Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rlocf1 Structured version   Visualization version   GIF version

Theorem rlocf1 33278
Description: The embedding 𝐹 of a ring 𝑅 into its localization 𝐿. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
rlocf1.1 𝐵 = (Base‘𝑅)
rlocf1.2 1 = (1r𝑅)
rlocf1.3 𝐿 = (𝑅 RLocal 𝑆)
rlocf1.4 = (𝑅 ~RL 𝑆)
rlocf1.5 𝐹 = (𝑥𝐵 ↦ [⟨𝑥, 1 ⟩] )
rlocf1.6 (𝜑𝑅 ∈ CRing)
rlocf1.7 (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
rlocf1.8 (𝜑𝑆 ⊆ (RLReg‘𝑅))
Assertion
Ref Expression
rlocf1 (𝜑 → (𝐹:𝐵1-1→((𝐵 × 𝑆) / ) ∧ 𝐹 ∈ (𝑅 RingHom 𝐿)))
Distinct variable groups:   𝑥, 1   𝑥,   𝑥,𝐵   𝑥,𝐹   𝑥,𝐿   𝑥,𝑅   𝑥,𝑆   𝜑,𝑥

Proof of Theorem rlocf1
Dummy variables 𝑡 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥𝐵)
2 rlocf1.7 . . . . . . . 8 (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
3 eqid 2736 . . . . . . . . . 10 (mulGrp‘𝑅) = (mulGrp‘𝑅)
4 rlocf1.2 . . . . . . . . . 10 1 = (1r𝑅)
53, 4ringidval 20181 . . . . . . . . 9 1 = (0g‘(mulGrp‘𝑅))
65subm0cl 18825 . . . . . . . 8 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 1𝑆)
72, 6syl 17 . . . . . . 7 (𝜑1𝑆)
87adantr 480 . . . . . 6 ((𝜑𝑥𝐵) → 1𝑆)
91, 8opelxpd 5723 . . . . 5 ((𝜑𝑥𝐵) → ⟨𝑥, 1 ⟩ ∈ (𝐵 × 𝑆))
10 rlocf1.4 . . . . . . 7 = (𝑅 ~RL 𝑆)
1110ovexi 7466 . . . . . 6 ∈ V
1211ecelqsi 8814 . . . . 5 (⟨𝑥, 1 ⟩ ∈ (𝐵 × 𝑆) → [⟨𝑥, 1 ⟩] ∈ ((𝐵 × 𝑆) / ))
139, 12syl 17 . . . 4 ((𝜑𝑥𝐵) → [⟨𝑥, 1 ⟩] ∈ ((𝐵 × 𝑆) / ))
1413ralrimiva 3145 . . 3 (𝜑 → ∀𝑥𝐵 [⟨𝑥, 1 ⟩] ∈ ((𝐵 × 𝑆) / ))
15 rlocf1.6 . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
1615crnggrpd 20245 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
1716ad5antr 734 . . . . . . . 8 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → 𝑅 ∈ Grp)
18 simp-5r 785 . . . . . . . 8 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → 𝑥𝐵)
19 simp-4r 783 . . . . . . . 8 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → 𝑦𝐵)
20 vex 3483 . . . . . . . . . . . . . 14 𝑥 ∈ V
214fvexi 6919 . . . . . . . . . . . . . 14 1 ∈ V
2220, 21op1st 8023 . . . . . . . . . . . . 13 (1st ‘⟨𝑥, 1 ⟩) = 𝑥
2322a1i 11 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (1st ‘⟨𝑥, 1 ⟩) = 𝑥)
24 vex 3483 . . . . . . . . . . . . . 14 𝑦 ∈ V
2524, 21op2nd 8024 . . . . . . . . . . . . 13 (2nd ‘⟨𝑦, 1 ⟩) = 1
2625a1i 11 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (2nd ‘⟨𝑦, 1 ⟩) = 1 )
2723, 26oveq12d 7450 . . . . . . . . . . 11 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → ((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩)) = (𝑥(.r𝑅) 1 ))
28 rlocf1.1 . . . . . . . . . . . 12 𝐵 = (Base‘𝑅)
29 eqid 2736 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
3015crngringd 20244 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Ring)
3130ad5antr 734 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → 𝑅 ∈ Ring)
3228, 29, 4, 31, 18ringridmd 20271 . . . . . . . . . . 11 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (𝑥(.r𝑅) 1 ) = 𝑥)
3327, 32eqtrd 2776 . . . . . . . . . 10 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → ((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩)) = 𝑥)
3424, 21op1st 8023 . . . . . . . . . . . . 13 (1st ‘⟨𝑦, 1 ⟩) = 𝑦
3534a1i 11 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (1st ‘⟨𝑦, 1 ⟩) = 𝑦)
3620, 21op2nd 8024 . . . . . . . . . . . . 13 (2nd ‘⟨𝑥, 1 ⟩) = 1
3736a1i 11 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (2nd ‘⟨𝑥, 1 ⟩) = 1 )
3835, 37oveq12d 7450 . . . . . . . . . . 11 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → ((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)) = (𝑦(.r𝑅) 1 ))
3928, 29, 4, 31, 19ringridmd 20271 . . . . . . . . . . 11 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (𝑦(.r𝑅) 1 ) = 𝑦)
4038, 39eqtrd 2776 . . . . . . . . . 10 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → ((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)) = 𝑦)
4133, 40oveq12d 7450 . . . . . . . . 9 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩))) = (𝑥(-g𝑅)𝑦))
42 rlocf1.8 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ (RLReg‘𝑅))
4342ad5antr 734 . . . . . . . . . . 11 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → 𝑆 ⊆ (RLReg‘𝑅))
44 simplr 768 . . . . . . . . . . 11 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → 𝑡𝑆)
4543, 44sseldd 3983 . . . . . . . . . 10 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → 𝑡 ∈ (RLReg‘𝑅))
4623, 18eqeltrd 2840 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (1st ‘⟨𝑥, 1 ⟩) ∈ 𝐵)
473, 28mgpbas 20143 . . . . . . . . . . . . . . . . 17 𝐵 = (Base‘(mulGrp‘𝑅))
4847submss 18823 . . . . . . . . . . . . . . . 16 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆𝐵)
492, 48syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆𝐵)
5049, 7sseldd 3983 . . . . . . . . . . . . . 14 (𝜑1𝐵)
5150ad5antr 734 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → 1𝐵)
5226, 51eqeltrd 2840 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (2nd ‘⟨𝑦, 1 ⟩) ∈ 𝐵)
5328, 29, 31, 46, 52ringcld 20258 . . . . . . . . . . 11 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → ((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩)) ∈ 𝐵)
5435, 19eqeltrd 2840 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (1st ‘⟨𝑦, 1 ⟩) ∈ 𝐵)
5537, 51eqeltrd 2840 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (2nd ‘⟨𝑥, 1 ⟩) ∈ 𝐵)
5628, 29, 31, 54, 55ringcld 20258 . . . . . . . . . . 11 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → ((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)) ∈ 𝐵)
57 eqid 2736 . . . . . . . . . . . 12 (-g𝑅) = (-g𝑅)
5828, 57grpsubcl 19039 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ ((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩)) ∈ 𝐵 ∧ ((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)) ∈ 𝐵) → (((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩))) ∈ 𝐵)
5917, 53, 56, 58syl3anc 1372 . . . . . . . . . 10 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩))) ∈ 𝐵)
60 simpr 484 . . . . . . . . . 10 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅))
61 eqid 2736 . . . . . . . . . . . 12 (RLReg‘𝑅) = (RLReg‘𝑅)
62 eqid 2736 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
6361, 28, 29, 62rrgeq0i 20700 . . . . . . . . . . 11 ((𝑡 ∈ (RLReg‘𝑅) ∧ (((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩))) ∈ 𝐵) → ((𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅) → (((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩))) = (0g𝑅)))
6463imp 406 . . . . . . . . . 10 (((𝑡 ∈ (RLReg‘𝑅) ∧ (((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩))) ∈ 𝐵) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩))) = (0g𝑅))
6545, 59, 60, 64syl21anc 837 . . . . . . . . 9 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩))) = (0g𝑅))
6641, 65eqtr3d 2778 . . . . . . . 8 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → (𝑥(-g𝑅)𝑦) = (0g𝑅))
6728, 62, 57grpsubeq0 19045 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((𝑥(-g𝑅)𝑦) = (0g𝑅) ↔ 𝑥 = 𝑦))
6867biimpa 476 . . . . . . . 8 (((𝑅 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) ∧ (𝑥(-g𝑅)𝑦) = (0g𝑅)) → 𝑥 = 𝑦)
6917, 18, 19, 66, 68syl31anc 1374 . . . . . . 7 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) ∧ 𝑡𝑆) ∧ (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅)) → 𝑥 = 𝑦)
7049ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) → 𝑆𝐵)
71 eqid 2736 . . . . . . . . . . 11 (𝐵 × 𝑆) = (𝐵 × 𝑆)
7215ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → 𝑅 ∈ CRing)
732ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
7428, 62, 4, 29, 57, 71, 10, 72, 73erler 33270 . . . . . . . . . 10 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → Er (𝐵 × 𝑆))
759adantr 480 . . . . . . . . . 10 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → ⟨𝑥, 1 ⟩ ∈ (𝐵 × 𝑆))
7674, 75erth 8797 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (⟨𝑥, 1𝑦, 1 ⟩ ↔ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ))
7776biimpar 477 . . . . . . . 8 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) → ⟨𝑥, 1𝑦, 1 ⟩)
7828, 10, 70, 62, 29, 57, 77erldi 33267 . . . . . . 7 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) → ∃𝑡𝑆 (𝑡(.r𝑅)(((1st ‘⟨𝑥, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑦, 1 ⟩))(-g𝑅)((1st ‘⟨𝑦, 1 ⟩)(.r𝑅)(2nd ‘⟨𝑥, 1 ⟩)))) = (0g𝑅))
7969, 78r19.29a 3161 . . . . . 6 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] ) → 𝑥 = 𝑦)
8079ex 412 . . . . 5 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → ([⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] 𝑥 = 𝑦))
8180anasss 466 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ([⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] 𝑥 = 𝑦))
8281ralrimivva 3201 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 ([⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] 𝑥 = 𝑦))
83 rlocf1.5 . . . 4 𝐹 = (𝑥𝐵 ↦ [⟨𝑥, 1 ⟩] )
84 opeq1 4872 . . . . 5 (𝑥 = 𝑦 → ⟨𝑥, 1 ⟩ = ⟨𝑦, 1 ⟩)
8584eceq1d 8786 . . . 4 (𝑥 = 𝑦 → [⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] )
8683, 85f1mpt 7282 . . 3 (𝐹:𝐵1-1→((𝐵 × 𝑆) / ) ↔ (∀𝑥𝐵 [⟨𝑥, 1 ⟩] ∈ ((𝐵 × 𝑆) / ) ∧ ∀𝑥𝐵𝑦𝐵 ([⟨𝑥, 1 ⟩] = [⟨𝑦, 1 ⟩] 𝑥 = 𝑦)))
8714, 82, 86sylanbrc 583 . 2 (𝜑𝐹:𝐵1-1→((𝐵 × 𝑆) / ))
88 eqid 2736 . . 3 (1r𝐿) = (1r𝐿)
89 eqid 2736 . . 3 (.r𝐿) = (.r𝐿)
90 eqid 2736 . . . . 5 (+g𝑅) = (+g𝑅)
91 rlocf1.3 . . . . 5 𝐿 = (𝑅 RLocal 𝑆)
9228, 29, 90, 91, 10, 15, 2rloccring 33275 . . . 4 (𝜑𝐿 ∈ CRing)
9392crngringd 20244 . . 3 (𝜑𝐿 ∈ Ring)
94 opeq1 4872 . . . . . 6 (𝑥 = 1 → ⟨𝑥, 1 ⟩ = ⟨ 1 , 1 ⟩)
9594eceq1d 8786 . . . . 5 (𝑥 = 1 → [⟨𝑥, 1 ⟩] = [⟨ 1 , 1 ⟩] )
96 eqid 2736 . . . . . 6 [⟨ 1 , 1 ⟩] = [⟨ 1 , 1 ⟩]
9762, 4, 91, 10, 15, 2, 96rloc1r 33277 . . . . 5 (𝜑 → [⟨ 1 , 1 ⟩] = (1r𝐿))
9895, 97sylan9eqr 2798 . . . 4 ((𝜑𝑥 = 1 ) → [⟨𝑥, 1 ⟩] = (1r𝐿))
99 fvexd 6920 . . . 4 (𝜑 → (1r𝐿) ∈ V)
10083, 98, 50, 99fvmptd2 7023 . . 3 (𝜑 → (𝐹1 ) = (1r𝐿))
10130ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → 𝑅 ∈ Ring)
10250ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → 1𝐵)
10328, 29, 4, 101, 102ringlidmd 20270 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → ( 1 (.r𝑅) 1 ) = 1 )
104103eqcomd 2742 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → 1 = ( 1 (.r𝑅) 1 ))
105104opeq2d 4879 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → ⟨(𝑎(.r𝑅)𝑏), 1 ⟩ = ⟨(𝑎(.r𝑅)𝑏), ( 1 (.r𝑅) 1 )⟩)
106105eceq1d 8786 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → [⟨(𝑎(.r𝑅)𝑏), 1 ⟩] = [⟨(𝑎(.r𝑅)𝑏), ( 1 (.r𝑅) 1 )⟩] )
10715ad2antrr 726 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → 𝑅 ∈ CRing)
1082ad2antrr 726 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
109 simplr 768 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → 𝑎𝐵)
110 simpr 484 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → 𝑏𝐵)
111108, 6syl 17 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → 1𝑆)
11228, 29, 90, 91, 10, 107, 108, 109, 110, 111, 111, 89rlocmulval 33274 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → ([⟨𝑎, 1 ⟩] (.r𝐿)[⟨𝑏, 1 ⟩] ) = [⟨(𝑎(.r𝑅)𝑏), ( 1 (.r𝑅) 1 )⟩] )
113106, 112eqtr4d 2779 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → [⟨(𝑎(.r𝑅)𝑏), 1 ⟩] = ([⟨𝑎, 1 ⟩] (.r𝐿)[⟨𝑏, 1 ⟩] ))
114 opeq1 4872 . . . . . . 7 (𝑥 = (𝑎(.r𝑅)𝑏) → ⟨𝑥, 1 ⟩ = ⟨(𝑎(.r𝑅)𝑏), 1 ⟩)
115114eceq1d 8786 . . . . . 6 (𝑥 = (𝑎(.r𝑅)𝑏) → [⟨𝑥, 1 ⟩] = [⟨(𝑎(.r𝑅)𝑏), 1 ⟩] )
11628, 29, 101, 109, 110ringcld 20258 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝑎(.r𝑅)𝑏) ∈ 𝐵)
117 ecexg 8750 . . . . . . 7 ( ∈ V → [⟨(𝑎(.r𝑅)𝑏), 1 ⟩] ∈ V)
11811, 117mp1i 13 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → [⟨(𝑎(.r𝑅)𝑏), 1 ⟩] ∈ V)
11983, 115, 116, 118fvmptd3 7038 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝐹‘(𝑎(.r𝑅)𝑏)) = [⟨(𝑎(.r𝑅)𝑏), 1 ⟩] )
120 opeq1 4872 . . . . . . . 8 (𝑥 = 𝑎 → ⟨𝑥, 1 ⟩ = ⟨𝑎, 1 ⟩)
121120eceq1d 8786 . . . . . . 7 (𝑥 = 𝑎 → [⟨𝑥, 1 ⟩] = [⟨𝑎, 1 ⟩] )
122 ecexg 8750 . . . . . . . 8 ( ∈ V → [⟨𝑎, 1 ⟩] ∈ V)
12311, 122mp1i 13 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → [⟨𝑎, 1 ⟩] ∈ V)
12483, 121, 109, 123fvmptd3 7038 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝐹𝑎) = [⟨𝑎, 1 ⟩] )
125 opeq1 4872 . . . . . . . 8 (𝑥 = 𝑏 → ⟨𝑥, 1 ⟩ = ⟨𝑏, 1 ⟩)
126125eceq1d 8786 . . . . . . 7 (𝑥 = 𝑏 → [⟨𝑥, 1 ⟩] = [⟨𝑏, 1 ⟩] )
127 ecexg 8750 . . . . . . . 8 ( ∈ V → [⟨𝑏, 1 ⟩] ∈ V)
12811, 127mp1i 13 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → [⟨𝑏, 1 ⟩] ∈ V)
12983, 126, 110, 128fvmptd3 7038 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝐹𝑏) = [⟨𝑏, 1 ⟩] )
130124, 129oveq12d 7450 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → ((𝐹𝑎)(.r𝐿)(𝐹𝑏)) = ([⟨𝑎, 1 ⟩] (.r𝐿)[⟨𝑏, 1 ⟩] ))
131113, 119, 1303eqtr4d 2786 . . . 4 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝐹‘(𝑎(.r𝑅)𝑏)) = ((𝐹𝑎)(.r𝐿)(𝐹𝑏)))
132131anasss 466 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎(.r𝑅)𝑏)) = ((𝐹𝑎)(.r𝐿)(𝐹𝑏)))
133 eqid 2736 . . 3 (Base‘𝐿) = (Base‘𝐿)
134 eqid 2736 . . 3 (+g𝐿) = (+g𝐿)
13513, 83fmptd 7133 . . . 4 (𝜑𝐹:𝐵⟶((𝐵 × 𝑆) / ))
13628, 62, 29, 57, 71, 91, 10, 15, 49rlocbas 33272 . . . . 5 (𝜑 → ((𝐵 × 𝑆) / ) = (Base‘𝐿))
137136feq3d 6722 . . . 4 (𝜑 → (𝐹:𝐵⟶((𝐵 × 𝑆) / ) ↔ 𝐹:𝐵⟶(Base‘𝐿)))
138135, 137mpbid 232 . . 3 (𝜑𝐹:𝐵⟶(Base‘𝐿))
13928, 29, 4, 101, 109ringridmd 20271 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝑎(.r𝑅) 1 ) = 𝑎)
14028, 29, 4, 101, 110ringridmd 20271 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝑏(.r𝑅) 1 ) = 𝑏)
141139, 140oveq12d 7450 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → ((𝑎(.r𝑅) 1 )(+g𝑅)(𝑏(.r𝑅) 1 )) = (𝑎(+g𝑅)𝑏))
142141eqcomd 2742 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝑎(+g𝑅)𝑏) = ((𝑎(.r𝑅) 1 )(+g𝑅)(𝑏(.r𝑅) 1 )))
143142, 104opeq12d 4880 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → ⟨(𝑎(+g𝑅)𝑏), 1 ⟩ = ⟨((𝑎(.r𝑅) 1 )(+g𝑅)(𝑏(.r𝑅) 1 )), ( 1 (.r𝑅) 1 )⟩)
144143eceq1d 8786 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → [⟨(𝑎(+g𝑅)𝑏), 1 ⟩] = [⟨((𝑎(.r𝑅) 1 )(+g𝑅)(𝑏(.r𝑅) 1 )), ( 1 (.r𝑅) 1 )⟩] )
14528, 29, 90, 91, 10, 107, 108, 109, 110, 111, 111, 134rlocaddval 33273 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → ([⟨𝑎, 1 ⟩] (+g𝐿)[⟨𝑏, 1 ⟩] ) = [⟨((𝑎(.r𝑅) 1 )(+g𝑅)(𝑏(.r𝑅) 1 )), ( 1 (.r𝑅) 1 )⟩] )
146144, 145eqtr4d 2779 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → [⟨(𝑎(+g𝑅)𝑏), 1 ⟩] = ([⟨𝑎, 1 ⟩] (+g𝐿)[⟨𝑏, 1 ⟩] ))
147 opeq1 4872 . . . . . . 7 (𝑥 = (𝑎(+g𝑅)𝑏) → ⟨𝑥, 1 ⟩ = ⟨(𝑎(+g𝑅)𝑏), 1 ⟩)
148147eceq1d 8786 . . . . . 6 (𝑥 = (𝑎(+g𝑅)𝑏) → [⟨𝑥, 1 ⟩] = [⟨(𝑎(+g𝑅)𝑏), 1 ⟩] )
14916ad2antrr 726 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → 𝑅 ∈ Grp)
15028, 90, 149, 109, 110grpcld 18966 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
151 ecexg 8750 . . . . . . 7 ( ∈ V → [⟨(𝑎(+g𝑅)𝑏), 1 ⟩] ∈ V)
15211, 151mp1i 13 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → [⟨(𝑎(+g𝑅)𝑏), 1 ⟩] ∈ V)
15383, 148, 150, 152fvmptd3 7038 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝐹‘(𝑎(+g𝑅)𝑏)) = [⟨(𝑎(+g𝑅)𝑏), 1 ⟩] )
154124, 129oveq12d 7450 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → ((𝐹𝑎)(+g𝐿)(𝐹𝑏)) = ([⟨𝑎, 1 ⟩] (+g𝐿)[⟨𝑏, 1 ⟩] ))
155146, 153, 1543eqtr4d 2786 . . . 4 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝐿)(𝐹𝑏)))
156155anasss 466 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝐿)(𝐹𝑏)))
15728, 4, 88, 29, 89, 30, 93, 100, 132, 133, 90, 134, 138, 156isrhmd 20489 . 2 (𝜑𝐹 ∈ (𝑅 RingHom 𝐿))
15887, 157jca 511 1 (𝜑 → (𝐹:𝐵1-1→((𝐵 × 𝑆) / ) ∧ 𝐹 ∈ (𝑅 RingHom 𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060  Vcvv 3479  wss 3950  cop 4631   class class class wbr 5142  cmpt 5224   × cxp 5682  wf 6556  1-1wf1 6557  cfv 6560  (class class class)co 7432  1st c1st 8013  2nd c2nd 8014  [cec 8744   / cqs 8745  Basecbs 17248  +gcplusg 17298  .rcmulr 17299  0gc0g 17485  SubMndcsubmnd 18796  Grpcgrp 18952  -gcsg 18954  mulGrpcmgp 20138  1rcur 20179  Ringcrg 20231  CRingccrg 20232   RingHom crh 20470  RLRegcrlreg 20692   ~RL cerl 33258   RLocal crloc 33259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-ec 8748  df-qs 8752  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-0g 17487  df-imas 17554  df-qus 17555  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-ghm 19232  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-cring 20234  df-rhm 20473  df-rlreg 20695  df-erl 33260  df-rloc 33261
This theorem is referenced by:  fracf1  33310
  Copyright terms: Public domain W3C validator