| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rloc0g | Structured version Visualization version GIF version | ||
| Description: The zero of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025.) |
| Ref | Expression |
|---|---|
| rloc0g.1 | ⊢ 0 = (0g‘𝑅) |
| rloc0g.2 | ⊢ 1 = (1r‘𝑅) |
| rloc0g.3 | ⊢ 𝐿 = (𝑅 RLocal 𝑆) |
| rloc0g.4 | ⊢ ∼ = (𝑅 ~RL 𝑆) |
| rloc0g.5 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| rloc0g.6 | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) |
| rloc0g.o | ⊢ 𝑂 = [〈 0 , 1 〉] ∼ |
| Ref | Expression |
|---|---|
| rloc0g | ⊢ (𝜑 → 𝑂 = (0g‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rloc0g.o | . 2 ⊢ 𝑂 = [〈 0 , 1 〉] ∼ | |
| 2 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2731 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 4 | eqid 2731 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 5 | rloc0g.3 | . . . . 5 ⊢ 𝐿 = (𝑅 RLocal 𝑆) | |
| 6 | rloc0g.4 | . . . . 5 ⊢ ∼ = (𝑅 ~RL 𝑆) | |
| 7 | rloc0g.5 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 8 | rloc0g.6 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | rloccring 33237 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ CRing) |
| 10 | 9 | crnggrpd 20165 | . . 3 ⊢ (𝜑 → 𝐿 ∈ Grp) |
| 11 | 7 | crnggrpd 20165 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 12 | rloc0g.1 | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
| 13 | 2, 12 | grpidcl 18878 | . . . . . . 7 ⊢ (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅)) |
| 14 | 11, 13 | syl 17 | . . . . . 6 ⊢ (𝜑 → 0 ∈ (Base‘𝑅)) |
| 15 | eqid 2731 | . . . . . . . . 9 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 16 | rloc0g.2 | . . . . . . . . 9 ⊢ 1 = (1r‘𝑅) | |
| 17 | 15, 16 | ringidval 20101 | . . . . . . . 8 ⊢ 1 = (0g‘(mulGrp‘𝑅)) |
| 18 | 17 | subm0cl 18719 | . . . . . . 7 ⊢ (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 1 ∈ 𝑆) |
| 19 | 8, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → 1 ∈ 𝑆) |
| 20 | 14, 19 | opelxpd 5653 | . . . . 5 ⊢ (𝜑 → 〈 0 , 1 〉 ∈ ((Base‘𝑅) × 𝑆)) |
| 21 | 6 | ovexi 7380 | . . . . . 6 ⊢ ∼ ∈ V |
| 22 | 21 | ecelqsi 8694 | . . . . 5 ⊢ (〈 0 , 1 〉 ∈ ((Base‘𝑅) × 𝑆) → [〈 0 , 1 〉] ∼ ∈ (((Base‘𝑅) × 𝑆) / ∼ )) |
| 23 | 20, 22 | syl 17 | . . . 4 ⊢ (𝜑 → [〈 0 , 1 〉] ∼ ∈ (((Base‘𝑅) × 𝑆) / ∼ )) |
| 24 | eqid 2731 | . . . . 5 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
| 25 | eqid 2731 | . . . . 5 ⊢ ((Base‘𝑅) × 𝑆) = ((Base‘𝑅) × 𝑆) | |
| 26 | 15, 2 | mgpbas 20063 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘(mulGrp‘𝑅)) |
| 27 | 26 | submss 18717 | . . . . . 6 ⊢ (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆 ⊆ (Base‘𝑅)) |
| 28 | 8, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑅)) |
| 29 | 2, 12, 3, 24, 25, 5, 6, 7, 28 | rlocbas 33234 | . . . 4 ⊢ (𝜑 → (((Base‘𝑅) × 𝑆) / ∼ ) = (Base‘𝐿)) |
| 30 | 23, 29 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → [〈 0 , 1 〉] ∼ ∈ (Base‘𝐿)) |
| 31 | eqid 2731 | . . . . 5 ⊢ (+g‘𝐿) = (+g‘𝐿) | |
| 32 | 2, 3, 4, 5, 6, 7, 8, 14, 14, 19, 19, 31 | rlocaddval 33235 | . . . 4 ⊢ (𝜑 → ([〈 0 , 1 〉] ∼ (+g‘𝐿)[〈 0 , 1 〉] ∼ ) = [〈(( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉] ∼ ) |
| 33 | 7 | crngringd 20164 | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 34 | 2, 3, 16, 33, 14 | ringridmd 20191 | . . . . . . . 8 ⊢ (𝜑 → ( 0 (.r‘𝑅) 1 ) = 0 ) |
| 35 | 34, 34 | oveq12d 7364 | . . . . . . 7 ⊢ (𝜑 → (( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )) = ( 0 (+g‘𝑅) 0 )) |
| 36 | 2, 4, 12, 11, 14 | grplidd 18882 | . . . . . . 7 ⊢ (𝜑 → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 37 | 35, 36 | eqtrd 2766 | . . . . . 6 ⊢ (𝜑 → (( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )) = 0 ) |
| 38 | 28, 19 | sseldd 3930 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ (Base‘𝑅)) |
| 39 | 2, 3, 16, 33, 38 | ringlidmd 20190 | . . . . . 6 ⊢ (𝜑 → ( 1 (.r‘𝑅) 1 ) = 1 ) |
| 40 | 37, 39 | opeq12d 4830 | . . . . 5 ⊢ (𝜑 → 〈(( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉 = 〈 0 , 1 〉) |
| 41 | 40 | eceq1d 8662 | . . . 4 ⊢ (𝜑 → [〈(( 0 (.r‘𝑅) 1 )(+g‘𝑅)( 0 (.r‘𝑅) 1 )), ( 1 (.r‘𝑅) 1 )〉] ∼ = [〈 0 , 1 〉] ∼ ) |
| 42 | 32, 41 | eqtrd 2766 | . . 3 ⊢ (𝜑 → ([〈 0 , 1 〉] ∼ (+g‘𝐿)[〈 0 , 1 〉] ∼ ) = [〈 0 , 1 〉] ∼ ) |
| 43 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 44 | eqid 2731 | . . . . 5 ⊢ (0g‘𝐿) = (0g‘𝐿) | |
| 45 | 43, 31, 44 | isgrpid2 18889 | . . . 4 ⊢ (𝐿 ∈ Grp → (([〈 0 , 1 〉] ∼ ∈ (Base‘𝐿) ∧ ([〈 0 , 1 〉] ∼ (+g‘𝐿)[〈 0 , 1 〉] ∼ ) = [〈 0 , 1 〉] ∼ ) ↔ (0g‘𝐿) = [〈 0 , 1 〉] ∼ )) |
| 46 | 45 | biimpa 476 | . . 3 ⊢ ((𝐿 ∈ Grp ∧ ([〈 0 , 1 〉] ∼ ∈ (Base‘𝐿) ∧ ([〈 0 , 1 〉] ∼ (+g‘𝐿)[〈 0 , 1 〉] ∼ ) = [〈 0 , 1 〉] ∼ )) → (0g‘𝐿) = [〈 0 , 1 〉] ∼ ) |
| 47 | 10, 30, 42, 46 | syl12anc 836 | . 2 ⊢ (𝜑 → (0g‘𝐿) = [〈 0 , 1 〉] ∼ ) |
| 48 | 1, 47 | eqtr4id 2785 | 1 ⊢ (𝜑 → 𝑂 = (0g‘𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 〈cop 4579 × cxp 5612 ‘cfv 6481 (class class class)co 7346 [cec 8620 / cqs 8621 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 0gc0g 17343 SubMndcsubmnd 18690 Grpcgrp 18846 -gcsg 18848 mulGrpcmgp 20058 1rcur 20099 CRingccrg 20152 ~RL cerl 33220 RLocal crloc 33221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-ec 8624 df-qs 8628 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-0g 17345 df-imas 17412 df-qus 17413 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-erl 33222 df-rloc 33223 |
| This theorem is referenced by: fracfld 33274 |
| Copyright terms: Public domain | W3C validator |