| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
| 2 | | rlocf1.7 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) |
| 3 | | eqid 2736 |
. . . . . . . . . 10
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
| 4 | | rlocf1.2 |
. . . . . . . . . 10
⊢ 1 =
(1r‘𝑅) |
| 5 | 3, 4 | ringidval 20148 |
. . . . . . . . 9
⊢ 1 =
(0g‘(mulGrp‘𝑅)) |
| 6 | 5 | subm0cl 18794 |
. . . . . . . 8
⊢ (𝑆 ∈
(SubMnd‘(mulGrp‘𝑅)) → 1 ∈ 𝑆) |
| 7 | 2, 6 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 1 ∈ 𝑆) |
| 8 | 7 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 1 ∈ 𝑆) |
| 9 | 1, 8 | opelxpd 5698 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 〈𝑥, 1 〉 ∈ (𝐵 × 𝑆)) |
| 10 | | rlocf1.4 |
. . . . . . 7
⊢ ∼ =
(𝑅 ~RL
𝑆) |
| 11 | 10 | ovexi 7444 |
. . . . . 6
⊢ ∼ ∈
V |
| 12 | 11 | ecelqsi 8792 |
. . . . 5
⊢
(〈𝑥, 1 〉 ∈
(𝐵 × 𝑆) → [〈𝑥, 1 〉] ∼ ∈ ((𝐵 × 𝑆) / ∼ )) |
| 13 | 9, 12 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [〈𝑥, 1 〉] ∼ ∈ ((𝐵 × 𝑆) / ∼ )) |
| 14 | 13 | ralrimiva 3133 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 [〈𝑥, 1 〉] ∼ ∈ ((𝐵 × 𝑆) / ∼ )) |
| 15 | | rlocf1.6 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 16 | 15 | crnggrpd 20212 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 17 | 16 | ad5antr 734 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑅 ∈
Grp) |
| 18 | | simp-5r 785 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑥 ∈ 𝐵) |
| 19 | | simp-4r 783 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑦 ∈ 𝐵) |
| 20 | | vex 3468 |
. . . . . . . . . . . . . 14
⊢ 𝑥 ∈ V |
| 21 | 4 | fvexi 6895 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
V |
| 22 | 20, 21 | op1st 8001 |
. . . . . . . . . . . . 13
⊢
(1st ‘〈𝑥, 1 〉) = 𝑥 |
| 23 | 22 | a1i 11 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (1st ‘〈𝑥, 1 〉) = 𝑥) |
| 24 | | vex 3468 |
. . . . . . . . . . . . . 14
⊢ 𝑦 ∈ V |
| 25 | 24, 21 | op2nd 8002 |
. . . . . . . . . . . . 13
⊢
(2nd ‘〈𝑦, 1 〉) = 1 |
| 26 | 25 | a1i 11 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (2nd ‘〈𝑦, 1 〉) = 1
) |
| 27 | 23, 26 | oveq12d 7428 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ ((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1 〉)) = (𝑥(.r‘𝑅) 1 )) |
| 28 | | rlocf1.1 |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝑅) |
| 29 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 30 | 15 | crngringd 20211 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 31 | 30 | ad5antr 734 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑅 ∈
Ring) |
| 32 | 28, 29, 4, 31, 18 | ringridmd 20238 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (𝑥(.r‘𝑅) 1 ) = 𝑥) |
| 33 | 27, 32 | eqtrd 2771 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ ((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1 〉)) = 𝑥) |
| 34 | 24, 21 | op1st 8001 |
. . . . . . . . . . . . 13
⊢
(1st ‘〈𝑦, 1 〉) = 𝑦 |
| 35 | 34 | a1i 11 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (1st ‘〈𝑦, 1 〉) = 𝑦) |
| 36 | 20, 21 | op2nd 8002 |
. . . . . . . . . . . . 13
⊢
(2nd ‘〈𝑥, 1 〉) = 1 |
| 37 | 36 | a1i 11 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (2nd ‘〈𝑥, 1 〉) = 1
) |
| 38 | 35, 37 | oveq12d 7428 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ ((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)) = (𝑦(.r‘𝑅) 1 )) |
| 39 | 28, 29, 4, 31, 19 | ringridmd 20238 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (𝑦(.r‘𝑅) 1 ) = 𝑦) |
| 40 | 38, 39 | eqtrd 2771 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ ((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)) = 𝑦) |
| 41 | 33, 40 | oveq12d 7428 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) = (𝑥(-g‘𝑅)𝑦)) |
| 42 | | rlocf1.8 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ⊆ (RLReg‘𝑅)) |
| 43 | 42 | ad5antr 734 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑆 ⊆
(RLReg‘𝑅)) |
| 44 | | simplr 768 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑡 ∈ 𝑆) |
| 45 | 43, 44 | sseldd 3964 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑡 ∈
(RLReg‘𝑅)) |
| 46 | 23, 18 | eqeltrd 2835 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (1st ‘〈𝑥, 1 〉) ∈ 𝐵) |
| 47 | 3, 28 | mgpbas 20110 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐵 =
(Base‘(mulGrp‘𝑅)) |
| 48 | 47 | submss 18792 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 ∈
(SubMnd‘(mulGrp‘𝑅)) → 𝑆 ⊆ 𝐵) |
| 49 | 2, 48 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 50 | 49, 7 | sseldd 3964 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈ 𝐵) |
| 51 | 50 | ad5antr 734 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 1
∈ 𝐵) |
| 52 | 26, 51 | eqeltrd 2835 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (2nd ‘〈𝑦, 1 〉) ∈ 𝐵) |
| 53 | 28, 29, 31, 46, 52 | ringcld 20225 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ ((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1 〉)) ∈ 𝐵) |
| 54 | 35, 19 | eqeltrd 2835 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (1st ‘〈𝑦, 1 〉) ∈ 𝐵) |
| 55 | 37, 51 | eqeltrd 2835 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (2nd ‘〈𝑥, 1 〉) ∈ 𝐵) |
| 56 | 28, 29, 31, 54, 55 | ringcld 20225 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ ((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)) ∈ 𝐵) |
| 57 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(-g‘𝑅) = (-g‘𝑅) |
| 58 | 28, 57 | grpsubcl 19008 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Grp ∧
((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1 〉)) ∈ 𝐵 ∧ ((1st
‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)) ∈ 𝐵) → (((1st
‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) ∈ 𝐵) |
| 59 | 17, 53, 56, 58 | syl3anc 1373 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) ∈ 𝐵) |
| 60 | | simpr 484 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅)) |
| 61 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(RLReg‘𝑅) =
(RLReg‘𝑅) |
| 62 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 63 | 61, 28, 29, 62 | rrgeq0i 20664 |
. . . . . . . . . . 11
⊢ ((𝑡 ∈ (RLReg‘𝑅) ∧ (((1st
‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) ∈ 𝐵) → ((𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅)
→ (((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) =
(0g‘𝑅))) |
| 64 | 63 | imp 406 |
. . . . . . . . . 10
⊢ (((𝑡 ∈ (RLReg‘𝑅) ∧ (((1st
‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) ∈ 𝐵) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) =
(0g‘𝑅)) |
| 65 | 45, 59, 60, 64 | syl21anc 837 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) =
(0g‘𝑅)) |
| 66 | 41, 65 | eqtr3d 2773 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (𝑥(-g‘𝑅)𝑦) = (0g‘𝑅)) |
| 67 | 28, 62, 57 | grpsubeq0 19014 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥(-g‘𝑅)𝑦) = (0g‘𝑅) ↔ 𝑥 = 𝑦)) |
| 68 | 67 | biimpa 476 |
. . . . . . . 8
⊢ (((𝑅 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥(-g‘𝑅)𝑦) = (0g‘𝑅)) → 𝑥 = 𝑦) |
| 69 | 17, 18, 19, 66, 68 | syl31anc 1375 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑥 = 𝑦) |
| 70 | 49 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) → 𝑆 ⊆ 𝐵) |
| 71 | | eqid 2736 |
. . . . . . . . . . 11
⊢ (𝐵 × 𝑆) = (𝐵 × 𝑆) |
| 72 | 15 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑅 ∈ CRing) |
| 73 | 2 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) |
| 74 | 28, 62, 4, 29, 57, 71, 10, 72, 73 | erler 33265 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ∼ Er (𝐵 × 𝑆)) |
| 75 | 9 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 1 〉 ∈ (𝐵 × 𝑆)) |
| 76 | 74, 75 | erth 8775 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (〈𝑥, 1 〉 ∼ 〈𝑦, 1 〉 ↔ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ )) |
| 77 | 76 | biimpar 477 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) →
〈𝑥, 1 〉 ∼ 〈𝑦, 1 〉) |
| 78 | 28, 10, 70, 62, 29, 57, 77 | erldi 33262 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) →
∃𝑡 ∈ 𝑆 (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅)) |
| 79 | 69, 78 | r19.29a 3149 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) → 𝑥 = 𝑦) |
| 80 | 79 | ex 412 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ([〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ → 𝑥 = 𝑦)) |
| 81 | 80 | anasss 466 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ([〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ → 𝑥 = 𝑦)) |
| 82 | 81 | ralrimivva 3188 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ([〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ → 𝑥 = 𝑦)) |
| 83 | | rlocf1.5 |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [〈𝑥, 1 〉] ∼ ) |
| 84 | | opeq1 4854 |
. . . . 5
⊢ (𝑥 = 𝑦 → 〈𝑥, 1 〉 = 〈𝑦, 1 〉) |
| 85 | 84 | eceq1d 8764 |
. . . 4
⊢ (𝑥 = 𝑦 → [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) |
| 86 | 83, 85 | f1mpt 7259 |
. . 3
⊢ (𝐹:𝐵–1-1→((𝐵 × 𝑆) / ∼ ) ↔
(∀𝑥 ∈ 𝐵 [〈𝑥, 1 〉] ∼ ∈ ((𝐵 × 𝑆) / ∼ ) ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ([〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ → 𝑥 = 𝑦))) |
| 87 | 14, 82, 86 | sylanbrc 583 |
. 2
⊢ (𝜑 → 𝐹:𝐵–1-1→((𝐵 × 𝑆) / ∼ )) |
| 88 | | eqid 2736 |
. . 3
⊢
(1r‘𝐿) = (1r‘𝐿) |
| 89 | | eqid 2736 |
. . 3
⊢
(.r‘𝐿) = (.r‘𝐿) |
| 90 | | eqid 2736 |
. . . . 5
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 91 | | rlocf1.3 |
. . . . 5
⊢ 𝐿 = (𝑅 RLocal 𝑆) |
| 92 | 28, 29, 90, 91, 10, 15, 2 | rloccring 33270 |
. . . 4
⊢ (𝜑 → 𝐿 ∈ CRing) |
| 93 | 92 | crngringd 20211 |
. . 3
⊢ (𝜑 → 𝐿 ∈ Ring) |
| 94 | | opeq1 4854 |
. . . . . 6
⊢ (𝑥 = 1 → 〈𝑥, 1 〉 = 〈 1 , 1
〉) |
| 95 | 94 | eceq1d 8764 |
. . . . 5
⊢ (𝑥 = 1 → [〈𝑥, 1 〉] ∼ = [〈 1 , 1 〉] ∼
) |
| 96 | | eqid 2736 |
. . . . . 6
⊢ [〈
1 , 1 〉] ∼ =
[〈 1
, 1
〉] ∼ |
| 97 | 62, 4, 91, 10, 15, 2, 96 | rloc1r 33272 |
. . . . 5
⊢ (𝜑 → [〈 1 , 1 〉] ∼ =
(1r‘𝐿)) |
| 98 | 95, 97 | sylan9eqr 2793 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 1 ) → [〈𝑥, 1 〉] ∼ =
(1r‘𝐿)) |
| 99 | | fvexd 6896 |
. . . 4
⊢ (𝜑 → (1r‘𝐿) ∈ V) |
| 100 | 83, 98, 50, 99 | fvmptd2 6999 |
. . 3
⊢ (𝜑 → (𝐹‘ 1 ) =
(1r‘𝐿)) |
| 101 | 30 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 102 | 50 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 1 ∈ 𝐵) |
| 103 | 28, 29, 4, 101, 102 | ringlidmd 20237 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → ( 1 (.r‘𝑅) 1 ) = 1 ) |
| 104 | 103 | eqcomd 2742 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 1 = ( 1 (.r‘𝑅) 1 )) |
| 105 | 104 | opeq2d 4861 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 〈(𝑎(.r‘𝑅)𝑏), 1 〉 = 〈(𝑎(.r‘𝑅)𝑏), ( 1 (.r‘𝑅) 1 )〉) |
| 106 | 105 | eceq1d 8764 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈(𝑎(.r‘𝑅)𝑏), 1 〉] ∼ = [〈(𝑎(.r‘𝑅)𝑏), ( 1 (.r‘𝑅) 1 )〉] ∼
) |
| 107 | 15 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 𝑅 ∈ CRing) |
| 108 | 2 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) |
| 109 | | simplr 768 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 𝑎 ∈ 𝐵) |
| 110 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) |
| 111 | 108, 6 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 1 ∈ 𝑆) |
| 112 | 28, 29, 90, 91, 10, 107, 108, 109, 110, 111, 111, 89 | rlocmulval 33269 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → ([〈𝑎, 1 〉] ∼
(.r‘𝐿)[〈𝑏, 1 〉] ∼ ) = [〈(𝑎(.r‘𝑅)𝑏), ( 1 (.r‘𝑅) 1 )〉] ∼
) |
| 113 | 106, 112 | eqtr4d 2774 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈(𝑎(.r‘𝑅)𝑏), 1 〉] ∼ = ([〈𝑎, 1 〉] ∼
(.r‘𝐿)[〈𝑏, 1 〉] ∼ )) |
| 114 | | opeq1 4854 |
. . . . . . 7
⊢ (𝑥 = (𝑎(.r‘𝑅)𝑏) → 〈𝑥, 1 〉 = 〈(𝑎(.r‘𝑅)𝑏), 1 〉) |
| 115 | 114 | eceq1d 8764 |
. . . . . 6
⊢ (𝑥 = (𝑎(.r‘𝑅)𝑏) → [〈𝑥, 1 〉] ∼ = [〈(𝑎(.r‘𝑅)𝑏), 1 〉] ∼ ) |
| 116 | 28, 29, 101, 109, 110 | ringcld 20225 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝑎(.r‘𝑅)𝑏) ∈ 𝐵) |
| 117 | | ecexg 8728 |
. . . . . . 7
⊢ ( ∼ ∈
V → [〈(𝑎(.r‘𝑅)𝑏), 1 〉] ∼ ∈
V) |
| 118 | 11, 117 | mp1i 13 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈(𝑎(.r‘𝑅)𝑏), 1 〉] ∼ ∈
V) |
| 119 | 83, 115, 116, 118 | fvmptd3 7014 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎(.r‘𝑅)𝑏)) = [〈(𝑎(.r‘𝑅)𝑏), 1 〉] ∼ ) |
| 120 | | opeq1 4854 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → 〈𝑥, 1 〉 = 〈𝑎, 1 〉) |
| 121 | 120 | eceq1d 8764 |
. . . . . . 7
⊢ (𝑥 = 𝑎 → [〈𝑥, 1 〉] ∼ = [〈𝑎, 1 〉] ∼ ) |
| 122 | | ecexg 8728 |
. . . . . . . 8
⊢ ( ∼ ∈
V → [〈𝑎, 1 〉] ∼ ∈
V) |
| 123 | 11, 122 | mp1i 13 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈𝑎, 1 〉] ∼ ∈
V) |
| 124 | 83, 121, 109, 123 | fvmptd3 7014 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑎) = [〈𝑎, 1 〉] ∼ ) |
| 125 | | opeq1 4854 |
. . . . . . . 8
⊢ (𝑥 = 𝑏 → 〈𝑥, 1 〉 = 〈𝑏, 1 〉) |
| 126 | 125 | eceq1d 8764 |
. . . . . . 7
⊢ (𝑥 = 𝑏 → [〈𝑥, 1 〉] ∼ = [〈𝑏, 1 〉] ∼ ) |
| 127 | | ecexg 8728 |
. . . . . . . 8
⊢ ( ∼ ∈
V → [〈𝑏, 1 〉] ∼ ∈
V) |
| 128 | 11, 127 | mp1i 13 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈𝑏, 1 〉] ∼ ∈
V) |
| 129 | 83, 126, 110, 128 | fvmptd3 7014 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑏) = [〈𝑏, 1 〉] ∼ ) |
| 130 | 124, 129 | oveq12d 7428 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → ((𝐹‘𝑎)(.r‘𝐿)(𝐹‘𝑏)) = ([〈𝑎, 1 〉] ∼
(.r‘𝐿)[〈𝑏, 1 〉] ∼ )) |
| 131 | 113, 119,
130 | 3eqtr4d 2781 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎(.r‘𝑅)𝑏)) = ((𝐹‘𝑎)(.r‘𝐿)(𝐹‘𝑏))) |
| 132 | 131 | anasss 466 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎(.r‘𝑅)𝑏)) = ((𝐹‘𝑎)(.r‘𝐿)(𝐹‘𝑏))) |
| 133 | | eqid 2736 |
. . 3
⊢
(Base‘𝐿) =
(Base‘𝐿) |
| 134 | | eqid 2736 |
. . 3
⊢
(+g‘𝐿) = (+g‘𝐿) |
| 135 | 13, 83 | fmptd 7109 |
. . . 4
⊢ (𝜑 → 𝐹:𝐵⟶((𝐵 × 𝑆) / ∼ )) |
| 136 | 28, 62, 29, 57, 71, 91, 10, 15, 49 | rlocbas 33267 |
. . . . 5
⊢ (𝜑 → ((𝐵 × 𝑆) / ∼ ) =
(Base‘𝐿)) |
| 137 | 136 | feq3d 6698 |
. . . 4
⊢ (𝜑 → (𝐹:𝐵⟶((𝐵 × 𝑆) / ∼ ) ↔ 𝐹:𝐵⟶(Base‘𝐿))) |
| 138 | 135, 137 | mpbid 232 |
. . 3
⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐿)) |
| 139 | 28, 29, 4, 101, 109 | ringridmd 20238 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝑎(.r‘𝑅) 1 ) = 𝑎) |
| 140 | 28, 29, 4, 101, 110 | ringridmd 20238 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝑏(.r‘𝑅) 1 ) = 𝑏) |
| 141 | 139, 140 | oveq12d 7428 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → ((𝑎(.r‘𝑅) 1
)(+g‘𝑅)(𝑏(.r‘𝑅) 1 )) = (𝑎(+g‘𝑅)𝑏)) |
| 142 | 141 | eqcomd 2742 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑅)𝑏) = ((𝑎(.r‘𝑅) 1
)(+g‘𝑅)(𝑏(.r‘𝑅) 1 ))) |
| 143 | 142, 104 | opeq12d 4862 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 〈(𝑎(+g‘𝑅)𝑏), 1 〉 = 〈((𝑎(.r‘𝑅) 1
)(+g‘𝑅)(𝑏(.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉) |
| 144 | 143 | eceq1d 8764 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈(𝑎(+g‘𝑅)𝑏), 1 〉] ∼ = [〈((𝑎(.r‘𝑅) 1
)(+g‘𝑅)(𝑏(.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉] ∼
) |
| 145 | 28, 29, 90, 91, 10, 107, 108, 109, 110, 111, 111, 134 | rlocaddval 33268 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → ([〈𝑎, 1 〉] ∼
(+g‘𝐿)[〈𝑏, 1 〉] ∼ ) = [〈((𝑎(.r‘𝑅) 1
)(+g‘𝑅)(𝑏(.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉] ∼
) |
| 146 | 144, 145 | eqtr4d 2774 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈(𝑎(+g‘𝑅)𝑏), 1 〉] ∼ = ([〈𝑎, 1 〉] ∼
(+g‘𝐿)[〈𝑏, 1 〉] ∼ )) |
| 147 | | opeq1 4854 |
. . . . . . 7
⊢ (𝑥 = (𝑎(+g‘𝑅)𝑏) → 〈𝑥, 1 〉 = 〈(𝑎(+g‘𝑅)𝑏), 1 〉) |
| 148 | 147 | eceq1d 8764 |
. . . . . 6
⊢ (𝑥 = (𝑎(+g‘𝑅)𝑏) → [〈𝑥, 1 〉] ∼ = [〈(𝑎(+g‘𝑅)𝑏), 1 〉] ∼ ) |
| 149 | 16 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 𝑅 ∈ Grp) |
| 150 | 28, 90, 149, 109, 110 | grpcld 18935 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑅)𝑏) ∈ 𝐵) |
| 151 | | ecexg 8728 |
. . . . . . 7
⊢ ( ∼ ∈
V → [〈(𝑎(+g‘𝑅)𝑏), 1 〉] ∼ ∈
V) |
| 152 | 11, 151 | mp1i 13 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈(𝑎(+g‘𝑅)𝑏), 1 〉] ∼ ∈
V) |
| 153 | 83, 148, 150, 152 | fvmptd3 7014 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = [〈(𝑎(+g‘𝑅)𝑏), 1 〉] ∼ ) |
| 154 | 124, 129 | oveq12d 7428 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → ((𝐹‘𝑎)(+g‘𝐿)(𝐹‘𝑏)) = ([〈𝑎, 1 〉] ∼
(+g‘𝐿)[〈𝑏, 1 〉] ∼ )) |
| 155 | 146, 153,
154 | 3eqtr4d 2781 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = ((𝐹‘𝑎)(+g‘𝐿)(𝐹‘𝑏))) |
| 156 | 155 | anasss 466 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = ((𝐹‘𝑎)(+g‘𝐿)(𝐹‘𝑏))) |
| 157 | 28, 4, 88, 29, 89, 30, 93, 100, 132, 133, 90, 134, 138, 156 | isrhmd 20453 |
. 2
⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝐿)) |
| 158 | 87, 157 | jca 511 |
1
⊢ (𝜑 → (𝐹:𝐵–1-1→((𝐵 × 𝑆) / ∼ ) ∧ 𝐹 ∈ (𝑅 RingHom 𝐿))) |