| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rloc0g | Structured version Visualization version GIF version | ||
| Description: The zero of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025.) |
| Ref | Expression |
|---|---|
| rloc0g.1 | ⊢ 0 = (0g‘𝑅) |
| rloc0g.2 | ⊢ 1 = (1r‘𝑅) |
| rloc0g.3 | ⊢ 𝐿 = (𝑅 RLocal 𝑆) |
| rloc0g.4 | ⊢ ∼ = (𝑅 ~RL 𝑆) |
| rloc0g.5 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| rloc0g.6 | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) |
| rloc0g.o | ⊢ 𝑂 = [〈 0 , 1 〉] ∼ |
| Ref | Expression |
|---|---|
| rloc0g | ⊢ (𝜑 → 𝑂 = (0g‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rloc0g.o | . 2 ⊢ 𝑂 = [〈 0 , 1 〉] ∼ | |
| 2 | eqid 2730 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2730 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 4 | eqid 2730 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 5 | rloc0g.3 | . . . . 5 ⊢ 𝐿 = (𝑅 RLocal 𝑆) | |
| 6 | rloc0g.4 | . . . . 5 ⊢ ∼ = (𝑅 ~RL 𝑆) | |
| 7 | rloc0g.5 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 8 | rloc0g.6 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | rloccring 33228 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ CRing) |
| 10 | 9 | crnggrpd 20163 | . . 3 ⊢ (𝜑 → 𝐿 ∈ Grp) |
| 11 | 7 | crnggrpd 20163 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 12 | rloc0g.1 | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
| 13 | 2, 12 | grpidcl 18904 | . . . . . . 7 ⊢ (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅)) |
| 14 | 11, 13 | syl 17 | . . . . . 6 ⊢ (𝜑 → 0 ∈ (Base‘𝑅)) |
| 15 | eqid 2730 | . . . . . . . . 9 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 16 | rloc0g.2 | . . . . . . . . 9 ⊢ 1 = (1r‘𝑅) | |
| 17 | 15, 16 | ringidval 20099 | . . . . . . . 8 ⊢ 1 = (0g‘(mulGrp‘𝑅)) |
| 18 | 17 | subm0cl 18745 | . . . . . . 7 ⊢ (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 1 ∈ 𝑆) |
| 19 | 8, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → 1 ∈ 𝑆) |
| 20 | 14, 19 | opelxpd 5680 | . . . . 5 ⊢ (𝜑 → 〈 0 , 1 〉 ∈ ((Base‘𝑅) × 𝑆)) |
| 21 | 6 | ovexi 7424 | . . . . . 6 ⊢ ∼ ∈ V |
| 22 | 21 | ecelqsi 8746 | . . . . 5 ⊢ (〈 0 , 1 〉 ∈ ((Base‘𝑅) × 𝑆) → [〈 0 , 1 〉] ∼ ∈ (((Base‘𝑅) × 𝑆) / ∼ )) |
| 23 | 20, 22 | syl 17 | . . . 4 ⊢ (𝜑 → [〈 0 , 1 〉] ∼ ∈ (((Base‘𝑅) × 𝑆) / ∼ )) |
| 24 | eqid 2730 | . . . . 5 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
| 25 | eqid 2730 | . . . . 5 ⊢ ((Base‘𝑅) × 𝑆) = ((Base‘𝑅) × 𝑆) | |
| 26 | 15, 2 | mgpbas 20061 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘(mulGrp‘𝑅)) |
| 27 | 26 | submss 18743 | . . . . . 6 ⊢ (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆 ⊆ (Base‘𝑅)) |
| 28 | 8, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑅)) |
| 29 | 2, 12, 3, 24, 25, 5, 6, 7, 28 | rlocbas 33225 | . . . 4 ⊢ (𝜑 → (((Base‘𝑅) × 𝑆) / ∼ ) = (Base‘𝐿)) |
| 30 | 23, 29 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → [〈 0 , 1 〉] ∼ ∈ (Base‘𝐿)) |
| 31 | eqid 2730 | . . . . 5 ⊢ (+g‘𝐿) = (+g‘𝐿) | |
| 32 | 2, 3, 4, 5, 6, 7, 8, 14, 14, 19, 19, 31 | rlocaddval 33226 | . . . 4 ⊢ (𝜑 → ([〈 0 , 1 〉] ∼ (+g‘𝐿)[〈 0 , 1 〉] ∼ ) = [〈(( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉] ∼ ) |
| 33 | 7 | crngringd 20162 | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 34 | 2, 3, 16, 33, 14 | ringridmd 20189 | . . . . . . . 8 ⊢ (𝜑 → ( 0 (.r‘𝑅) 1 ) = 0 ) |
| 35 | 34, 34 | oveq12d 7408 | . . . . . . 7 ⊢ (𝜑 → (( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )) = ( 0 (+g‘𝑅) 0 )) |
| 36 | 2, 4, 12, 11, 14 | grplidd 18908 | . . . . . . 7 ⊢ (𝜑 → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 37 | 35, 36 | eqtrd 2765 | . . . . . 6 ⊢ (𝜑 → (( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )) = 0 ) |
| 38 | 28, 19 | sseldd 3950 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ (Base‘𝑅)) |
| 39 | 2, 3, 16, 33, 38 | ringlidmd 20188 | . . . . . 6 ⊢ (𝜑 → ( 1 (.r‘𝑅) 1 ) = 1 ) |
| 40 | 37, 39 | opeq12d 4848 | . . . . 5 ⊢ (𝜑 → 〈(( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉 = 〈 0 , 1 〉) |
| 41 | 40 | eceq1d 8714 | . . . 4 ⊢ (𝜑 → [〈(( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉] ∼ = [〈 0 , 1 〉] ∼ ) |
| 42 | 32, 41 | eqtrd 2765 | . . 3 ⊢ (𝜑 → ([〈 0 , 1 〉] ∼ (+g‘𝐿)[〈 0 , 1 〉] ∼ ) = [〈 0 , 1 〉] ∼ ) |
| 43 | eqid 2730 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 44 | eqid 2730 | . . . . 5 ⊢ (0g‘𝐿) = (0g‘𝐿) | |
| 45 | 43, 31, 44 | isgrpid2 18915 | . . . 4 ⊢ (𝐿 ∈ Grp → (([〈 0 , 1 〉] ∼ ∈ (Base‘𝐿) ∧ ([〈 0 , 1 〉] ∼ (+g‘𝐿)[〈 0 , 1 〉] ∼ ) = [〈 0 , 1 〉] ∼ ) ↔ (0g‘𝐿) = [〈 0 , 1 〉] ∼ )) |
| 46 | 45 | biimpa 476 | . . 3 ⊢ ((𝐿 ∈ Grp ∧ ([〈 0 , 1 〉] ∼ ∈ (Base‘𝐿) ∧ ([〈 0 , 1 〉] ∼ (+g‘𝐿)[〈 0 , 1 〉] ∼ ) = [〈 0 , 1 〉] ∼ )) → (0g‘𝐿) = [〈 0 , 1 〉] ∼ ) |
| 47 | 10, 30, 42, 46 | syl12anc 836 | . 2 ⊢ (𝜑 → (0g‘𝐿) = [〈 0 , 1 〉] ∼ ) |
| 48 | 1, 47 | eqtr4id 2784 | 1 ⊢ (𝜑 → 𝑂 = (0g‘𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 〈cop 4598 × cxp 5639 ‘cfv 6514 (class class class)co 7390 [cec 8672 / cqs 8673 Basecbs 17186 +gcplusg 17227 .rcmulr 17228 0gc0g 17409 SubMndcsubmnd 18716 Grpcgrp 18872 -gcsg 18874 mulGrpcmgp 20056 1rcur 20097 CRingccrg 20150 ~RL cerl 33211 RLocal crloc 33212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-ec 8676 df-qs 8680 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-0g 17411 df-imas 17478 df-qus 17479 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-erl 33213 df-rloc 33214 |
| This theorem is referenced by: fracfld 33265 |
| Copyright terms: Public domain | W3C validator |