Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rloc0g Structured version   Visualization version   GIF version

Theorem rloc0g 33222
Description: The zero of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
rloc0g.1 0 = (0g𝑅)
rloc0g.2 1 = (1r𝑅)
rloc0g.3 𝐿 = (𝑅 RLocal 𝑆)
rloc0g.4 = (𝑅 ~RL 𝑆)
rloc0g.5 (𝜑𝑅 ∈ CRing)
rloc0g.6 (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
rloc0g.o 𝑂 = [⟨ 0 , 1 ⟩]
Assertion
Ref Expression
rloc0g (𝜑𝑂 = (0g𝐿))

Proof of Theorem rloc0g
StepHypRef Expression
1 rloc0g.o . 2 𝑂 = [⟨ 0 , 1 ⟩]
2 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2729 . . . . 5 (.r𝑅) = (.r𝑅)
4 eqid 2729 . . . . 5 (+g𝑅) = (+g𝑅)
5 rloc0g.3 . . . . 5 𝐿 = (𝑅 RLocal 𝑆)
6 rloc0g.4 . . . . 5 = (𝑅 ~RL 𝑆)
7 rloc0g.5 . . . . 5 (𝜑𝑅 ∈ CRing)
8 rloc0g.6 . . . . 5 (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
92, 3, 4, 5, 6, 7, 8rloccring 33221 . . . 4 (𝜑𝐿 ∈ CRing)
109crnggrpd 20156 . . 3 (𝜑𝐿 ∈ Grp)
117crnggrpd 20156 . . . . . . 7 (𝜑𝑅 ∈ Grp)
12 rloc0g.1 . . . . . . . 8 0 = (0g𝑅)
132, 12grpidcl 18897 . . . . . . 7 (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅))
1411, 13syl 17 . . . . . 6 (𝜑0 ∈ (Base‘𝑅))
15 eqid 2729 . . . . . . . . 9 (mulGrp‘𝑅) = (mulGrp‘𝑅)
16 rloc0g.2 . . . . . . . . 9 1 = (1r𝑅)
1715, 16ringidval 20092 . . . . . . . 8 1 = (0g‘(mulGrp‘𝑅))
1817subm0cl 18738 . . . . . . 7 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 1𝑆)
198, 18syl 17 . . . . . 6 (𝜑1𝑆)
2014, 19opelxpd 5677 . . . . 5 (𝜑 → ⟨ 0 , 1 ⟩ ∈ ((Base‘𝑅) × 𝑆))
216ovexi 7421 . . . . . 6 ∈ V
2221ecelqsi 8743 . . . . 5 (⟨ 0 , 1 ⟩ ∈ ((Base‘𝑅) × 𝑆) → [⟨ 0 , 1 ⟩] ∈ (((Base‘𝑅) × 𝑆) / ))
2320, 22syl 17 . . . 4 (𝜑 → [⟨ 0 , 1 ⟩] ∈ (((Base‘𝑅) × 𝑆) / ))
24 eqid 2729 . . . . 5 (-g𝑅) = (-g𝑅)
25 eqid 2729 . . . . 5 ((Base‘𝑅) × 𝑆) = ((Base‘𝑅) × 𝑆)
2615, 2mgpbas 20054 . . . . . . 7 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
2726submss 18736 . . . . . 6 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆 ⊆ (Base‘𝑅))
288, 27syl 17 . . . . 5 (𝜑𝑆 ⊆ (Base‘𝑅))
292, 12, 3, 24, 25, 5, 6, 7, 28rlocbas 33218 . . . 4 (𝜑 → (((Base‘𝑅) × 𝑆) / ) = (Base‘𝐿))
3023, 29eleqtrd 2830 . . 3 (𝜑 → [⟨ 0 , 1 ⟩] ∈ (Base‘𝐿))
31 eqid 2729 . . . . 5 (+g𝐿) = (+g𝐿)
322, 3, 4, 5, 6, 7, 8, 14, 14, 19, 19, 31rlocaddval 33219 . . . 4 (𝜑 → ([⟨ 0 , 1 ⟩] (+g𝐿)[⟨ 0 , 1 ⟩] ) = [⟨(( 0 (.r𝑅) 1 )(+g𝑅)( 0 (.r𝑅) 1 )), ( 1 (.r𝑅) 1 )⟩] )
337crngringd 20155 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
342, 3, 16, 33, 14ringridmd 20182 . . . . . . . 8 (𝜑 → ( 0 (.r𝑅) 1 ) = 0 )
3534, 34oveq12d 7405 . . . . . . 7 (𝜑 → (( 0 (.r𝑅) 1 )(+g𝑅)( 0 (.r𝑅) 1 )) = ( 0 (+g𝑅) 0 ))
362, 4, 12, 11, 14grplidd 18901 . . . . . . 7 (𝜑 → ( 0 (+g𝑅) 0 ) = 0 )
3735, 36eqtrd 2764 . . . . . 6 (𝜑 → (( 0 (.r𝑅) 1 )(+g𝑅)( 0 (.r𝑅) 1 )) = 0 )
3828, 19sseldd 3947 . . . . . . 7 (𝜑1 ∈ (Base‘𝑅))
392, 3, 16, 33, 38ringlidmd 20181 . . . . . 6 (𝜑 → ( 1 (.r𝑅) 1 ) = 1 )
4037, 39opeq12d 4845 . . . . 5 (𝜑 → ⟨(( 0 (.r𝑅) 1 )(+g𝑅)( 0 (.r𝑅) 1 )), ( 1 (.r𝑅) 1 )⟩ = ⟨ 0 , 1 ⟩)
4140eceq1d 8711 . . . 4 (𝜑 → [⟨(( 0 (.r𝑅) 1 )(+g𝑅)( 0 (.r𝑅) 1 )), ( 1 (.r𝑅) 1 )⟩] = [⟨ 0 , 1 ⟩] )
4232, 41eqtrd 2764 . . 3 (𝜑 → ([⟨ 0 , 1 ⟩] (+g𝐿)[⟨ 0 , 1 ⟩] ) = [⟨ 0 , 1 ⟩] )
43 eqid 2729 . . . . 5 (Base‘𝐿) = (Base‘𝐿)
44 eqid 2729 . . . . 5 (0g𝐿) = (0g𝐿)
4543, 31, 44isgrpid2 18908 . . . 4 (𝐿 ∈ Grp → (([⟨ 0 , 1 ⟩] ∈ (Base‘𝐿) ∧ ([⟨ 0 , 1 ⟩] (+g𝐿)[⟨ 0 , 1 ⟩] ) = [⟨ 0 , 1 ⟩] ) ↔ (0g𝐿) = [⟨ 0 , 1 ⟩] ))
4645biimpa 476 . . 3 ((𝐿 ∈ Grp ∧ ([⟨ 0 , 1 ⟩] ∈ (Base‘𝐿) ∧ ([⟨ 0 , 1 ⟩] (+g𝐿)[⟨ 0 , 1 ⟩] ) = [⟨ 0 , 1 ⟩] )) → (0g𝐿) = [⟨ 0 , 1 ⟩] )
4710, 30, 42, 46syl12anc 836 . 2 (𝜑 → (0g𝐿) = [⟨ 0 , 1 ⟩] )
481, 47eqtr4id 2783 1 (𝜑𝑂 = (0g𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3914  cop 4595   × cxp 5636  cfv 6511  (class class class)co 7387  [cec 8669   / cqs 8670  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  0gc0g 17402  SubMndcsubmnd 18709  Grpcgrp 18865  -gcsg 18867  mulGrpcmgp 20049  1rcur 20090  CRingccrg 20143   ~RL cerl 33204   RLocal crloc 33205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-ec 8673  df-qs 8677  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-0g 17404  df-imas 17471  df-qus 17472  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-erl 33206  df-rloc 33207
This theorem is referenced by:  fracfld  33258
  Copyright terms: Public domain W3C validator