![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rloc0g | Structured version Visualization version GIF version |
Description: The zero of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025.) |
Ref | Expression |
---|---|
rloc0g.1 | ⊢ 0 = (0g‘𝑅) |
rloc0g.2 | ⊢ 1 = (1r‘𝑅) |
rloc0g.3 | ⊢ 𝐿 = (𝑅 RLocal 𝑆) |
rloc0g.4 | ⊢ ∼ = (𝑅 ~RL 𝑆) |
rloc0g.5 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
rloc0g.6 | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) |
rloc0g.o | ⊢ 𝑂 = [〈 0 , 1 〉] ∼ |
Ref | Expression |
---|---|
rloc0g | ⊢ (𝜑 → 𝑂 = (0g‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rloc0g.o | . 2 ⊢ 𝑂 = [〈 0 , 1 〉] ∼ | |
2 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2735 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | eqid 2735 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
5 | rloc0g.3 | . . . . 5 ⊢ 𝐿 = (𝑅 RLocal 𝑆) | |
6 | rloc0g.4 | . . . . 5 ⊢ ∼ = (𝑅 ~RL 𝑆) | |
7 | rloc0g.5 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
8 | rloc0g.6 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) | |
9 | 2, 3, 4, 5, 6, 7, 8 | rloccring 33257 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ CRing) |
10 | 9 | crnggrpd 20265 | . . 3 ⊢ (𝜑 → 𝐿 ∈ Grp) |
11 | 7 | crnggrpd 20265 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Grp) |
12 | rloc0g.1 | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
13 | 2, 12 | grpidcl 18996 | . . . . . . 7 ⊢ (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅)) |
14 | 11, 13 | syl 17 | . . . . . 6 ⊢ (𝜑 → 0 ∈ (Base‘𝑅)) |
15 | eqid 2735 | . . . . . . . . 9 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
16 | rloc0g.2 | . . . . . . . . 9 ⊢ 1 = (1r‘𝑅) | |
17 | 15, 16 | ringidval 20201 | . . . . . . . 8 ⊢ 1 = (0g‘(mulGrp‘𝑅)) |
18 | 17 | subm0cl 18837 | . . . . . . 7 ⊢ (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 1 ∈ 𝑆) |
19 | 8, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → 1 ∈ 𝑆) |
20 | 14, 19 | opelxpd 5728 | . . . . 5 ⊢ (𝜑 → 〈 0 , 1 〉 ∈ ((Base‘𝑅) × 𝑆)) |
21 | 6 | ovexi 7465 | . . . . . 6 ⊢ ∼ ∈ V |
22 | 21 | ecelqsi 8812 | . . . . 5 ⊢ (〈 0 , 1 〉 ∈ ((Base‘𝑅) × 𝑆) → [〈 0 , 1 〉] ∼ ∈ (((Base‘𝑅) × 𝑆) / ∼ )) |
23 | 20, 22 | syl 17 | . . . 4 ⊢ (𝜑 → [〈 0 , 1 〉] ∼ ∈ (((Base‘𝑅) × 𝑆) / ∼ )) |
24 | eqid 2735 | . . . . 5 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
25 | eqid 2735 | . . . . 5 ⊢ ((Base‘𝑅) × 𝑆) = ((Base‘𝑅) × 𝑆) | |
26 | 15, 2 | mgpbas 20158 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘(mulGrp‘𝑅)) |
27 | 26 | submss 18835 | . . . . . 6 ⊢ (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆 ⊆ (Base‘𝑅)) |
28 | 8, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑅)) |
29 | 2, 12, 3, 24, 25, 5, 6, 7, 28 | rlocbas 33254 | . . . 4 ⊢ (𝜑 → (((Base‘𝑅) × 𝑆) / ∼ ) = (Base‘𝐿)) |
30 | 23, 29 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → [〈 0 , 1 〉] ∼ ∈ (Base‘𝐿)) |
31 | eqid 2735 | . . . . 5 ⊢ (+g‘𝐿) = (+g‘𝐿) | |
32 | 2, 3, 4, 5, 6, 7, 8, 14, 14, 19, 19, 31 | rlocaddval 33255 | . . . 4 ⊢ (𝜑 → ([〈 0 , 1 〉] ∼ (+g‘𝐿)[〈 0 , 1 〉] ∼ ) = [〈(( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉] ∼ ) |
33 | 7 | crngringd 20264 | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ Ring) |
34 | 2, 3, 16, 33, 14 | ringridmd 20287 | . . . . . . . 8 ⊢ (𝜑 → ( 0 (.r‘𝑅) 1 ) = 0 ) |
35 | 34, 34 | oveq12d 7449 | . . . . . . 7 ⊢ (𝜑 → (( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )) = ( 0 (+g‘𝑅) 0 )) |
36 | 2, 4, 12, 11, 14 | grplidd 19000 | . . . . . . 7 ⊢ (𝜑 → ( 0 (+g‘𝑅) 0 ) = 0 ) |
37 | 35, 36 | eqtrd 2775 | . . . . . 6 ⊢ (𝜑 → (( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )) = 0 ) |
38 | 28, 19 | sseldd 3996 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ (Base‘𝑅)) |
39 | 2, 3, 16, 33, 38 | ringlidmd 20286 | . . . . . 6 ⊢ (𝜑 → ( 1 (.r‘𝑅) 1 ) = 1 ) |
40 | 37, 39 | opeq12d 4886 | . . . . 5 ⊢ (𝜑 → 〈(( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉 = 〈 0 , 1 〉) |
41 | 40 | eceq1d 8784 | . . . 4 ⊢ (𝜑 → [〈(( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉] ∼ = [〈 0 , 1 〉] ∼ ) |
42 | 32, 41 | eqtrd 2775 | . . 3 ⊢ (𝜑 → ([〈 0 , 1 〉] ∼ (+g‘𝐿)[〈 0 , 1 〉] ∼ ) = [〈 0 , 1 〉] ∼ ) |
43 | eqid 2735 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
44 | eqid 2735 | . . . . 5 ⊢ (0g‘𝐿) = (0g‘𝐿) | |
45 | 43, 31, 44 | isgrpid2 19007 | . . . 4 ⊢ (𝐿 ∈ Grp → (([〈 0 , 1 〉] ∼ ∈ (Base‘𝐿) ∧ ([〈 0 , 1 〉] ∼ (+g‘𝐿)[〈 0 , 1 〉] ∼ ) = [〈 0 , 1 〉] ∼ ) ↔ (0g‘𝐿) = [〈 0 , 1 〉] ∼ )) |
46 | 45 | biimpa 476 | . . 3 ⊢ ((𝐿 ∈ Grp ∧ ([〈 0 , 1 〉] ∼ ∈ (Base‘𝐿) ∧ ([〈 0 , 1 〉] ∼ (+g‘𝐿)[〈 0 , 1 〉] ∼ ) = [〈 0 , 1 〉] ∼ )) → (0g‘𝐿) = [〈 0 , 1 〉] ∼ ) |
47 | 10, 30, 42, 46 | syl12anc 837 | . 2 ⊢ (𝜑 → (0g‘𝐿) = [〈 0 , 1 〉] ∼ ) |
48 | 1, 47 | eqtr4id 2794 | 1 ⊢ (𝜑 → 𝑂 = (0g‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 〈cop 4637 × cxp 5687 ‘cfv 6563 (class class class)co 7431 [cec 8742 / cqs 8743 Basecbs 17245 +gcplusg 17298 .rcmulr 17299 0gc0g 17486 SubMndcsubmnd 18808 Grpcgrp 18964 -gcsg 18966 mulGrpcmgp 20152 1rcur 20199 CRingccrg 20252 ~RL cerl 33240 RLocal crloc 33241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-ec 8746 df-qs 8750 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-0g 17488 df-imas 17555 df-qus 17556 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-erl 33242 df-rloc 33243 |
This theorem is referenced by: fracfld 33290 |
Copyright terms: Public domain | W3C validator |