Step | Hyp | Ref
| Expression |
1 | | simpr 483 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
2 | | rlocf1.7 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) |
3 | | eqid 2725 |
. . . . . . . . . 10
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
4 | | rlocf1.2 |
. . . . . . . . . 10
⊢ 1 =
(1r‘𝑅) |
5 | 3, 4 | ringidval 20135 |
. . . . . . . . 9
⊢ 1 =
(0g‘(mulGrp‘𝑅)) |
6 | 5 | subm0cl 18771 |
. . . . . . . 8
⊢ (𝑆 ∈
(SubMnd‘(mulGrp‘𝑅)) → 1 ∈ 𝑆) |
7 | 2, 6 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 1 ∈ 𝑆) |
8 | 7 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 1 ∈ 𝑆) |
9 | 1, 8 | opelxpd 5717 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 〈𝑥, 1 〉 ∈ (𝐵 × 𝑆)) |
10 | | rlocf1.4 |
. . . . . . 7
⊢ ∼ =
(𝑅 ~RL
𝑆) |
11 | 10 | ovexi 7453 |
. . . . . 6
⊢ ∼ ∈
V |
12 | 11 | ecelqsi 8792 |
. . . . 5
⊢
(〈𝑥, 1 〉 ∈
(𝐵 × 𝑆) → [〈𝑥, 1 〉] ∼ ∈ ((𝐵 × 𝑆) / ∼ )) |
13 | 9, 12 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [〈𝑥, 1 〉] ∼ ∈ ((𝐵 × 𝑆) / ∼ )) |
14 | 13 | ralrimiva 3135 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 [〈𝑥, 1 〉] ∼ ∈ ((𝐵 × 𝑆) / ∼ )) |
15 | | rlocf1.6 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ CRing) |
16 | 15 | crnggrpd 20199 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Grp) |
17 | 16 | ad5antr 732 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑅 ∈
Grp) |
18 | | simp-5r 784 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑥 ∈ 𝐵) |
19 | | simp-4r 782 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑦 ∈ 𝐵) |
20 | | vex 3465 |
. . . . . . . . . . . . . 14
⊢ 𝑥 ∈ V |
21 | 4 | fvexi 6910 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
V |
22 | 20, 21 | op1st 8002 |
. . . . . . . . . . . . 13
⊢
(1st ‘〈𝑥, 1 〉) = 𝑥 |
23 | 22 | a1i 11 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (1st ‘〈𝑥, 1 〉) = 𝑥) |
24 | | vex 3465 |
. . . . . . . . . . . . . 14
⊢ 𝑦 ∈ V |
25 | 24, 21 | op2nd 8003 |
. . . . . . . . . . . . 13
⊢
(2nd ‘〈𝑦, 1 〉) = 1 |
26 | 25 | a1i 11 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (2nd ‘〈𝑦, 1 〉) = 1
) |
27 | 23, 26 | oveq12d 7437 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ ((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1 〉)) = (𝑥(.r‘𝑅) 1 )) |
28 | | rlocf1.1 |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝑅) |
29 | | eqid 2725 |
. . . . . . . . . . . 12
⊢
(.r‘𝑅) = (.r‘𝑅) |
30 | 15 | crngringd 20198 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈ Ring) |
31 | 30 | ad5antr 732 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑅 ∈
Ring) |
32 | 28, 29, 4, 31, 18 | ringridmd 20221 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (𝑥(.r‘𝑅) 1 ) = 𝑥) |
33 | 27, 32 | eqtrd 2765 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ ((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1 〉)) = 𝑥) |
34 | 24, 21 | op1st 8002 |
. . . . . . . . . . . . 13
⊢
(1st ‘〈𝑦, 1 〉) = 𝑦 |
35 | 34 | a1i 11 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (1st ‘〈𝑦, 1 〉) = 𝑦) |
36 | 20, 21 | op2nd 8003 |
. . . . . . . . . . . . 13
⊢
(2nd ‘〈𝑥, 1 〉) = 1 |
37 | 36 | a1i 11 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (2nd ‘〈𝑥, 1 〉) = 1
) |
38 | 35, 37 | oveq12d 7437 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ ((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)) = (𝑦(.r‘𝑅) 1 )) |
39 | 28, 29, 4, 31, 19 | ringridmd 20221 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (𝑦(.r‘𝑅) 1 ) = 𝑦) |
40 | 38, 39 | eqtrd 2765 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ ((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)) = 𝑦) |
41 | 33, 40 | oveq12d 7437 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) = (𝑥(-g‘𝑅)𝑦)) |
42 | | rlocf1.8 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ⊆ (RLReg‘𝑅)) |
43 | 42 | ad5antr 732 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑆 ⊆
(RLReg‘𝑅)) |
44 | | simplr 767 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑡 ∈ 𝑆) |
45 | 43, 44 | sseldd 3977 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑡 ∈
(RLReg‘𝑅)) |
46 | 23, 18 | eqeltrd 2825 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (1st ‘〈𝑥, 1 〉) ∈ 𝐵) |
47 | 3, 28 | mgpbas 20092 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐵 =
(Base‘(mulGrp‘𝑅)) |
48 | 47 | submss 18769 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 ∈
(SubMnd‘(mulGrp‘𝑅)) → 𝑆 ⊆ 𝐵) |
49 | 2, 48 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
50 | 49, 7 | sseldd 3977 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈ 𝐵) |
51 | 50 | ad5antr 732 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 1
∈ 𝐵) |
52 | 26, 51 | eqeltrd 2825 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (2nd ‘〈𝑦, 1 〉) ∈ 𝐵) |
53 | 28, 29, 31, 46, 52 | ringcld 20211 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ ((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1 〉)) ∈ 𝐵) |
54 | 35, 19 | eqeltrd 2825 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (1st ‘〈𝑦, 1 〉) ∈ 𝐵) |
55 | 37, 51 | eqeltrd 2825 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (2nd ‘〈𝑥, 1 〉) ∈ 𝐵) |
56 | 28, 29, 31, 54, 55 | ringcld 20211 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ ((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)) ∈ 𝐵) |
57 | | eqid 2725 |
. . . . . . . . . . . 12
⊢
(-g‘𝑅) = (-g‘𝑅) |
58 | 28, 57 | grpsubcl 18984 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Grp ∧
((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1 〉)) ∈ 𝐵 ∧ ((1st
‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)) ∈ 𝐵) → (((1st
‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) ∈ 𝐵) |
59 | 17, 53, 56, 58 | syl3anc 1368 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) ∈ 𝐵) |
60 | | simpr 483 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅)) |
61 | | eqid 2725 |
. . . . . . . . . . . 12
⊢
(RLReg‘𝑅) =
(RLReg‘𝑅) |
62 | | eqid 2725 |
. . . . . . . . . . . 12
⊢
(0g‘𝑅) = (0g‘𝑅) |
63 | 61, 28, 29, 62 | rrgeq0i 21253 |
. . . . . . . . . . 11
⊢ ((𝑡 ∈ (RLReg‘𝑅) ∧ (((1st
‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) ∈ 𝐵) → ((𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅)
→ (((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) =
(0g‘𝑅))) |
64 | 63 | imp 405 |
. . . . . . . . . 10
⊢ (((𝑡 ∈ (RLReg‘𝑅) ∧ (((1st
‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) ∈ 𝐵) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) =
(0g‘𝑅)) |
65 | 45, 59, 60, 64 | syl21anc 836 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉))) =
(0g‘𝑅)) |
66 | 41, 65 | eqtr3d 2767 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ (𝑥(-g‘𝑅)𝑦) = (0g‘𝑅)) |
67 | 28, 62, 57 | grpsubeq0 18990 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥(-g‘𝑅)𝑦) = (0g‘𝑅) ↔ 𝑥 = 𝑦)) |
68 | 67 | biimpa 475 |
. . . . . . . 8
⊢ (((𝑅 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥(-g‘𝑅)𝑦) = (0g‘𝑅)) → 𝑥 = 𝑦) |
69 | 17, 18, 19, 66, 68 | syl31anc 1370 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) ∧ 𝑡 ∈ 𝑆) ∧ (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅))
→ 𝑥 = 𝑦) |
70 | 49 | ad3antrrr 728 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) → 𝑆 ⊆ 𝐵) |
71 | | eqid 2725 |
. . . . . . . . . . 11
⊢ (𝐵 × 𝑆) = (𝐵 × 𝑆) |
72 | 15 | ad2antrr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑅 ∈ CRing) |
73 | 2 | ad2antrr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) |
74 | 28, 62, 4, 29, 57, 71, 10, 72, 73 | erler 33055 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ∼ Er (𝐵 × 𝑆)) |
75 | 9 | adantr 479 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 1 〉 ∈ (𝐵 × 𝑆)) |
76 | 74, 75 | erth 8775 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (〈𝑥, 1 〉 ∼ 〈𝑦, 1 〉 ↔ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ )) |
77 | 76 | biimpar 476 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) →
〈𝑥, 1 〉 ∼ 〈𝑦, 1 〉) |
78 | 28, 10, 70, 62, 29, 57, 77 | erldi 33052 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) →
∃𝑡 ∈ 𝑆 (𝑡(.r‘𝑅)(((1st ‘〈𝑥, 1
〉)(.r‘𝑅)(2nd ‘〈𝑦, 1
〉))(-g‘𝑅)((1st ‘〈𝑦, 1
〉)(.r‘𝑅)(2nd ‘〈𝑥, 1 〉)))) =
(0g‘𝑅)) |
79 | 69, 78 | r19.29a 3151 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) → 𝑥 = 𝑦) |
80 | 79 | ex 411 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ([〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ → 𝑥 = 𝑦)) |
81 | 80 | anasss 465 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ([〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ → 𝑥 = 𝑦)) |
82 | 81 | ralrimivva 3190 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ([〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ → 𝑥 = 𝑦)) |
83 | | rlocf1.5 |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [〈𝑥, 1 〉] ∼ ) |
84 | | opeq1 4875 |
. . . . 5
⊢ (𝑥 = 𝑦 → 〈𝑥, 1 〉 = 〈𝑦, 1 〉) |
85 | 84 | eceq1d 8764 |
. . . 4
⊢ (𝑥 = 𝑦 → [〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ ) |
86 | 83, 85 | f1mpt 7271 |
. . 3
⊢ (𝐹:𝐵–1-1→((𝐵 × 𝑆) / ∼ ) ↔
(∀𝑥 ∈ 𝐵 [〈𝑥, 1 〉] ∼ ∈ ((𝐵 × 𝑆) / ∼ ) ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ([〈𝑥, 1 〉] ∼ = [〈𝑦, 1 〉] ∼ → 𝑥 = 𝑦))) |
87 | 14, 82, 86 | sylanbrc 581 |
. 2
⊢ (𝜑 → 𝐹:𝐵–1-1→((𝐵 × 𝑆) / ∼ )) |
88 | | eqid 2725 |
. . 3
⊢
(1r‘𝐿) = (1r‘𝐿) |
89 | | eqid 2725 |
. . 3
⊢
(.r‘𝐿) = (.r‘𝐿) |
90 | | eqid 2725 |
. . . . 5
⊢
(+g‘𝑅) = (+g‘𝑅) |
91 | | rlocf1.3 |
. . . . 5
⊢ 𝐿 = (𝑅 RLocal 𝑆) |
92 | 28, 29, 90, 91, 10, 15, 2 | rloccring 33060 |
. . . 4
⊢ (𝜑 → 𝐿 ∈ CRing) |
93 | 92 | crngringd 20198 |
. . 3
⊢ (𝜑 → 𝐿 ∈ Ring) |
94 | | opeq1 4875 |
. . . . . 6
⊢ (𝑥 = 1 → 〈𝑥, 1 〉 = 〈 1 , 1
〉) |
95 | 94 | eceq1d 8764 |
. . . . 5
⊢ (𝑥 = 1 → [〈𝑥, 1 〉] ∼ = [〈 1 , 1 〉] ∼
) |
96 | | eqid 2725 |
. . . . . 6
⊢ [〈
1 , 1 〉] ∼ =
[〈 1
, 1
〉] ∼ |
97 | 62, 4, 91, 10, 15, 2, 96 | rloc1r 33062 |
. . . . 5
⊢ (𝜑 → [〈 1 , 1 〉] ∼ =
(1r‘𝐿)) |
98 | 95, 97 | sylan9eqr 2787 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 1 ) → [〈𝑥, 1 〉] ∼ =
(1r‘𝐿)) |
99 | | fvexd 6911 |
. . . 4
⊢ (𝜑 → (1r‘𝐿) ∈ V) |
100 | 83, 98, 50, 99 | fvmptd2 7012 |
. . 3
⊢ (𝜑 → (𝐹‘ 1 ) =
(1r‘𝐿)) |
101 | 30 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 𝑅 ∈ Ring) |
102 | 50 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 1 ∈ 𝐵) |
103 | 28, 29, 4, 101, 102 | ringlidmd 20220 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → ( 1 (.r‘𝑅) 1 ) = 1 ) |
104 | 103 | eqcomd 2731 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 1 = ( 1 (.r‘𝑅) 1 )) |
105 | 104 | opeq2d 4882 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 〈(𝑎(.r‘𝑅)𝑏), 1 〉 = 〈(𝑎(.r‘𝑅)𝑏), ( 1 (.r‘𝑅) 1 )〉) |
106 | 105 | eceq1d 8764 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈(𝑎(.r‘𝑅)𝑏), 1 〉] ∼ = [〈(𝑎(.r‘𝑅)𝑏), ( 1 (.r‘𝑅) 1 )〉] ∼
) |
107 | 15 | ad2antrr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 𝑅 ∈ CRing) |
108 | 2 | ad2antrr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) |
109 | | simplr 767 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 𝑎 ∈ 𝐵) |
110 | | simpr 483 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) |
111 | 108, 6 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 1 ∈ 𝑆) |
112 | 28, 29, 90, 91, 10, 107, 108, 109, 110, 111, 111, 89 | rlocmulval 33059 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → ([〈𝑎, 1 〉] ∼
(.r‘𝐿)[〈𝑏, 1 〉] ∼ ) = [〈(𝑎(.r‘𝑅)𝑏), ( 1 (.r‘𝑅) 1 )〉] ∼
) |
113 | 106, 112 | eqtr4d 2768 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈(𝑎(.r‘𝑅)𝑏), 1 〉] ∼ = ([〈𝑎, 1 〉] ∼
(.r‘𝐿)[〈𝑏, 1 〉] ∼ )) |
114 | | opeq1 4875 |
. . . . . . 7
⊢ (𝑥 = (𝑎(.r‘𝑅)𝑏) → 〈𝑥, 1 〉 = 〈(𝑎(.r‘𝑅)𝑏), 1 〉) |
115 | 114 | eceq1d 8764 |
. . . . . 6
⊢ (𝑥 = (𝑎(.r‘𝑅)𝑏) → [〈𝑥, 1 〉] ∼ = [〈(𝑎(.r‘𝑅)𝑏), 1 〉] ∼ ) |
116 | 28, 29, 101, 109, 110 | ringcld 20211 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝑎(.r‘𝑅)𝑏) ∈ 𝐵) |
117 | | ecexg 8729 |
. . . . . . 7
⊢ ( ∼ ∈
V → [〈(𝑎(.r‘𝑅)𝑏), 1 〉] ∼ ∈
V) |
118 | 11, 117 | mp1i 13 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈(𝑎(.r‘𝑅)𝑏), 1 〉] ∼ ∈
V) |
119 | 83, 115, 116, 118 | fvmptd3 7027 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎(.r‘𝑅)𝑏)) = [〈(𝑎(.r‘𝑅)𝑏), 1 〉] ∼ ) |
120 | | opeq1 4875 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → 〈𝑥, 1 〉 = 〈𝑎, 1 〉) |
121 | 120 | eceq1d 8764 |
. . . . . . 7
⊢ (𝑥 = 𝑎 → [〈𝑥, 1 〉] ∼ = [〈𝑎, 1 〉] ∼ ) |
122 | | ecexg 8729 |
. . . . . . . 8
⊢ ( ∼ ∈
V → [〈𝑎, 1 〉] ∼ ∈
V) |
123 | 11, 122 | mp1i 13 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈𝑎, 1 〉] ∼ ∈
V) |
124 | 83, 121, 109, 123 | fvmptd3 7027 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑎) = [〈𝑎, 1 〉] ∼ ) |
125 | | opeq1 4875 |
. . . . . . . 8
⊢ (𝑥 = 𝑏 → 〈𝑥, 1 〉 = 〈𝑏, 1 〉) |
126 | 125 | eceq1d 8764 |
. . . . . . 7
⊢ (𝑥 = 𝑏 → [〈𝑥, 1 〉] ∼ = [〈𝑏, 1 〉] ∼ ) |
127 | | ecexg 8729 |
. . . . . . . 8
⊢ ( ∼ ∈
V → [〈𝑏, 1 〉] ∼ ∈
V) |
128 | 11, 127 | mp1i 13 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈𝑏, 1 〉] ∼ ∈
V) |
129 | 83, 126, 110, 128 | fvmptd3 7027 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑏) = [〈𝑏, 1 〉] ∼ ) |
130 | 124, 129 | oveq12d 7437 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → ((𝐹‘𝑎)(.r‘𝐿)(𝐹‘𝑏)) = ([〈𝑎, 1 〉] ∼
(.r‘𝐿)[〈𝑏, 1 〉] ∼ )) |
131 | 113, 119,
130 | 3eqtr4d 2775 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎(.r‘𝑅)𝑏)) = ((𝐹‘𝑎)(.r‘𝐿)(𝐹‘𝑏))) |
132 | 131 | anasss 465 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎(.r‘𝑅)𝑏)) = ((𝐹‘𝑎)(.r‘𝐿)(𝐹‘𝑏))) |
133 | | eqid 2725 |
. . 3
⊢
(Base‘𝐿) =
(Base‘𝐿) |
134 | | eqid 2725 |
. . 3
⊢
(+g‘𝐿) = (+g‘𝐿) |
135 | 13, 83 | fmptd 7123 |
. . . 4
⊢ (𝜑 → 𝐹:𝐵⟶((𝐵 × 𝑆) / ∼ )) |
136 | 28, 62, 29, 57, 71, 91, 10, 15, 49 | rlocbas 33057 |
. . . . 5
⊢ (𝜑 → ((𝐵 × 𝑆) / ∼ ) =
(Base‘𝐿)) |
137 | 136 | feq3d 6710 |
. . . 4
⊢ (𝜑 → (𝐹:𝐵⟶((𝐵 × 𝑆) / ∼ ) ↔ 𝐹:𝐵⟶(Base‘𝐿))) |
138 | 135, 137 | mpbid 231 |
. . 3
⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐿)) |
139 | 28, 29, 4, 101, 109 | ringridmd 20221 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝑎(.r‘𝑅) 1 ) = 𝑎) |
140 | 28, 29, 4, 101, 110 | ringridmd 20221 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝑏(.r‘𝑅) 1 ) = 𝑏) |
141 | 139, 140 | oveq12d 7437 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → ((𝑎(.r‘𝑅) 1
)(+g‘𝑅)(𝑏(.r‘𝑅) 1 )) = (𝑎(+g‘𝑅)𝑏)) |
142 | 141 | eqcomd 2731 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑅)𝑏) = ((𝑎(.r‘𝑅) 1
)(+g‘𝑅)(𝑏(.r‘𝑅) 1 ))) |
143 | 142, 104 | opeq12d 4883 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 〈(𝑎(+g‘𝑅)𝑏), 1 〉 = 〈((𝑎(.r‘𝑅) 1
)(+g‘𝑅)(𝑏(.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉) |
144 | 143 | eceq1d 8764 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈(𝑎(+g‘𝑅)𝑏), 1 〉] ∼ = [〈((𝑎(.r‘𝑅) 1
)(+g‘𝑅)(𝑏(.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉] ∼
) |
145 | 28, 29, 90, 91, 10, 107, 108, 109, 110, 111, 111, 134 | rlocaddval 33058 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → ([〈𝑎, 1 〉] ∼
(+g‘𝐿)[〈𝑏, 1 〉] ∼ ) = [〈((𝑎(.r‘𝑅) 1
)(+g‘𝑅)(𝑏(.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉] ∼
) |
146 | 144, 145 | eqtr4d 2768 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈(𝑎(+g‘𝑅)𝑏), 1 〉] ∼ = ([〈𝑎, 1 〉] ∼
(+g‘𝐿)[〈𝑏, 1 〉] ∼ )) |
147 | | opeq1 4875 |
. . . . . . 7
⊢ (𝑥 = (𝑎(+g‘𝑅)𝑏) → 〈𝑥, 1 〉 = 〈(𝑎(+g‘𝑅)𝑏), 1 〉) |
148 | 147 | eceq1d 8764 |
. . . . . 6
⊢ (𝑥 = (𝑎(+g‘𝑅)𝑏) → [〈𝑥, 1 〉] ∼ = [〈(𝑎(+g‘𝑅)𝑏), 1 〉] ∼ ) |
149 | 16 | ad2antrr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → 𝑅 ∈ Grp) |
150 | 28, 90, 149, 109, 110 | grpcld 18912 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑅)𝑏) ∈ 𝐵) |
151 | | ecexg 8729 |
. . . . . . 7
⊢ ( ∼ ∈
V → [〈(𝑎(+g‘𝑅)𝑏), 1 〉] ∼ ∈
V) |
152 | 11, 151 | mp1i 13 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → [〈(𝑎(+g‘𝑅)𝑏), 1 〉] ∼ ∈
V) |
153 | 83, 148, 150, 152 | fvmptd3 7027 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = [〈(𝑎(+g‘𝑅)𝑏), 1 〉] ∼ ) |
154 | 124, 129 | oveq12d 7437 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → ((𝐹‘𝑎)(+g‘𝐿)(𝐹‘𝑏)) = ([〈𝑎, 1 〉] ∼
(+g‘𝐿)[〈𝑏, 1 〉] ∼ )) |
155 | 146, 153,
154 | 3eqtr4d 2775 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = ((𝐹‘𝑎)(+g‘𝐿)(𝐹‘𝑏))) |
156 | 155 | anasss 465 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = ((𝐹‘𝑎)(+g‘𝐿)(𝐹‘𝑏))) |
157 | 28, 4, 88, 29, 89, 30, 93, 100, 132, 133, 90, 134, 138, 156 | isrhmd 20439 |
. 2
⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝐿)) |
158 | 87, 157 | jca 510 |
1
⊢ (𝜑 → (𝐹:𝐵–1-1→((𝐵 × 𝑆) / ∼ ) ∧ 𝐹 ∈ (𝑅 RingHom 𝐿))) |