730 . . . . 5 (+g𝑅) = (+g𝑅)
91 rlocf1.3 . . . . 5 𝐿 = (𝑅 RLocal 𝑆)
9228, 29, 90, 91, 10, 15, 2rloccring 33228 . . . 4 (𝜑𝐿 ∈ CRing)
9392crngringd 20162 . . 3 (𝜑𝐿 ∈ Ring)
94 opeq1 4840 . . . . . 6 (𝑥 = 1 → ⟨𝑥, 1 ⟩ = ⟨ 1 , 1 ⟩)
9594eceq1d 8714 . . . . 5 (𝑥 = 1 → [⟨𝑥, 1 ⟩] = [⟨ 1 , 1 ⟩] )
96 eqid 2730 . . . . . 6 [⟨ 1 , 1 ⟩] = [⟨ 1 , 1 ⟩]
9762, 4, 91, 10, 15, 2, 96rloc1r 33230 . . . . 5 (𝜑 → [⟨ 1 , 1 ⟩] = (1r𝐿))
9895, 97sylan9eqr 2787 . . . 4 ((𝜑𝑥 = 1 ) → [⟨𝑥, 1 ⟩] = (1r𝐿))
99 fvexd 6876 . . . 4 (𝜑 → (1r𝐿) ∈ V)
10083, 98, 50, 99fvmptd2 6979 . . 3 (𝜑 → (𝐹1 ) = (1r𝐿))
10130ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → 𝑅 ∈ Ring)
10250ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → 1𝐵)
10328, 29, 4, 101, 102ringlidmd 20188 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → ( 1 (.r𝑅) 1 ) = 1 )
104103eqcomd 2736 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → 1 = ( 1 (.r𝑅) 1 ))
105104opeq2d 4847 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → ⟨(𝑎(.r𝑅)𝑏), 1 ⟩ = ⟨(𝑎(.r𝑅)𝑏), ( 1 (.r𝑅) 1 )⟩)
106105eceq1d 8714 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → [⟨(𝑎(.r𝑅)𝑏), 1 ⟩] = [⟨(𝑎(.r𝑅)𝑏), ( 1 (.r𝑅) 1 )⟩] )
10715ad2antrr 726 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → 𝑅 ∈ CRing)
1082ad2antrr 726 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
109 simplr 768 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → 𝑎𝐵)
110 simpr 484 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → 𝑏𝐵)
111108, 6syl 17 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → 1𝑆)
11228, 29, 90, 91, 10, 107, 108, 109, 110, 111, 111, 89rlocmulval 33227 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → ([⟨𝑎, 1 ⟩] (.r𝐿)[⟨𝑏, 1 ⟩] ) = [⟨(𝑎(.r𝑅)𝑏), ( 1 (.r𝑅) 1 )⟩] )
113106, 112eqtr4d 2768 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → [⟨(𝑎(.r𝑅)𝑏), 1 ⟩] = ([⟨𝑎, 1 ⟩] (.r𝐿)[⟨𝑏, 1 ⟩] ))
114 opeq1 4840 . . . . . . 7 (𝑥 = (𝑎(.r𝑅)𝑏) → ⟨𝑥, 1 ⟩ = ⟨(𝑎(.r𝑅)𝑏), 1 ⟩)
115114eceq1d 8714 . . . . . 6 (𝑥 = (𝑎(.r𝑅)𝑏) → [⟨𝑥, 1 ⟩] = [⟨(𝑎(.r𝑅)𝑏), 1 ⟩] )
11628, 29, 101, 109, 110ringcld 20176 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝑎(.r𝑅)𝑏) ∈ 𝐵)
117 ecexg 8678 . . . . . . 7 ( ∈ V → [⟨(𝑎(.r𝑅)𝑏), 1 ⟩] ∈ V)
11811, 117mp1i 13 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → [⟨(𝑎(.r𝑅)𝑏), 1 ⟩] ∈ V)
11983, 115, 116, 118fvmptd3 6994 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝐹‘(𝑎(.r𝑅)𝑏)) = [⟨(𝑎(.r𝑅)𝑏), 1 ⟩] )
120 opeq1 4840 . . . . . . . 8 (𝑥 = 𝑎 → ⟨𝑥, 1 ⟩ = ⟨𝑎, 1 ⟩)
121120eceq1d 8714 . . . . . . 7 (𝑥 = 𝑎 → [⟨𝑥, 1 ⟩] = [⟨𝑎, 1 ⟩] )
122 ecexg 8678 . . . . . . . 8 ( ∈ V → [⟨𝑎, 1 ⟩] ∈ V)
12311, 122mp1i 13 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → [⟨𝑎, 1 ⟩] ∈ V)
12483, 121, 109, 123fvmptd3 6994 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝐹𝑎) = [⟨𝑎, 1 ⟩] )
125 opeq1 4840 . . . . . . . 8 (𝑥 = 𝑏 → ⟨𝑥, 1 ⟩ = ⟨𝑏, 1 ⟩)
126125eceq1d 8714 . . . . . . 7 (𝑥 = 𝑏 → [⟨𝑥, 1 ⟩] = [⟨𝑏, 1 ⟩] )
127 ecexg 8678 . . . . . . . 8 ( ∈ V → [⟨𝑏, 1 ⟩] ∈ V)
12811, 127mp1i 13 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → [⟨𝑏, 1 ⟩] ∈ V)
12983, 126, 110, 128fvmptd3 6994 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝐹𝑏) = [⟨𝑏, 1 ⟩] )
130124, 129oveq12d 7408 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → ((𝐹𝑎)(.r𝐿)(𝐹𝑏)) = ([⟨𝑎, 1 ⟩] (.r𝐿)[⟨𝑏, 1 ⟩] ))
131113, 119, 1303eqtr4d 2775 . . . 4 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝐹‘(𝑎(.r𝑅)𝑏)) = ((𝐹𝑎)(.r𝐿)(𝐹𝑏)))
132131anasss 466 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎(.r𝑅)𝑏)) = ((𝐹𝑎)(.r𝐿)(𝐹𝑏)))
133 eqid 2730 . . 3 (Base‘𝐿) = (Base‘𝐿)
134 eqid 2730 . . 3 (+g𝐿) = (+g𝐿)
13513, 83fmptd 7089 . . . 4 (𝜑𝐹:𝐵⟶((𝐵 × 𝑆) / ))
13628, 62, 29, 57, 71, 91, 10, 15, 49rlocbas 33225 . . . . 5 (𝜑 → ((𝐵 × 𝑆) / ) = (Base‘𝐿))
137136feq3d 6676 . . . 4 (𝜑 → (𝐹:𝐵⟶((𝐵 × 𝑆) / ) ↔ 𝐹:𝐵⟶(Base‘𝐿)))
138135, 137mpbid 232 . . 3 (𝜑𝐹:𝐵⟶(Base‘𝐿))
13928, 29, 4, 101, 109ringridmd 20189 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝑎(.r𝑅) 1 ) = 𝑎)
14028, 29, 4, 101, 110ringridmd 20189 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝑏(.r𝑅) 1 ) = 𝑏)
141139, 140oveq12d 7408 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → ((𝑎(.r𝑅) 1 )(+g𝑅)(𝑏(.r𝑅) 1 )) = (𝑎(+g𝑅)𝑏))
142141eqcomd 2736 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝑎(+g𝑅)𝑏) = ((𝑎(.r𝑅) 1 )(+g𝑅)(𝑏(.r𝑅) 1 )))
143142, 104opeq12d 4848 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → ⟨(𝑎(+g𝑅)𝑏), 1 ⟩ = ⟨((𝑎(.r𝑅) 1 )(+g𝑅)(𝑏(.r𝑅) 1 )), ( 1 (.r𝑅) 1 )⟩)
144143eceq1d 8714 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → [⟨(𝑎(+g𝑅)𝑏), 1 ⟩] = [⟨((𝑎(.r𝑅) 1 )(+g𝑅)(𝑏(.r𝑅) 1 )), ( 1 (.r𝑅) 1 )⟩] )
14528, 29, 90, 91, 10, 107, 108, 109, 110, 111, 111, 134rlocaddval 33226 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → ([⟨𝑎, 1 ⟩] (+g𝐿)[⟨𝑏, 1 ⟩] ) = [⟨((𝑎(.r𝑅) 1 )(+g𝑅)(𝑏(.r𝑅) 1 )), ( 1 (.r𝑅) 1 )⟩] )
146144, 145eqtr4d 2768 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → [⟨(𝑎(+g𝑅)𝑏), 1 ⟩] = ([⟨𝑎, 1 ⟩] (+g𝐿)[⟨𝑏, 1 ⟩] ))
147 opeq1 4840 . . . . . . 7 (𝑥 = (𝑎(+g𝑅)𝑏) → ⟨𝑥, 1 ⟩ = ⟨(𝑎(+g𝑅)𝑏), 1 ⟩)
148147eceq1d 8714 . . . . . 6 (𝑥 = (𝑎(+g𝑅)𝑏) → [⟨𝑥, 1 ⟩] = [⟨(𝑎(+g𝑅)𝑏), 1 ⟩] )
14916ad2antrr 726 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → 𝑅 ∈ Grp)
15028, 90, 149, 109, 110grpcld 18886 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
151 ecexg 8678 . . . . . . 7 ( ∈ V → [⟨(𝑎(+g𝑅)𝑏), 1 ⟩] ∈ V)
15211, 151mp1i 13 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → [⟨(𝑎(+g𝑅)𝑏), 1 ⟩] ∈ V)
15383, 148, 150, 152fvmptd3 6994 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝐹‘(𝑎(+g𝑅)𝑏)) = [⟨(𝑎(+g𝑅)𝑏), 1 ⟩] )
154124, 129oveq12d 7408 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → ((𝐹𝑎)(+g𝐿)(𝐹𝑏)) = ([⟨𝑎, 1 ⟩] (+g𝐿)[⟨𝑏, 1 ⟩] ))
155146, 153, 1543eqtr4d 2775 . . . 4 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝐿)(𝐹𝑏)))
156155anasss 466 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝐿)(𝐹𝑏)))
15728, 4, 88, 29, 89, 30, 93, 100, 132, 133, 90, 134, 138, 156isrhmd 20404 . 2 (𝜑𝐹 ∈ (𝑅 RingHom 𝐿))
15887, 157jca 511 1 (𝜑 → (𝐹:𝐵1-1→((𝐵 × 𝑆) / ) ∧ 𝐹 ∈ (𝑅 RingHom 𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  wss 3917  cop 4598   class class class wbr 5110  cmpt 5191   × cxp 5639  wf 6510  1-1wf1 6511  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  [cec 8672   / cqs 8673  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  0gc0g 17409  SubMndcsubmnd 18716  Grpcgrp 18872  -gcsg 18874  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  CRingccrg 20150   RingHom crh 20385  RLRegcrlreg 20607   ~RL cerl 33211   RLocal crloc 33212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-0g 17411  df-imas 17478  df-qus 17479  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-ghm 19152  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-rhm 20388  df-rlreg 20610  df-erl 33213  df-rloc 33214
This theorem is referenced by:  fracf1  33264
  Copyright terms: Public domain W3C validator