| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpr 484 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | 
| 2 |  | rlocf1.7 | . . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) | 
| 3 |  | eqid 2736 | . . . . . . . . . 10
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) | 
| 4 |  | rlocf1.2 | . . . . . . . . . 10
⊢  1 =
(1r‘𝑅) | 
| 5 | 3, 4 | ringidval 20181 | . . . . . . . . 9
⊢  1 =
(0g‘(mulGrp‘𝑅)) | 
| 6 | 5 | subm0cl 18825 | . . . . . . . 8
⊢ (𝑆 ∈
(SubMnd‘(mulGrp‘𝑅)) → 1 ∈ 𝑆) | 
| 7 | 2, 6 | syl 17 | . . . . . . 7
⊢ (𝜑 → 1 ∈ 𝑆) | 
| 8 | 7 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 1 ∈ 𝑆) | 
| 9 | 1, 8 | opelxpd 5723 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 〈𝑥, 1 〉 ∈ (𝐵 × 𝑆)) | 
| 10 |  | rlocf1.4 | . . . . . . 7
⊢  ∼ =
(𝑅 ~RL
𝑆) | 
| 11 | 10 | ovexi 7466 | . . . . . 6
⊢  ∼ ∈
V | 
| 12 | 11 | ecelqsi 8814 | . . . . 5
⊢
(〈𝑥, 1 〉 ∈
(𝐵 × 𝑆) → [〈𝑥, 1 〉] ∼ ∈ ((𝐵 × 𝑆) / ∼ )) | 
| 13 | 9, 12 | syl 17 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [〈𝑥, 1 〉] ∼ ∈ ((𝐵 × 𝑆) / ∼ )) | 
| 14 | 13 | ralrimiva 3145 | . . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 [〈𝑥, 1 〉] ∼ ∈ ((𝐵 × 𝑆) / ∼ )) | 
| 15 |  | rlocf1.6 | . . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ CRing) | 
| 16 | 15 | crnggrpd 20245 | . . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Grp) | 
| 17 | 16 | ad5antr 734 | . . . . . . . 8
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑅 ∈
Grp) | 
| 18 |  | simp-5r 785 | . . . . . . . 8
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑥 ∈ 𝐵) | 
| 19 |  | simp-4r 783 | . . . . . . . 8
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑦 ∈ 𝐵) | 
| 20 |  | vex 3483 | . . . . . . . . . . . . . 14
⊢ 𝑥 ∈ V | 
| 21 | 4 | fvexi 6919 | . . . . . . . . . . . . . 14
⊢  1 ∈
V | 
| 22 | 20, 21 | op1st 8023 | . . . . . . . . . . . . 13
⊢
(1st ‘〈𝑥, 1 〉) = 𝑥 | 
| 23 | 22 | a1i 11 | . . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (1st ‘〈𝑥, 1 〉) = 𝑥) | 
| 24 |  | vex 3483 | . . . . . . . . . . . . . 14
⊢ 𝑦 ∈ V | 
| 25 | 24, 21 | op2nd 8024 | . . . . . . . . . . . . 13
⊢
(2nd ‘〈𝑦, 1 〉) = 1 | 
| 26 | 25 | a1i 11 | . . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (2nd ‘〈𝑦, 1 〉) = 1
) | 
| 27 | 23, 26 | oveq12d 7450 | . . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ ((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1 〉)) = (𝑥(.r‘𝑅) 1 )) | 
| 28 |  | rlocf1.1 | . . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝑅) | 
| 29 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 30 | 15 | crngringd 20244 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 31 | 30 | ad5antr 734 | . . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑅 ∈
Ring) | 
| 32 | 28, 29, 4, 31, 18 | ringridmd 20271 | . . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (𝑥(.r‘𝑅) 1 ) = 𝑥) | 
| 33 | 27, 32 | eqtrd 2776 | . . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ ((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1 〉)) = 𝑥) | 
| 34 | 24, 21 | op1st 8023 | . . . . . . . . . . . . 13
⊢
(1st ‘〈𝑦, 1 〉) = 𝑦 | 
| 35 | 34 | a1i 11 | . . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (1st ‘〈𝑦, 1 〉) = 𝑦) | 
| 36 | 20, 21 | op2nd 8024 | . . . . . . . . . . . . 13
⊢
(2nd ‘〈𝑥, 1 〉) = 1 | 
| 37 | 36 | a1i 11 | . . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (2nd ‘〈𝑥, 1 〉) = 1
) | 
| 38 | 35, 37 | oveq12d 7450 | . . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ ((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)) = (𝑦(.r‘𝑅) 1 )) | 
| 39 | 28, 29, 4, 31, 19 | ringridmd 20271 | . . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (𝑦(.r‘𝑅) 1 ) = 𝑦) | 
| 40 | 38, 39 | eqtrd 2776 | . . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ ((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)) = 𝑦) | 
| 41 | 33, 40 | oveq12d 7450 | . . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) = (𝑥(-g‘𝑅)𝑦)) | 
| 42 |  | rlocf1.8 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ⊆ (RLReg‘𝑅)) | 
| 43 | 42 | ad5antr 734 | . . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑆 ⊆
(RLReg‘𝑅)) | 
| 44 |  | simplr 768 | . . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑡 ∈ 𝑆) | 
| 45 | 43, 44 | sseldd 3983 | . . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑡 ∈
(RLReg‘𝑅)) | 
| 46 | 23, 18 | eqeltrd 2840 | . . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (1st ‘〈𝑥, 1 〉) ∈ 𝐵) | 
| 47 | 3, 28 | mgpbas 20143 | . . . . . . . . . . . . . . . . 17
⊢ 𝐵 =
(Base‘(mulGrp‘𝑅)) | 
| 48 | 47 | submss 18823 | . . . . . . . . . . . . . . . 16
⊢ (𝑆 ∈
(SubMnd‘(mulGrp‘𝑅)) → 𝑆 ⊆ 𝐵) | 
| 49 | 2, 48 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑆 ⊆ 𝐵) | 
| 50 | 49, 7 | sseldd 3983 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈ 𝐵) | 
| 51 | 50 | ad5antr 734 | . . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 1
∈ 𝐵) | 
| 52 | 26, 51 | eqeltrd 2840 | . . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (2nd ‘〈𝑦, 1 〉) ∈ 𝐵) | 
| 53 | 28, 29, 31, 46, 52 | ringcld 20258 | . . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ ((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1 〉)) ∈ 𝐵) | 
| 54 | 35, 19 | eqeltrd 2840 | . . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (1st ‘〈𝑦, 1 〉) ∈ 𝐵) | 
| 55 | 37, 51 | eqeltrd 2840 | . . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (2nd ‘〈𝑥, 1 〉) ∈ 𝐵) | 
| 56 | 28, 29, 31, 54, 55 | ringcld 20258 | . . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ ((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)) ∈ 𝐵) | 
| 57 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
(-g‘𝑅) = (-g‘𝑅) | 
| 58 | 28, 57 | grpsubcl 19039 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ Grp ∧
((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1 〉)) ∈ 𝐵 ∧ ((1st
‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)) ∈ 𝐵) → (((1st
‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) ∈ 𝐵) | 
| 59 | 17, 53, 56, 58 | syl3anc 1372 | . . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) ∈ 𝐵) | 
| 60 |  | simpr 484 | . . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅)) | 
| 61 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
(RLReg‘𝑅) =
(RLReg‘𝑅) | 
| 62 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
(0g‘𝑅) = (0g‘𝑅) | 
| 63 | 61, 28, 29, 62 | rrgeq0i 20700 | . . . . . . . . . . 11
⊢ ((𝑡 ∈ (RLReg‘𝑅) ∧ (((1st
‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) ∈ 𝐵) → ((𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅)
→ (((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) =
(0g‘𝑅))) | 
| 64 | 63 | imp 406 | . . . . . . . . . 10
⊢ (((𝑡 ∈ (RLReg‘𝑅) ∧ (((1st
‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) ∈ 𝐵) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) =
(0g‘𝑅)) | 
| 65 | 45, 59, 60, 64 | syl21anc 837 | . . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) =
(0g‘𝑅)) | 
| 66 | 41, 65 | eqtr3d 2778 | . . . . . . . 8
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (𝑥(-g‘𝑅)𝑦) = (0g‘𝑅)) | 
| 67 | 28, 62, 57 | grpsubeq0 19045 | . . . . . . . . 9
⊢ ((𝑅 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥(-g‘𝑅)𝑦) = (0g‘𝑅) ↔ 𝑥 = 𝑦)) | 
| 68 | 67 | biimpa 476 | . . . . . . . 8
⊢ (((𝑅 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥(-g‘𝑅)𝑦) = (0g‘𝑅)) → 𝑥 = 𝑦) | 
| 69 | 17, 18, 19, 66, 68 | syl31anc 1374 | . . . . . . 7
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑥 = 𝑦) | 
| 70 | 49 | ad3antrrr 730 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) → 𝑆 ⊆ 𝐵) | 
| 71 |  | eqid 2736 | . . . . . . . . . . 11
⊢ (𝐵 × 𝑆) = (𝐵 × 𝑆) | 
| 72 | 15 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑅 ∈ CRing) | 
| 73 | 2 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) | 
| 74 | 28, 62, 4, 29, 57, 71, 10, 72, 73 | erler 33270 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ∼ Er (𝐵 × 𝑆)) | 
| 75 | 9 | adantr 480 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 1 〉 ∈ (𝐵 × 𝑆)) | 
| 76 | 74, 75 | erth 8797 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (〈𝑥, 1 〉 ∼ 〈𝑦, 1 〉 ↔ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ )) | 
| 77 | 76 | biimpar 477 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) →
〈𝑥, 1 〉 ∼ 〈𝑦, 1 〉) | 
| 78 | 28, 10, 70, 62, 29, 57, 77 | erldi 33267 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) →
∃𝑡 ∈ 𝑆 (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅)) | 
| 79 | 69, 78 | r19.29a 3161 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) → 𝑥 = 𝑦) | 
| 80 | 79 | ex 412 | . . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ([〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ → 𝑥 = 𝑦)) | 
| 81 | 80 | anasss 466 | . . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ([〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ → 𝑥 = 𝑦)) | 
| 82 | 81 | ralrimivva 3201 | . . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ([〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ → 𝑥 = 𝑦)) | 
| 83 |  | rlocf1.5 | . . . 4
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [〈𝑥, 1 〉] ∼ ) | 
| 84 |  | opeq1 4872 | . . . . 5
⊢ (𝑥 = 𝑦 → 〈𝑥, 1 〉 = 〈𝑦, 1 〉) | 
| 85 | 84 | eceq1d 8786 | . . . 4
⊢ (𝑥 = 𝑦 → [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) | 
| 86 | 83, 85 | f1mpt 7282 | . . 3
⊢ (𝐹:𝐵–1-1→((𝐵 × 𝑆) / ∼ ) ↔
(∀𝑥 ∈ 𝐵 [〈𝑥, 1 〉] ∼ ∈ ((𝐵 × 𝑆) / ∼ ) ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ([〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ → 𝑥 = 𝑦))) | 
| 87 | 14, 82, 86 | sylanbrc 583 | . 2
⊢ (𝜑 → 𝐹:𝐵–1-1→((𝐵 × 𝑆) / ∼ )) | 
| 88 |  | eqid 2736 | . . 3
⊢
(1r‘𝐿) = (1r‘𝐿) | 
| 89 |  | eqid 2736 | . . 3
⊢
(.r‘𝐿) = (.r‘𝐿) | 
| 90 |  | eqid 2736 | . . . . 5
⊢
(+g‘𝑅) = (+g‘𝑅) | 
| 91 |  | rlocf1.3 | . . . . 5
⊢ 𝐿 = (𝑅 RLocal 𝑆) | 
| 92 | 28, 29, 90, 91, 10, 15, 2 | rloccring 33275 | . . . 4
⊢ (𝜑 → 𝐿 ∈ CRing) | 
| 93 | 92 | crngringd 20244 | . . 3
⊢ (𝜑 → 𝐿 ∈ Ring) | 
| 94 |  | opeq1 4872 | . . . . . 6
⊢ (𝑥 = 1 → 〈𝑥, 1 〉 = 〈 1 , 1
〉) | 
| 95 | 94 | eceq1d 8786 | . . . . 5
⊢ (𝑥 = 1 → [〈𝑥, 1 〉] ∼ = [〈 1 , 1 〉] ∼
) | 
| 96 |  | eqid 2736 | . . . . . 6
⊢ [〈
1 , 1 〉] ∼ =
[〈 1
, 1
〉] ∼ | 
| 97 | 62, 4, 91, 10, 15, 2, 96 | rloc1r 33277 | . . . . 5
⊢ (𝜑 → [〈 1 , 1 〉] ∼ =
(1r‘𝐿)) | 
| 98 | 95, 97 | sylan9eqr 2798 | . . . 4
⊢ ((𝜑 ∧ 𝑥 = 1 ) → [〈𝑥, 1 〉] ∼ =
(1r‘𝐿)) | 
| 99 |  | fvexd 6920 | . . . 4
⊢ (𝜑 → (1r‘𝐿) ∈ V) | 
| 100 | 83, 98, 50, 99 | fvmptd2 7023 | . . 3
⊢ (𝜑 → (𝐹‘ 1 ) =
(1r‘𝐿)) | 
| 101 | 30 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 𝑅 ∈ Ring) | 
| 102 | 50 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 1 ∈ 𝐵) | 
| 103 | 28, 29, 4, 101, 102 | ringlidmd 20270 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → ( 1 (.r‘𝑅) 1 ) = 1 ) | 
| 104 | 103 | eqcomd 2742 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 1 = ( 1 (.r‘𝑅) 1 )) | 
| 105 | 104 | opeq2d 4879 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 〈(𝑎(.r‘𝑅)𝑏), 1 〉 = 〈(𝑎(.r‘𝑅)𝑏), ( 1 (.r‘𝑅) 1 )〉) | 
| 106 | 105 | eceq1d 8786 | . . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈(𝑎(.r‘𝑅)𝑏), 1 〉] ∼ = [〈(𝑎(.r‘𝑅)𝑏), ( 1 (.r‘𝑅) 1 )〉] ∼
) | 
| 107 | 15 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 𝑅 ∈ CRing) | 
| 108 | 2 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) | 
| 109 |  | simplr 768 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 𝑎 ∈ 𝐵) | 
| 110 |  | simpr 484 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) | 
| 111 | 108, 6 | syl 17 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 1 ∈ 𝑆) | 
| 112 | 28, 29, 90, 91, 10, 107, 108, 109, 110, 111, 111, 89 | rlocmulval 33274 | . . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → ([〈𝑎, 1 〉] ∼
(.r‘𝐿)[〈𝑏, 1 〉] ∼ ) = [〈(𝑎(.r‘𝑅)𝑏), ( 1 (.r‘𝑅) 1 )〉] ∼
) | 
| 113 | 106, 112 | eqtr4d 2779 | . . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈(𝑎(.r‘𝑅)𝑏), 1 〉] ∼ = ([〈𝑎, 1 〉] ∼
(.r‘𝐿)[〈𝑏, 1 〉] ∼ )) | 
| 114 |  | opeq1 4872 | . . . . . . 7
⊢ (𝑥 = (𝑎(.r‘𝑅)𝑏) → 〈𝑥, 1 〉 = 〈(𝑎(.r‘𝑅)𝑏), 1 〉) | 
| 115 | 114 | eceq1d 8786 | . . . . . 6
⊢ (𝑥 = (𝑎(.r‘𝑅)𝑏) → [〈𝑥, 1 〉] ∼ = [〈(𝑎(.r‘𝑅)𝑏), 1 〉] ∼ ) | 
| 116 | 28, 29, 101, 109, 110 | ringcld 20258 | . . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝑎(.r‘𝑅)𝑏) ∈ 𝐵) | 
| 117 |  | ecexg 8750 | . . . . . . 7
⊢ ( ∼ ∈
V → [〈(𝑎(.r‘𝑅)𝑏), 1 〉] ∼ ∈
V) | 
| 118 | 11, 117 | mp1i 13 | . . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈(𝑎(.r‘𝑅)𝑏), 1 〉] ∼ ∈
V) | 
| 119 | 83, 115, 116, 118 | fvmptd3 7038 | . . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎(.r‘𝑅)𝑏)) = [〈(𝑎(.r‘𝑅)𝑏), 1 〉] ∼ ) | 
| 120 |  | opeq1 4872 | . . . . . . . 8
⊢ (𝑥 = 𝑎 → 〈𝑥, 1 〉 = 〈𝑎, 1 〉) | 
| 121 | 120 | eceq1d 8786 | . . . . . . 7
⊢ (𝑥 = 𝑎 → [〈𝑥, 1 〉] ∼ = [〈𝑎, 1 〉] ∼ ) | 
| 122 |  | ecexg 8750 | . . . . . . . 8
⊢ ( ∼ ∈
V → [〈𝑎, 1 〉] ∼ ∈
V) | 
| 123 | 11, 122 | mp1i 13 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈𝑎, 1 〉] ∼ ∈
V) | 
| 124 | 83, 121, 109, 123 | fvmptd3 7038 | . . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑎) = [〈𝑎, 1 〉] ∼ ) | 
| 125 |  | opeq1 4872 | . . . . . . . 8
⊢ (𝑥 = 𝑏 → 〈𝑥, 1 〉 = 〈𝑏, 1 〉) | 
| 126 | 125 | eceq1d 8786 | . . . . . . 7
⊢ (𝑥 = 𝑏 → [〈𝑥, 1 〉] ∼ = [〈𝑏, 1 〉] ∼ ) | 
| 127 |  | ecexg 8750 | . . . . . . . 8
⊢ ( ∼ ∈
V → [〈𝑏, 1 〉] ∼ ∈
V) | 
| 128 | 11, 127 | mp1i 13 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈𝑏, 1 〉] ∼ ∈
V) | 
| 129 | 83, 126, 110, 128 | fvmptd3 7038 | . . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑏) = [〈𝑏, 1 〉] ∼ ) | 
| 130 | 124, 129 | oveq12d 7450 | . . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → ((𝐹‘𝑎)(.r‘𝐿)(𝐹‘𝑏)) = ([〈𝑎, 1 〉] ∼
(.r‘𝐿)[〈𝑏, 1 〉] ∼ )) | 
| 131 | 113, 119,
130 | 3eqtr4d 2786 | . . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎(.r‘𝑅)𝑏)) = ((𝐹‘𝑎)(.r‘𝐿)(𝐹‘𝑏))) | 
| 132 | 131 | anasss 466 | . . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎(.r‘𝑅)𝑏)) = ((𝐹‘𝑎)(.r‘𝐿)(𝐹‘𝑏))) | 
| 133 |  | eqid 2736 | . . 3
⊢
(Base‘𝐿) =
(Base‘𝐿) | 
| 134 |  | eqid 2736 | . . 3
⊢
(+g‘𝐿) = (+g‘𝐿) | 
| 135 | 13, 83 | fmptd 7133 | . . . 4
⊢ (𝜑 → 𝐹:𝐵⟶((𝐵 × 𝑆) / ∼ )) | 
| 136 | 28, 62, 29, 57, 71, 91, 10, 15, 49 | rlocbas 33272 | . . . . 5
⊢ (𝜑 → ((𝐵 × 𝑆) / ∼ ) =
(Base‘𝐿)) | 
| 137 | 136 | feq3d 6722 | . . . 4
⊢ (𝜑 → (𝐹:𝐵⟶((𝐵 × 𝑆) / ∼ ) ↔ 𝐹:𝐵⟶(Base‘𝐿))) | 
| 138 | 135, 137 | mpbid 232 | . . 3
⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐿)) | 
| 139 | 28, 29, 4, 101, 109 | ringridmd 20271 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝑎(.r‘𝑅) 1 ) = 𝑎) | 
| 140 | 28, 29, 4, 101, 110 | ringridmd 20271 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝑏(.r‘𝑅) 1 ) = 𝑏) | 
| 141 | 139, 140 | oveq12d 7450 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → ((𝑎(.r‘𝑅) 1
)(+g‘𝑅)(𝑏(.r‘𝑅) 1 )) = (𝑎(+g‘𝑅)𝑏)) | 
| 142 | 141 | eqcomd 2742 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑅)𝑏) = ((𝑎(.r‘𝑅) 1
)(+g‘𝑅)(𝑏(.r‘𝑅) 1 ))) | 
| 143 | 142, 104 | opeq12d 4880 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 〈(𝑎(+g‘𝑅)𝑏), 1 〉 = 〈((𝑎(.r‘𝑅) 1
)(+g‘𝑅)(𝑏(.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉) | 
| 144 | 143 | eceq1d 8786 | . . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈(𝑎(+g‘𝑅)𝑏), 1 〉] ∼ = [〈((𝑎(.r‘𝑅) 1
)(+g‘𝑅)(𝑏(.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉] ∼
) | 
| 145 | 28, 29, 90, 91, 10, 107, 108, 109, 110, 111, 111, 134 | rlocaddval 33273 | . . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → ([〈𝑎, 1 〉] ∼
(+g‘𝐿)[〈𝑏, 1 〉] ∼ ) = [〈((𝑎(.r‘𝑅) 1
)(+g‘𝑅)(𝑏(.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉] ∼
) | 
| 146 | 144, 145 | eqtr4d 2779 | . . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈(𝑎(+g‘𝑅)𝑏), 1 〉] ∼ = ([〈𝑎, 1 〉] ∼
(+g‘𝐿)[〈𝑏, 1 〉] ∼ )) | 
| 147 |  | opeq1 4872 | . . . . . . 7
⊢ (𝑥 = (𝑎(+g‘𝑅)𝑏) → 〈𝑥, 1 〉 = 〈(𝑎(+g‘𝑅)𝑏), 1 〉) | 
| 148 | 147 | eceq1d 8786 | . . . . . 6
⊢ (𝑥 = (𝑎(+g‘𝑅)𝑏) → [〈𝑥, 1 〉] ∼ = [〈(𝑎(+g‘𝑅)𝑏), 1 〉] ∼ ) | 
| 149 | 16 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 𝑅 ∈ Grp) | 
| 150 | 28, 90, 149, 109, 110 | grpcld 18966 | . . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑅)𝑏) ∈ 𝐵) | 
| 151 |  | ecexg 8750 | . . . . . . 7
⊢ ( ∼ ∈
V → [〈(𝑎(+g‘𝑅)𝑏), 1 〉] ∼ ∈
V) | 
| 152 | 11, 151 | mp1i 13 | . . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈(𝑎(+g‘𝑅)𝑏), 1 〉] ∼ ∈
V) | 
| 153 | 83, 148, 150, 152 | fvmptd3 7038 | . . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = [〈(𝑎(+g‘𝑅)𝑏), 1 〉] ∼ ) | 
| 154 | 124, 129 | oveq12d 7450 | . . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → ((𝐹‘𝑎)(+g‘𝐿)(𝐹‘𝑏)) = ([〈𝑎, 1 〉] ∼
(+g‘𝐿)[〈𝑏, 1 〉] ∼ )) | 
| 155 | 146, 153,
154 | 3eqtr4d 2786 | . . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = ((𝐹‘𝑎)(+g‘𝐿)(𝐹‘𝑏))) | 
| 156 | 155 | anasss 466 | . . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = ((𝐹‘𝑎)(+g‘𝐿)(𝐹‘𝑏))) | 
| 157 | 28, 4, 88, 29, 89, 30, 93, 100, 132, 133, 90, 134, 138, 156 | isrhmd 20489 | . 2
⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝐿)) | 
| 158 | 87, 157 | jca 511 | 1
⊢ (𝜑 → (𝐹:𝐵–1-1→((𝐵 × 𝑆) / ∼ ) ∧ 𝐹 ∈ (𝑅 RingHom 𝐿))) |