| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rloc0g | Structured version Visualization version GIF version | ||
| Description: The zero of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025.) |
| Ref | Expression |
|---|---|
| rloc0g.1 | ⊢ 0 = (0g‘𝑅) |
| rloc0g.2 | ⊢ 1 = (1r‘𝑅) |
| rloc0g.3 | ⊢ 𝐿 = (𝑅 RLocal 𝑆) |
| rloc0g.4 | ⊢ ∼ = (𝑅 ~RL 𝑆) |
| rloc0g.5 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| rloc0g.6 | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) |
| rloc0g.o | ⊢ 𝑂 = [〈 0 , 1 〉] ∼ |
| Ref | Expression |
|---|---|
| rloc0g | ⊢ (𝜑 → 𝑂 = (0g‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rloc0g.o | . 2 ⊢ 𝑂 = [〈 0 , 1 〉] ∼ | |
| 2 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 5 | rloc0g.3 | . . . . 5 ⊢ 𝐿 = (𝑅 RLocal 𝑆) | |
| 6 | rloc0g.4 | . . . . 5 ⊢ ∼ = (𝑅 ~RL 𝑆) | |
| 7 | rloc0g.5 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 8 | rloc0g.6 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | rloccring 33211 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ CRing) |
| 10 | 9 | crnggrpd 20132 | . . 3 ⊢ (𝜑 → 𝐿 ∈ Grp) |
| 11 | 7 | crnggrpd 20132 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 12 | rloc0g.1 | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
| 13 | 2, 12 | grpidcl 18844 | . . . . . . 7 ⊢ (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅)) |
| 14 | 11, 13 | syl 17 | . . . . . 6 ⊢ (𝜑 → 0 ∈ (Base‘𝑅)) |
| 15 | eqid 2729 | . . . . . . . . 9 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 16 | rloc0g.2 | . . . . . . . . 9 ⊢ 1 = (1r‘𝑅) | |
| 17 | 15, 16 | ringidval 20068 | . . . . . . . 8 ⊢ 1 = (0g‘(mulGrp‘𝑅)) |
| 18 | 17 | subm0cl 18685 | . . . . . . 7 ⊢ (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 1 ∈ 𝑆) |
| 19 | 8, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → 1 ∈ 𝑆) |
| 20 | 14, 19 | opelxpd 5658 | . . . . 5 ⊢ (𝜑 → 〈 0 , 1 〉 ∈ ((Base‘𝑅) × 𝑆)) |
| 21 | 6 | ovexi 7383 | . . . . . 6 ⊢ ∼ ∈ V |
| 22 | 21 | ecelqsi 8697 | . . . . 5 ⊢ (〈 0 , 1 〉 ∈ ((Base‘𝑅) × 𝑆) → [〈 0 , 1 〉] ∼ ∈ (((Base‘𝑅) × 𝑆) / ∼ )) |
| 23 | 20, 22 | syl 17 | . . . 4 ⊢ (𝜑 → [〈 0 , 1 〉] ∼ ∈ (((Base‘𝑅) × 𝑆) / ∼ )) |
| 24 | eqid 2729 | . . . . 5 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
| 25 | eqid 2729 | . . . . 5 ⊢ ((Base‘𝑅) × 𝑆) = ((Base‘𝑅) × 𝑆) | |
| 26 | 15, 2 | mgpbas 20030 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘(mulGrp‘𝑅)) |
| 27 | 26 | submss 18683 | . . . . . 6 ⊢ (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆 ⊆ (Base‘𝑅)) |
| 28 | 8, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑅)) |
| 29 | 2, 12, 3, 24, 25, 5, 6, 7, 28 | rlocbas 33208 | . . . 4 ⊢ (𝜑 → (((Base‘𝑅) × 𝑆) / ∼ ) = (Base‘𝐿)) |
| 30 | 23, 29 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → [〈 0 , 1 〉] ∼ ∈ (Base‘𝐿)) |
| 31 | eqid 2729 | . . . . 5 ⊢ (+g‘𝐿) = (+g‘𝐿) | |
| 32 | 2, 3, 4, 5, 6, 7, 8, 14, 14, 19, 19, 31 | rlocaddval 33209 | . . . 4 ⊢ (𝜑 → ([〈 0 , 1 〉] ∼ (+g‘𝐿)[〈 0 , 1 〉] ∼ ) = [〈(( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉] ∼ ) |
| 33 | 7 | crngringd 20131 | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 34 | 2, 3, 16, 33, 14 | ringridmd 20158 | . . . . . . . 8 ⊢ (𝜑 → ( 0 (.r‘𝑅) 1 ) = 0 ) |
| 35 | 34, 34 | oveq12d 7367 | . . . . . . 7 ⊢ (𝜑 → (( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )) = ( 0 (+g‘𝑅) 0 )) |
| 36 | 2, 4, 12, 11, 14 | grplidd 18848 | . . . . . . 7 ⊢ (𝜑 → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 37 | 35, 36 | eqtrd 2764 | . . . . . 6 ⊢ (𝜑 → (( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )) = 0 ) |
| 38 | 28, 19 | sseldd 3936 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ (Base‘𝑅)) |
| 39 | 2, 3, 16, 33, 38 | ringlidmd 20157 | . . . . . 6 ⊢ (𝜑 → ( 1 (.r‘𝑅) 1 ) = 1 ) |
| 40 | 37, 39 | opeq12d 4832 | . . . . 5 ⊢ (𝜑 → 〈(( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉 = 〈 0 , 1 〉) |
| 41 | 40 | eceq1d 8665 | . . . 4 ⊢ (𝜑 → [〈(( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉] ∼ = [〈 0 , 1 〉] ∼ ) |
| 42 | 32, 41 | eqtrd 2764 | . . 3 ⊢ (𝜑 → ([〈 0 , 1 〉] ∼ (+g‘𝐿)[〈 0 , 1 〉] ∼ ) = [〈 0 , 1 〉] ∼ ) |
| 43 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 44 | eqid 2729 | . . . . 5 ⊢ (0g‘𝐿) = (0g‘𝐿) | |
| 45 | 43, 31, 44 | isgrpid2 18855 | . . . 4 ⊢ (𝐿 ∈ Grp → (([〈 0 , 1 〉] ∼ ∈ (Base‘𝐿) ∧ ([〈 0 , 1 〉] ∼ (+g‘𝐿)[〈 0 , 1 〉] ∼ ) = [〈 0 , 1 〉] ∼ ) ↔ (0g‘𝐿) = [〈 0 , 1 〉] ∼ )) |
| 46 | 45 | biimpa 476 | . . 3 ⊢ ((𝐿 ∈ Grp ∧ ([〈 0 , 1 〉] ∼ ∈ (Base‘𝐿) ∧ ([〈 0 , 1 〉] ∼ (+g‘𝐿)[〈 0 , 1 〉] ∼ ) = [〈 0 , 1 〉] ∼ )) → (0g‘𝐿) = [〈 0 , 1 〉] ∼ ) |
| 47 | 10, 30, 42, 46 | syl12anc 836 | . 2 ⊢ (𝜑 → (0g‘𝐿) = [〈 0 , 1 〉] ∼ ) |
| 48 | 1, 47 | eqtr4id 2783 | 1 ⊢ (𝜑 → 𝑂 = (0g‘𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 〈cop 4583 × cxp 5617 ‘cfv 6482 (class class class)co 7349 [cec 8623 / cqs 8624 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 0gc0g 17343 SubMndcsubmnd 18656 Grpcgrp 18812 -gcsg 18814 mulGrpcmgp 20025 1rcur 20066 CRingccrg 20119 ~RL cerl 33194 RLocal crloc 33195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-ec 8627 df-qs 8631 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-0g 17345 df-imas 17412 df-qus 17413 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-erl 33196 df-rloc 33197 |
| This theorem is referenced by: fracfld 33248 |
| Copyright terms: Public domain | W3C validator |