![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rloc0g | Structured version Visualization version GIF version |
Description: The zero of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025.) |
Ref | Expression |
---|---|
rloc0g.1 | ⊢ 0 = (0g‘𝑅) |
rloc0g.2 | ⊢ 1 = (1r‘𝑅) |
rloc0g.3 | ⊢ 𝐿 = (𝑅 RLocal 𝑆) |
rloc0g.4 | ⊢ ∼ = (𝑅 ~RL 𝑆) |
rloc0g.5 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
rloc0g.6 | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) |
rloc0g.o | ⊢ 𝑂 = [〈 0 , 1 〉] ∼ |
Ref | Expression |
---|---|
rloc0g | ⊢ (𝜑 → 𝑂 = (0g‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rloc0g.o | . 2 ⊢ 𝑂 = [〈 0 , 1 〉] ∼ | |
2 | eqid 2725 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2725 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | eqid 2725 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
5 | rloc0g.3 | . . . . 5 ⊢ 𝐿 = (𝑅 RLocal 𝑆) | |
6 | rloc0g.4 | . . . . 5 ⊢ ∼ = (𝑅 ~RL 𝑆) | |
7 | rloc0g.5 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
8 | rloc0g.6 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) | |
9 | 2, 3, 4, 5, 6, 7, 8 | rloccring 33060 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ CRing) |
10 | 9 | crnggrpd 20199 | . . 3 ⊢ (𝜑 → 𝐿 ∈ Grp) |
11 | 7 | crnggrpd 20199 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Grp) |
12 | rloc0g.1 | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
13 | 2, 12 | grpidcl 18930 | . . . . . . 7 ⊢ (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅)) |
14 | 11, 13 | syl 17 | . . . . . 6 ⊢ (𝜑 → 0 ∈ (Base‘𝑅)) |
15 | eqid 2725 | . . . . . . . . 9 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
16 | rloc0g.2 | . . . . . . . . 9 ⊢ 1 = (1r‘𝑅) | |
17 | 15, 16 | ringidval 20135 | . . . . . . . 8 ⊢ 1 = (0g‘(mulGrp‘𝑅)) |
18 | 17 | subm0cl 18771 | . . . . . . 7 ⊢ (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 1 ∈ 𝑆) |
19 | 8, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → 1 ∈ 𝑆) |
20 | 14, 19 | opelxpd 5717 | . . . . 5 ⊢ (𝜑 → 〈 0 , 1 〉 ∈ ((Base‘𝑅) × 𝑆)) |
21 | 6 | ovexi 7453 | . . . . . 6 ⊢ ∼ ∈ V |
22 | 21 | ecelqsi 8792 | . . . . 5 ⊢ (〈 0 , 1 〉 ∈ ((Base‘𝑅) × 𝑆) → [〈 0 , 1 〉] ∼ ∈ (((Base‘𝑅) × 𝑆) / ∼ )) |
23 | 20, 22 | syl 17 | . . . 4 ⊢ (𝜑 → [〈 0 , 1 〉] ∼ ∈ (((Base‘𝑅) × 𝑆) / ∼ )) |
24 | eqid 2725 | . . . . 5 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
25 | eqid 2725 | . . . . 5 ⊢ ((Base‘𝑅) × 𝑆) = ((Base‘𝑅) × 𝑆) | |
26 | 15, 2 | mgpbas 20092 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘(mulGrp‘𝑅)) |
27 | 26 | submss 18769 | . . . . . 6 ⊢ (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆 ⊆ (Base‘𝑅)) |
28 | 8, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑅)) |
29 | 2, 12, 3, 24, 25, 5, 6, 7, 28 | rlocbas 33057 | . . . 4 ⊢ (𝜑 → (((Base‘𝑅) × 𝑆) / ∼ ) = (Base‘𝐿)) |
30 | 23, 29 | eleqtrd 2827 | . . 3 ⊢ (𝜑 → [〈 0 , 1 〉] ∼ ∈ (Base‘𝐿)) |
31 | eqid 2725 | . . . . 5 ⊢ (+g‘𝐿) = (+g‘𝐿) | |
32 | 2, 3, 4, 5, 6, 7, 8, 14, 14, 19, 19, 31 | rlocaddval 33058 | . . . 4 ⊢ (𝜑 → ([〈 0 , 1 〉] ∼ (+g‘𝐿)[〈 0 , 1 〉] ∼ ) = [〈(( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉] ∼ ) |
33 | 7 | crngringd 20198 | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ Ring) |
34 | 2, 3, 16, 33, 14 | ringridmd 20221 | . . . . . . . 8 ⊢ (𝜑 → ( 0 (.r‘𝑅) 1 ) = 0 ) |
35 | 34, 34 | oveq12d 7437 | . . . . . . 7 ⊢ (𝜑 → (( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )) = ( 0 (+g‘𝑅) 0 )) |
36 | 2, 4, 12, 11, 14 | grplidd 18934 | . . . . . . 7 ⊢ (𝜑 → ( 0 (+g‘𝑅) 0 ) = 0 ) |
37 | 35, 36 | eqtrd 2765 | . . . . . 6 ⊢ (𝜑 → (( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )) = 0 ) |
38 | 28, 19 | sseldd 3977 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ (Base‘𝑅)) |
39 | 2, 3, 16, 33, 38 | ringlidmd 20220 | . . . . . 6 ⊢ (𝜑 → ( 1 (.r‘𝑅) 1 ) = 1 ) |
40 | 37, 39 | opeq12d 4883 | . . . . 5 ⊢ (𝜑 → 〈(( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉 = 〈 0 , 1 〉) |
41 | 40 | eceq1d 8764 | . . . 4 ⊢ (𝜑 → [〈(( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉] ∼ = [〈 0 , 1 〉] ∼ ) |
42 | 32, 41 | eqtrd 2765 | . . 3 ⊢ (𝜑 → ([〈 0 , 1 〉] ∼ (+g‘𝐿)[〈 0 , 1 〉] ∼ ) = [〈 0 , 1 〉] ∼ ) |
43 | eqid 2725 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
44 | eqid 2725 | . . . . 5 ⊢ (0g‘𝐿) = (0g‘𝐿) | |
45 | 43, 31, 44 | isgrpid2 18941 | . . . 4 ⊢ (𝐿 ∈ Grp → (([〈 0 , 1 〉] ∼ ∈ (Base‘𝐿) ∧ ([〈 0 , 1 〉] ∼ (+g‘𝐿)[〈 0 , 1 〉] ∼ ) = [〈 0 , 1 〉] ∼ ) ↔ (0g‘𝐿) = [〈 0 , 1 〉] ∼ )) |
46 | 45 | biimpa 475 | . . 3 ⊢ ((𝐿 ∈ Grp ∧ ([〈 0 , 1 〉] ∼ ∈ (Base‘𝐿) ∧ ([〈 0 , 1 〉] ∼ (+g‘𝐿)[〈 0 , 1 〉] ∼ ) = [〈 0 , 1 〉] ∼ )) → (0g‘𝐿) = [〈 0 , 1 〉] ∼ ) |
47 | 10, 30, 42, 46 | syl12anc 835 | . 2 ⊢ (𝜑 → (0g‘𝐿) = [〈 0 , 1 〉] ∼ ) |
48 | 1, 47 | eqtr4id 2784 | 1 ⊢ (𝜑 → 𝑂 = (0g‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3944 〈cop 4636 × cxp 5676 ‘cfv 6549 (class class class)co 7419 [cec 8723 / cqs 8724 Basecbs 17183 +gcplusg 17236 .rcmulr 17237 0gc0g 17424 SubMndcsubmnd 18742 Grpcgrp 18898 -gcsg 18900 mulGrpcmgp 20086 1rcur 20133 CRingccrg 20186 ~RL cerl 33043 RLocal crloc 33044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-ec 8727 df-qs 8731 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-inf 9468 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-fz 13520 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-0g 17426 df-imas 17493 df-qus 17494 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18744 df-grp 18901 df-minusg 18902 df-sbg 18903 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-ring 20187 df-cring 20188 df-erl 33045 df-rloc 33046 |
This theorem is referenced by: fracfld 33094 |
Copyright terms: Public domain | W3C validator |