Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irngss Structured version   Visualization version   GIF version

Theorem irngss 33702
Description: All elements of a subring 𝑆 are integral over 𝑆. This is only true in the case of a nonzero ring, since there are no integral elements in a zero ring (see 0ringirng 33704). (Contributed by Thierry Arnoux, 28-Jan-2025.)
Hypotheses
Ref Expression
irngval.o 𝑂 = (𝑅 evalSub1 𝑆)
irngval.u 𝑈 = (𝑅s 𝑆)
irngval.b 𝐵 = (Base‘𝑅)
irngval.0 0 = (0g𝑅)
elirng.r (𝜑𝑅 ∈ CRing)
elirng.s (𝜑𝑆 ∈ (SubRing‘𝑅))
irngss.1 (𝜑𝑅 ∈ NzRing)
Assertion
Ref Expression
irngss (𝜑𝑆 ⊆ (𝑅 IntgRing 𝑆))

Proof of Theorem irngss
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((𝜑𝑥𝑆) → 𝜑)
2 elirng.s . . . . . 6 (𝜑𝑆 ∈ (SubRing‘𝑅))
3 irngval.b . . . . . . 7 𝐵 = (Base‘𝑅)
43subrgss 20589 . . . . . 6 (𝑆 ∈ (SubRing‘𝑅) → 𝑆𝐵)
52, 4syl 17 . . . . 5 (𝜑𝑆𝐵)
65sselda 3995 . . . 4 ((𝜑𝑥𝑆) → 𝑥𝐵)
7 eqid 2735 . . . . . . . . . 10 (Poly1𝑅) = (Poly1𝑅)
8 irngval.u . . . . . . . . . 10 𝑈 = (𝑅s 𝑆)
9 eqid 2735 . . . . . . . . . 10 (Poly1𝑈) = (Poly1𝑈)
10 eqid 2735 . . . . . . . . . 10 (Base‘(Poly1𝑈)) = (Base‘(Poly1𝑈))
112adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝑆 ∈ (SubRing‘𝑅))
12 eqid 2735 . . . . . . . . . 10 ((Poly1𝑅) ↾s (Base‘(Poly1𝑈))) = ((Poly1𝑅) ↾s (Base‘(Poly1𝑈)))
13 eqid 2735 . . . . . . . . . . 11 (var1𝑅) = (var1𝑅)
1413, 11, 8, 9, 10subrgvr1cl 22281 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (var1𝑅) ∈ (Base‘(Poly1𝑈)))
15 eqid 2735 . . . . . . . . . . 11 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
16 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝑥𝑆)
1715, 8, 7, 9, 10, 11, 16asclply1subcl 22394 . . . . . . . . . 10 ((𝜑𝑥𝑆) → ((algSc‘(Poly1𝑅))‘𝑥) ∈ (Base‘(Poly1𝑈)))
187, 8, 9, 10, 11, 12, 14, 17ressply1sub 33575 . . . . . . . . 9 ((𝜑𝑥𝑆) → ((var1𝑅)(-g‘(Poly1𝑈))((algSc‘(Poly1𝑅))‘𝑥)) = ((var1𝑅)(-g‘((Poly1𝑅) ↾s (Base‘(Poly1𝑈))))((algSc‘(Poly1𝑅))‘𝑥)))
197, 8, 9, 10subrgply1 22250 . . . . . . . . . . . 12 (𝑆 ∈ (SubRing‘𝑅) → (Base‘(Poly1𝑈)) ∈ (SubRing‘(Poly1𝑅)))
20 subrgsubg 20594 . . . . . . . . . . . 12 ((Base‘(Poly1𝑈)) ∈ (SubRing‘(Poly1𝑅)) → (Base‘(Poly1𝑈)) ∈ (SubGrp‘(Poly1𝑅)))
212, 19, 203syl 18 . . . . . . . . . . 11 (𝜑 → (Base‘(Poly1𝑈)) ∈ (SubGrp‘(Poly1𝑅)))
2221adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (Base‘(Poly1𝑈)) ∈ (SubGrp‘(Poly1𝑅)))
23 eqid 2735 . . . . . . . . . . 11 (-g‘(Poly1𝑅)) = (-g‘(Poly1𝑅))
24 eqid 2735 . . . . . . . . . . 11 (-g‘((Poly1𝑅) ↾s (Base‘(Poly1𝑈)))) = (-g‘((Poly1𝑅) ↾s (Base‘(Poly1𝑈))))
2523, 12, 24subgsub 19169 . . . . . . . . . 10 (((Base‘(Poly1𝑈)) ∈ (SubGrp‘(Poly1𝑅)) ∧ (var1𝑅) ∈ (Base‘(Poly1𝑈)) ∧ ((algSc‘(Poly1𝑅))‘𝑥) ∈ (Base‘(Poly1𝑈))) → ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) = ((var1𝑅)(-g‘((Poly1𝑅) ↾s (Base‘(Poly1𝑈))))((algSc‘(Poly1𝑅))‘𝑥)))
2622, 14, 17, 25syl3anc 1370 . . . . . . . . 9 ((𝜑𝑥𝑆) → ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) = ((var1𝑅)(-g‘((Poly1𝑅) ↾s (Base‘(Poly1𝑈))))((algSc‘(Poly1𝑅))‘𝑥)))
2718, 26eqtr4d 2778 . . . . . . . 8 ((𝜑𝑥𝑆) → ((var1𝑅)(-g‘(Poly1𝑈))((algSc‘(Poly1𝑅))‘𝑥)) = ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)))
28 elirng.r . . . . . . . . . . . . 13 (𝜑𝑅 ∈ CRing)
298subrgcrng 20592 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑅)) → 𝑈 ∈ CRing)
3028, 2, 29syl2anc 584 . . . . . . . . . . . 12 (𝜑𝑈 ∈ CRing)
319ply1crng 22216 . . . . . . . . . . . 12 (𝑈 ∈ CRing → (Poly1𝑈) ∈ CRing)
3230, 31syl 17 . . . . . . . . . . 11 (𝜑 → (Poly1𝑈) ∈ CRing)
3332adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (Poly1𝑈) ∈ CRing)
3433crnggrpd 20265 . . . . . . . . 9 ((𝜑𝑥𝑆) → (Poly1𝑈) ∈ Grp)
35 eqid 2735 . . . . . . . . . 10 (-g‘(Poly1𝑈)) = (-g‘(Poly1𝑈))
3610, 35grpsubcl 19051 . . . . . . . . 9 (((Poly1𝑈) ∈ Grp ∧ (var1𝑅) ∈ (Base‘(Poly1𝑈)) ∧ ((algSc‘(Poly1𝑅))‘𝑥) ∈ (Base‘(Poly1𝑈))) → ((var1𝑅)(-g‘(Poly1𝑈))((algSc‘(Poly1𝑅))‘𝑥)) ∈ (Base‘(Poly1𝑈)))
3734, 14, 17, 36syl3anc 1370 . . . . . . . 8 ((𝜑𝑥𝑆) → ((var1𝑅)(-g‘(Poly1𝑈))((algSc‘(Poly1𝑅))‘𝑥)) ∈ (Base‘(Poly1𝑈)))
3827, 37eqeltrrd 2840 . . . . . . 7 ((𝜑𝑥𝑆) → ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) ∈ (Base‘(Poly1𝑈)))
39 eqid 2735 . . . . . . . . 9 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
40 eqid 2735 . . . . . . . . 9 ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) = ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))
41 eqid 2735 . . . . . . . . 9 (eval1𝑅) = (eval1𝑅)
42 irngss.1 . . . . . . . . . 10 (𝜑𝑅 ∈ NzRing)
4342adantr 480 . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝑅 ∈ NzRing)
4428adantr 480 . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝑅 ∈ CRing)
45 eqid 2735 . . . . . . . . 9 (Monic1p𝑅) = (Monic1p𝑅)
46 eqid 2735 . . . . . . . . 9 (deg1𝑅) = (deg1𝑅)
47 irngval.0 . . . . . . . . 9 0 = (0g𝑅)
487, 39, 3, 13, 23, 15, 40, 41, 43, 44, 6, 45, 46, 47ply1remlem 26219 . . . . . . . 8 ((𝜑𝑥𝑆) → (((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) ∈ (Monic1p𝑅) ∧ ((deg1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) = 1 ∧ (((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) “ { 0 }) = {𝑥}))
4948simp1d 1141 . . . . . . 7 ((𝜑𝑥𝑆) → ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) ∈ (Monic1p𝑅))
5038, 49elind 4210 . . . . . 6 ((𝜑𝑥𝑆) → ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) ∈ ((Base‘(Poly1𝑈)) ∩ (Monic1p𝑅)))
51 eqid 2735 . . . . . . . 8 (Monic1p𝑈) = (Monic1p𝑈)
527, 8, 9, 10, 2, 45, 51ressply1mon1p 33573 . . . . . . 7 (𝜑 → (Monic1p𝑈) = ((Base‘(Poly1𝑈)) ∩ (Monic1p𝑅)))
5352adantr 480 . . . . . 6 ((𝜑𝑥𝑆) → (Monic1p𝑈) = ((Base‘(Poly1𝑈)) ∩ (Monic1p𝑅)))
5450, 53eleqtrrd 2842 . . . . 5 ((𝜑𝑥𝑆) → ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) ∈ (Monic1p𝑈))
55 fveq2 6907 . . . . . . . 8 (𝑓 = ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) → (𝑂𝑓) = (𝑂‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))))
5655fveq1d 6909 . . . . . . 7 (𝑓 = ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) → ((𝑂𝑓)‘𝑥) = ((𝑂‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)))‘𝑥))
5756eqeq1d 2737 . . . . . 6 (𝑓 = ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) → (((𝑂𝑓)‘𝑥) = 0 ↔ ((𝑂‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)))‘𝑥) = 0 ))
5857adantl 481 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝑓 = ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) → (((𝑂𝑓)‘𝑥) = 0 ↔ ((𝑂‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)))‘𝑥) = 0 ))
59 irngval.o . . . . . . . . . 10 𝑂 = (𝑅 evalSub1 𝑆)
6059, 3, 9, 8, 10, 41, 44, 11ressply1evl 22390 . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝑂 = ((eval1𝑅) ↾ (Base‘(Poly1𝑈))))
6160fveq1d 6909 . . . . . . . 8 ((𝜑𝑥𝑆) → (𝑂‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) = (((eval1𝑅) ↾ (Base‘(Poly1𝑈)))‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))))
6238fvresd 6927 . . . . . . . 8 ((𝜑𝑥𝑆) → (((eval1𝑅) ↾ (Base‘(Poly1𝑈)))‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) = ((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))))
6361, 62eqtrd 2775 . . . . . . 7 ((𝜑𝑥𝑆) → (𝑂‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) = ((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))))
6463fveq1d 6909 . . . . . 6 ((𝜑𝑥𝑆) → ((𝑂‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)))‘𝑥) = (((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)))‘𝑥))
65 eqid 2735 . . . . . . . . 9 (𝑅s 𝐵) = (𝑅s 𝐵)
66 eqid 2735 . . . . . . . . 9 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
673fvexi 6921 . . . . . . . . . 10 𝐵 ∈ V
6867a1i 11 . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝐵 ∈ V)
6941, 7, 65, 3evl1rhm 22352 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
7039, 66rhmf 20502 . . . . . . . . . . . 12 ((eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)) → (eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)))
7128, 69, 703syl 18 . . . . . . . . . . 11 (𝜑 → (eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)))
7271adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)))
73 eqid 2735 . . . . . . . . . . . . . 14 (PwSer1𝑈) = (PwSer1𝑈)
74 eqid 2735 . . . . . . . . . . . . . 14 (Base‘(PwSer1𝑈)) = (Base‘(PwSer1𝑈))
757, 8, 9, 10, 2, 73, 74, 39ressply1bas2 22245 . . . . . . . . . . . . 13 (𝜑 → (Base‘(Poly1𝑈)) = ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑅))))
7675adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → (Base‘(Poly1𝑈)) = ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑅))))
7738, 76eleqtrd 2841 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) ∈ ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑅))))
7877elin2d 4215 . . . . . . . . . 10 ((𝜑𝑥𝑆) → ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) ∈ (Base‘(Poly1𝑅)))
7972, 78ffvelcdmd 7105 . . . . . . . . 9 ((𝜑𝑥𝑆) → ((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) ∈ (Base‘(𝑅s 𝐵)))
8065, 3, 66, 43, 68, 79pwselbas 17536 . . . . . . . 8 ((𝜑𝑥𝑆) → ((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))):𝐵𝐵)
8180ffnd 6738 . . . . . . 7 ((𝜑𝑥𝑆) → ((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) Fn 𝐵)
82 vsnid 4668 . . . . . . . 8 𝑥 ∈ {𝑥}
8348simp3d 1143 . . . . . . . 8 ((𝜑𝑥𝑆) → (((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) “ { 0 }) = {𝑥})
8482, 83eleqtrrid 2846 . . . . . . 7 ((𝜑𝑥𝑆) → 𝑥 ∈ (((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) “ { 0 }))
85 fniniseg 7080 . . . . . . . 8 (((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) Fn 𝐵 → (𝑥 ∈ (((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) “ { 0 }) ↔ (𝑥𝐵 ∧ (((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)))‘𝑥) = 0 )))
8685simplbda 499 . . . . . . 7 ((((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) Fn 𝐵𝑥 ∈ (((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) “ { 0 })) → (((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)))‘𝑥) = 0 )
8781, 84, 86syl2anc 584 . . . . . 6 ((𝜑𝑥𝑆) → (((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)))‘𝑥) = 0 )
8864, 87eqtrd 2775 . . . . 5 ((𝜑𝑥𝑆) → ((𝑂‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)))‘𝑥) = 0 )
8954, 58, 88rspcedvd 3624 . . . 4 ((𝜑𝑥𝑆) → ∃𝑓 ∈ (Monic1p𝑈)((𝑂𝑓)‘𝑥) = 0 )
9059, 8, 3, 47, 28, 2elirng 33701 . . . . 5 (𝜑 → (𝑥 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑥𝐵 ∧ ∃𝑓 ∈ (Monic1p𝑈)((𝑂𝑓)‘𝑥) = 0 )))
9190biimpar 477 . . . 4 ((𝜑 ∧ (𝑥𝐵 ∧ ∃𝑓 ∈ (Monic1p𝑈)((𝑂𝑓)‘𝑥) = 0 )) → 𝑥 ∈ (𝑅 IntgRing 𝑆))
921, 6, 89, 91syl12anc 837 . . 3 ((𝜑𝑥𝑆) → 𝑥 ∈ (𝑅 IntgRing 𝑆))
9392ex 412 . 2 (𝜑 → (𝑥𝑆𝑥 ∈ (𝑅 IntgRing 𝑆)))
9493ssrdv 4001 1 (𝜑𝑆 ⊆ (𝑅 IntgRing 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wrex 3068  Vcvv 3478  cin 3962  wss 3963  {csn 4631  ccnv 5688  cres 5691  cima 5692   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  1c1 11154  Basecbs 17245  s cress 17274  0gc0g 17486  s cpws 17493  Grpcgrp 18964  -gcsg 18966  SubGrpcsubg 19151  CRingccrg 20252   RingHom crh 20486  NzRingcnzr 20529  SubRingcsubrg 20586  algSccascl 21890  PwSer1cps1 22192  var1cv1 22193  Poly1cpl1 22194   evalSub1 ces1 22333  eval1ce1 22334  deg1cdg1 26108  Monic1pcmn1 26180   IntgRing cirng 33698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-srg 20205  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-rhm 20489  df-nzr 20530  df-subrng 20563  df-subrg 20587  df-rlreg 20711  df-lmod 20877  df-lss 20948  df-lsp 20988  df-cnfld 21383  df-assa 21891  df-asp 21892  df-ascl 21893  df-psr 21947  df-mvr 21948  df-mpl 21949  df-opsr 21951  df-evls 22116  df-evl 22117  df-psr1 22197  df-vr1 22198  df-ply1 22199  df-coe1 22200  df-evls1 22335  df-evl1 22336  df-mdeg 26109  df-deg1 26110  df-mon1 26185  df-irng 33699
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator