Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rloc0g Structured version   Visualization version   GIF version

Theorem rloc0g 33238
Description: The zero of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
rloc0g.1 0 = (0g𝑅)
rloc0g.2 1 = (1r𝑅)
rloc0g.3 𝐿 = (𝑅 RLocal 𝑆)
rloc0g.4 = (𝑅 ~RL 𝑆)
rloc0g.5 (𝜑𝑅 ∈ CRing)
rloc0g.6 (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
rloc0g.o 𝑂 = [⟨ 0 , 1 ⟩]
Assertion
Ref Expression
rloc0g (𝜑𝑂 = (0g𝐿))

Proof of Theorem rloc0g
StepHypRef Expression
1 rloc0g.o . 2 𝑂 = [⟨ 0 , 1 ⟩]
2 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2729 . . . . 5 (.r𝑅) = (.r𝑅)
4 eqid 2729 . . . . 5 (+g𝑅) = (+g𝑅)
5 rloc0g.3 . . . . 5 𝐿 = (𝑅 RLocal 𝑆)
6 rloc0g.4 . . . . 5 = (𝑅 ~RL 𝑆)
7 rloc0g.5 . . . . 5 (𝜑𝑅 ∈ CRing)
8 rloc0g.6 . . . . 5 (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
92, 3, 4, 5, 6, 7, 8rloccring 33237 . . . 4 (𝜑𝐿 ∈ CRing)
109crnggrpd 20167 . . 3 (𝜑𝐿 ∈ Grp)
117crnggrpd 20167 . . . . . . 7 (𝜑𝑅 ∈ Grp)
12 rloc0g.1 . . . . . . . 8 0 = (0g𝑅)
132, 12grpidcl 18879 . . . . . . 7 (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅))
1411, 13syl 17 . . . . . 6 (𝜑0 ∈ (Base‘𝑅))
15 eqid 2729 . . . . . . . . 9 (mulGrp‘𝑅) = (mulGrp‘𝑅)
16 rloc0g.2 . . . . . . . . 9 1 = (1r𝑅)
1715, 16ringidval 20103 . . . . . . . 8 1 = (0g‘(mulGrp‘𝑅))
1817subm0cl 18720 . . . . . . 7 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 1𝑆)
198, 18syl 17 . . . . . 6 (𝜑1𝑆)
2014, 19opelxpd 5670 . . . . 5 (𝜑 → ⟨ 0 , 1 ⟩ ∈ ((Base‘𝑅) × 𝑆))
216ovexi 7403 . . . . . 6 ∈ V
2221ecelqsi 8720 . . . . 5 (⟨ 0 , 1 ⟩ ∈ ((Base‘𝑅) × 𝑆) → [⟨ 0 , 1 ⟩] ∈ (((Base‘𝑅) × 𝑆) / ))
2320, 22syl 17 . . . 4 (𝜑 → [⟨ 0 , 1 ⟩] ∈ (((Base‘𝑅) × 𝑆) / ))
24 eqid 2729 . . . . 5 (-g𝑅) = (-g𝑅)
25 eqid 2729 . . . . 5 ((Base‘𝑅) × 𝑆) = ((Base‘𝑅) × 𝑆)
2615, 2mgpbas 20065 . . . . . . 7 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
2726submss 18718 . . . . . 6 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆 ⊆ (Base‘𝑅))
288, 27syl 17 . . . . 5 (𝜑𝑆 ⊆ (Base‘𝑅))
292, 12, 3, 24, 25, 5, 6, 7, 28rlocbas 33234 . . . 4 (𝜑 → (((Base‘𝑅) × 𝑆) / ) = (Base‘𝐿))
3023, 29eleqtrd 2830 . . 3 (𝜑 → [⟨ 0 , 1 ⟩] ∈ (Base‘𝐿))
31 eqid 2729 . . . . 5 (+g𝐿) = (+g𝐿)
322, 3, 4, 5, 6, 7, 8, 14, 14, 19, 19, 31rlocaddval 33235 . . . 4 (𝜑 → ([⟨ 0 , 1 ⟩] (+g𝐿)[⟨ 0 , 1 ⟩] ) = [⟨(( 0 (.r𝑅) 1 )(+g𝑅)( 0 (.r𝑅) 1 )), ( 1 (.r𝑅) 1 )⟩] )
337crngringd 20166 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
342, 3, 16, 33, 14ringridmd 20193 . . . . . . . 8 (𝜑 → ( 0 (.r𝑅) 1 ) = 0 )
3534, 34oveq12d 7387 . . . . . . 7 (𝜑 → (( 0 (.r𝑅) 1 )(+g𝑅)( 0 (.r𝑅) 1 )) = ( 0 (+g𝑅) 0 ))
362, 4, 12, 11, 14grplidd 18883 . . . . . . 7 (𝜑 → ( 0 (+g𝑅) 0 ) = 0 )
3735, 36eqtrd 2764 . . . . . 6 (𝜑 → (( 0 (.r𝑅) 1 )(+g𝑅)( 0 (.r𝑅) 1 )) = 0 )
3828, 19sseldd 3944 . . . . . . 7 (𝜑1 ∈ (Base‘𝑅))
392, 3, 16, 33, 38ringlidmd 20192 . . . . . 6 (𝜑 → ( 1 (.r𝑅) 1 ) = 1 )
4037, 39opeq12d 4841 . . . . 5 (𝜑 → ⟨(( 0 (.r𝑅) 1 )(+g𝑅)( 0 (.r𝑅) 1 )), ( 1 (.r𝑅) 1 )⟩ = ⟨ 0 , 1 ⟩)
4140eceq1d 8688 . . . 4 (𝜑 → [⟨(( 0 (.r𝑅) 1 )(+g𝑅)( 0 (.r𝑅) 1 )), ( 1 (.r𝑅) 1 )⟩] = [⟨ 0 , 1 ⟩] )
4232, 41eqtrd 2764 . . 3 (𝜑 → ([⟨ 0 , 1 ⟩] (+g𝐿)[⟨ 0 , 1 ⟩] ) = [⟨ 0 , 1 ⟩] )
43 eqid 2729 . . . . 5 (Base‘𝐿) = (Base‘𝐿)
44 eqid 2729 . . . . 5 (0g𝐿) = (0g𝐿)
4543, 31, 44isgrpid2 18890 . . . 4 (𝐿 ∈ Grp → (([⟨ 0 , 1 ⟩] ∈ (Base‘𝐿) ∧ ([⟨ 0 , 1 ⟩] (+g𝐿)[⟨ 0 , 1 ⟩] ) = [⟨ 0 , 1 ⟩] ) ↔ (0g𝐿) = [⟨ 0 , 1 ⟩] ))
4645biimpa 476 . . 3 ((𝐿 ∈ Grp ∧ ([⟨ 0 , 1 ⟩] ∈ (Base‘𝐿) ∧ ([⟨ 0 , 1 ⟩] (+g𝐿)[⟨ 0 , 1 ⟩] ) = [⟨ 0 , 1 ⟩] )) → (0g𝐿) = [⟨ 0 , 1 ⟩] )
4710, 30, 42, 46syl12anc 836 . 2 (𝜑 → (0g𝐿) = [⟨ 0 , 1 ⟩] )
481, 47eqtr4id 2783 1 (𝜑𝑂 = (0g𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3911  cop 4591   × cxp 5629  cfv 6499  (class class class)co 7369  [cec 8646   / cqs 8647  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  0gc0g 17378  SubMndcsubmnd 18691  Grpcgrp 18847  -gcsg 18849  mulGrpcmgp 20060  1rcur 20101  CRingccrg 20154   ~RL cerl 33220   RLocal crloc 33221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-ec 8650  df-qs 8654  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-0g 17380  df-imas 17447  df-qus 17448  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-erl 33222  df-rloc 33223
This theorem is referenced by:  fracfld  33274
  Copyright terms: Public domain W3C validator