Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irngss Structured version   Visualization version   GIF version

Theorem irngss 33207
Description: All elements of a subring 𝑆 are integral over 𝑆. This is only true in the case of a nonzero ring, since there are no integral elements in a zero ring (see 0ringirng 33209). (Contributed by Thierry Arnoux, 28-Jan-2025.)
Hypotheses
Ref Expression
irngval.o 𝑂 = (𝑅 evalSub1 𝑆)
irngval.u π‘ˆ = (𝑅 β†Ύs 𝑆)
irngval.b 𝐡 = (Baseβ€˜π‘…)
irngval.0 0 = (0gβ€˜π‘…)
elirng.r (πœ‘ β†’ 𝑅 ∈ CRing)
elirng.s (πœ‘ β†’ 𝑆 ∈ (SubRingβ€˜π‘…))
irngss.1 (πœ‘ β†’ 𝑅 ∈ NzRing)
Assertion
Ref Expression
irngss (πœ‘ β†’ 𝑆 βŠ† (𝑅 IntgRing 𝑆))

Proof of Theorem irngss
Dummy variables 𝑓 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ πœ‘)
2 elirng.s . . . . . 6 (πœ‘ β†’ 𝑆 ∈ (SubRingβ€˜π‘…))
3 irngval.b . . . . . . 7 𝐡 = (Baseβ€˜π‘…)
43subrgss 20470 . . . . . 6 (𝑆 ∈ (SubRingβ€˜π‘…) β†’ 𝑆 βŠ† 𝐡)
52, 4syl 17 . . . . 5 (πœ‘ β†’ 𝑆 βŠ† 𝐡)
65sselda 3982 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ 𝐡)
7 eqid 2731 . . . . . . . . . 10 (Poly1β€˜π‘…) = (Poly1β€˜π‘…)
8 irngval.u . . . . . . . . . 10 π‘ˆ = (𝑅 β†Ύs 𝑆)
9 eqid 2731 . . . . . . . . . 10 (Poly1β€˜π‘ˆ) = (Poly1β€˜π‘ˆ)
10 eqid 2731 . . . . . . . . . 10 (Baseβ€˜(Poly1β€˜π‘ˆ)) = (Baseβ€˜(Poly1β€˜π‘ˆ))
112adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ 𝑆 ∈ (SubRingβ€˜π‘…))
12 eqid 2731 . . . . . . . . . 10 ((Poly1β€˜π‘…) β†Ύs (Baseβ€˜(Poly1β€˜π‘ˆ))) = ((Poly1β€˜π‘…) β†Ύs (Baseβ€˜(Poly1β€˜π‘ˆ)))
13 eqid 2731 . . . . . . . . . . 11 (var1β€˜π‘…) = (var1β€˜π‘…)
1413, 11, 8, 9, 10subrgvr1cl 22104 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ (var1β€˜π‘…) ∈ (Baseβ€˜(Poly1β€˜π‘ˆ)))
15 eqid 2731 . . . . . . . . . . 11 (algScβ€˜(Poly1β€˜π‘…)) = (algScβ€˜(Poly1β€˜π‘…))
16 simpr 484 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ 𝑆)
1715, 8, 7, 9, 10, 11, 16asclply1subcl 33101 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ ((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯) ∈ (Baseβ€˜(Poly1β€˜π‘ˆ)))
187, 8, 9, 10, 11, 12, 14, 17ressply1sub 33100 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ ((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘ˆ))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)) = ((var1β€˜π‘…)(-gβ€˜((Poly1β€˜π‘…) β†Ύs (Baseβ€˜(Poly1β€˜π‘ˆ))))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)))
197, 8, 9, 10subrgply1 22075 . . . . . . . . . . . 12 (𝑆 ∈ (SubRingβ€˜π‘…) β†’ (Baseβ€˜(Poly1β€˜π‘ˆ)) ∈ (SubRingβ€˜(Poly1β€˜π‘…)))
20 subrgsubg 20475 . . . . . . . . . . . 12 ((Baseβ€˜(Poly1β€˜π‘ˆ)) ∈ (SubRingβ€˜(Poly1β€˜π‘…)) β†’ (Baseβ€˜(Poly1β€˜π‘ˆ)) ∈ (SubGrpβ€˜(Poly1β€˜π‘…)))
212, 19, 203syl 18 . . . . . . . . . . 11 (πœ‘ β†’ (Baseβ€˜(Poly1β€˜π‘ˆ)) ∈ (SubGrpβ€˜(Poly1β€˜π‘…)))
2221adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ (Baseβ€˜(Poly1β€˜π‘ˆ)) ∈ (SubGrpβ€˜(Poly1β€˜π‘…)))
23 eqid 2731 . . . . . . . . . . 11 (-gβ€˜(Poly1β€˜π‘…)) = (-gβ€˜(Poly1β€˜π‘…))
24 eqid 2731 . . . . . . . . . . 11 (-gβ€˜((Poly1β€˜π‘…) β†Ύs (Baseβ€˜(Poly1β€˜π‘ˆ)))) = (-gβ€˜((Poly1β€˜π‘…) β†Ύs (Baseβ€˜(Poly1β€˜π‘ˆ))))
2523, 12, 24subgsub 19061 . . . . . . . . . 10 (((Baseβ€˜(Poly1β€˜π‘ˆ)) ∈ (SubGrpβ€˜(Poly1β€˜π‘…)) ∧ (var1β€˜π‘…) ∈ (Baseβ€˜(Poly1β€˜π‘ˆ)) ∧ ((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯) ∈ (Baseβ€˜(Poly1β€˜π‘ˆ))) β†’ ((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)) = ((var1β€˜π‘…)(-gβ€˜((Poly1β€˜π‘…) β†Ύs (Baseβ€˜(Poly1β€˜π‘ˆ))))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)))
2622, 14, 17, 25syl3anc 1370 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ ((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)) = ((var1β€˜π‘…)(-gβ€˜((Poly1β€˜π‘…) β†Ύs (Baseβ€˜(Poly1β€˜π‘ˆ))))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)))
2718, 26eqtr4d 2774 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ ((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘ˆ))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)) = ((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)))
28 elirng.r . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑅 ∈ CRing)
298subrgcrng 20473 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘…)) β†’ π‘ˆ ∈ CRing)
3028, 2, 29syl2anc 583 . . . . . . . . . . . 12 (πœ‘ β†’ π‘ˆ ∈ CRing)
319ply1crng 22041 . . . . . . . . . . . 12 (π‘ˆ ∈ CRing β†’ (Poly1β€˜π‘ˆ) ∈ CRing)
3230, 31syl 17 . . . . . . . . . . 11 (πœ‘ β†’ (Poly1β€˜π‘ˆ) ∈ CRing)
3332adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ (Poly1β€˜π‘ˆ) ∈ CRing)
3433crnggrpd 20148 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ (Poly1β€˜π‘ˆ) ∈ Grp)
35 eqid 2731 . . . . . . . . . 10 (-gβ€˜(Poly1β€˜π‘ˆ)) = (-gβ€˜(Poly1β€˜π‘ˆ))
3610, 35grpsubcl 18946 . . . . . . . . 9 (((Poly1β€˜π‘ˆ) ∈ Grp ∧ (var1β€˜π‘…) ∈ (Baseβ€˜(Poly1β€˜π‘ˆ)) ∧ ((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯) ∈ (Baseβ€˜(Poly1β€˜π‘ˆ))) β†’ ((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘ˆ))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)) ∈ (Baseβ€˜(Poly1β€˜π‘ˆ)))
3734, 14, 17, 36syl3anc 1370 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ ((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘ˆ))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)) ∈ (Baseβ€˜(Poly1β€˜π‘ˆ)))
3827, 37eqeltrrd 2833 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ ((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)) ∈ (Baseβ€˜(Poly1β€˜π‘ˆ)))
39 eqid 2731 . . . . . . . . 9 (Baseβ€˜(Poly1β€˜π‘…)) = (Baseβ€˜(Poly1β€˜π‘…))
40 eqid 2731 . . . . . . . . 9 ((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)) = ((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯))
41 eqid 2731 . . . . . . . . 9 (eval1β€˜π‘…) = (eval1β€˜π‘…)
42 irngss.1 . . . . . . . . . 10 (πœ‘ β†’ 𝑅 ∈ NzRing)
4342adantr 480 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ 𝑅 ∈ NzRing)
4428adantr 480 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ 𝑅 ∈ CRing)
45 eqid 2731 . . . . . . . . 9 (Monic1pβ€˜π‘…) = (Monic1pβ€˜π‘…)
46 eqid 2731 . . . . . . . . 9 ( deg1 β€˜π‘…) = ( deg1 β€˜π‘…)
47 irngval.0 . . . . . . . . 9 0 = (0gβ€˜π‘…)
487, 39, 3, 13, 23, 15, 40, 41, 43, 44, 6, 45, 46, 47ply1remlem 26018 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ (((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)) ∈ (Monic1pβ€˜π‘…) ∧ (( deg1 β€˜π‘…)β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯))) = 1 ∧ (β—‘((eval1β€˜π‘…)β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯))) β€œ { 0 }) = {π‘₯}))
4948simp1d 1141 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ ((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)) ∈ (Monic1pβ€˜π‘…))
5038, 49elind 4194 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ ((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)) ∈ ((Baseβ€˜(Poly1β€˜π‘ˆ)) ∩ (Monic1pβ€˜π‘…)))
51 eqid 2731 . . . . . . . 8 (Monic1pβ€˜π‘ˆ) = (Monic1pβ€˜π‘ˆ)
527, 8, 9, 10, 2, 45, 51ressply1mon1p 33098 . . . . . . 7 (πœ‘ β†’ (Monic1pβ€˜π‘ˆ) = ((Baseβ€˜(Poly1β€˜π‘ˆ)) ∩ (Monic1pβ€˜π‘…)))
5352adantr 480 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ (Monic1pβ€˜π‘ˆ) = ((Baseβ€˜(Poly1β€˜π‘ˆ)) ∩ (Monic1pβ€˜π‘…)))
5450, 53eleqtrrd 2835 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ ((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)) ∈ (Monic1pβ€˜π‘ˆ))
55 fveq2 6891 . . . . . . . 8 (𝑓 = ((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)) β†’ (π‘‚β€˜π‘“) = (π‘‚β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯))))
5655fveq1d 6893 . . . . . . 7 (𝑓 = ((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)) β†’ ((π‘‚β€˜π‘“)β€˜π‘₯) = ((π‘‚β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)))β€˜π‘₯))
5756eqeq1d 2733 . . . . . 6 (𝑓 = ((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)) β†’ (((π‘‚β€˜π‘“)β€˜π‘₯) = 0 ↔ ((π‘‚β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)))β€˜π‘₯) = 0 ))
5857adantl 481 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ 𝑆) ∧ 𝑓 = ((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯))) β†’ (((π‘‚β€˜π‘“)β€˜π‘₯) = 0 ↔ ((π‘‚β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)))β€˜π‘₯) = 0 ))
59 irngval.o . . . . . . . . . 10 𝑂 = (𝑅 evalSub1 𝑆)
6059, 3, 9, 8, 10, 41, 44, 11ressply1evl 33088 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ 𝑂 = ((eval1β€˜π‘…) β†Ύ (Baseβ€˜(Poly1β€˜π‘ˆ))))
6160fveq1d 6893 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ (π‘‚β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯))) = (((eval1β€˜π‘…) β†Ύ (Baseβ€˜(Poly1β€˜π‘ˆ)))β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯))))
6238fvresd 6911 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ (((eval1β€˜π‘…) β†Ύ (Baseβ€˜(Poly1β€˜π‘ˆ)))β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯))) = ((eval1β€˜π‘…)β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯))))
6361, 62eqtrd 2771 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ (π‘‚β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯))) = ((eval1β€˜π‘…)β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯))))
6463fveq1d 6893 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ ((π‘‚β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)))β€˜π‘₯) = (((eval1β€˜π‘…)β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)))β€˜π‘₯))
65 eqid 2731 . . . . . . . . 9 (𝑅 ↑s 𝐡) = (𝑅 ↑s 𝐡)
66 eqid 2731 . . . . . . . . 9 (Baseβ€˜(𝑅 ↑s 𝐡)) = (Baseβ€˜(𝑅 ↑s 𝐡))
673fvexi 6905 . . . . . . . . . 10 𝐡 ∈ V
6867a1i 11 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ 𝐡 ∈ V)
6941, 7, 65, 3evl1rhm 22171 . . . . . . . . . . . 12 (𝑅 ∈ CRing β†’ (eval1β€˜π‘…) ∈ ((Poly1β€˜π‘…) RingHom (𝑅 ↑s 𝐡)))
7039, 66rhmf 20383 . . . . . . . . . . . 12 ((eval1β€˜π‘…) ∈ ((Poly1β€˜π‘…) RingHom (𝑅 ↑s 𝐡)) β†’ (eval1β€˜π‘…):(Baseβ€˜(Poly1β€˜π‘…))⟢(Baseβ€˜(𝑅 ↑s 𝐡)))
7128, 69, 703syl 18 . . . . . . . . . . 11 (πœ‘ β†’ (eval1β€˜π‘…):(Baseβ€˜(Poly1β€˜π‘…))⟢(Baseβ€˜(𝑅 ↑s 𝐡)))
7271adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ (eval1β€˜π‘…):(Baseβ€˜(Poly1β€˜π‘…))⟢(Baseβ€˜(𝑅 ↑s 𝐡)))
73 eqid 2731 . . . . . . . . . . . . . 14 (PwSer1β€˜π‘ˆ) = (PwSer1β€˜π‘ˆ)
74 eqid 2731 . . . . . . . . . . . . . 14 (Baseβ€˜(PwSer1β€˜π‘ˆ)) = (Baseβ€˜(PwSer1β€˜π‘ˆ))
757, 8, 9, 10, 2, 73, 74, 39ressply1bas2 22070 . . . . . . . . . . . . 13 (πœ‘ β†’ (Baseβ€˜(Poly1β€˜π‘ˆ)) = ((Baseβ€˜(PwSer1β€˜π‘ˆ)) ∩ (Baseβ€˜(Poly1β€˜π‘…))))
7675adantr 480 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ (Baseβ€˜(Poly1β€˜π‘ˆ)) = ((Baseβ€˜(PwSer1β€˜π‘ˆ)) ∩ (Baseβ€˜(Poly1β€˜π‘…))))
7738, 76eleqtrd 2834 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ ((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)) ∈ ((Baseβ€˜(PwSer1β€˜π‘ˆ)) ∩ (Baseβ€˜(Poly1β€˜π‘…))))
7877elin2d 4199 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ ((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)) ∈ (Baseβ€˜(Poly1β€˜π‘…)))
7972, 78ffvelcdmd 7087 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ ((eval1β€˜π‘…)β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯))) ∈ (Baseβ€˜(𝑅 ↑s 𝐡)))
8065, 3, 66, 43, 68, 79pwselbas 17442 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ ((eval1β€˜π‘…)β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯))):𝐡⟢𝐡)
8180ffnd 6718 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ ((eval1β€˜π‘…)β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯))) Fn 𝐡)
82 vsnid 4665 . . . . . . . 8 π‘₯ ∈ {π‘₯}
8348simp3d 1143 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ (β—‘((eval1β€˜π‘…)β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯))) β€œ { 0 }) = {π‘₯})
8482, 83eleqtrrid 2839 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ (β—‘((eval1β€˜π‘…)β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯))) β€œ { 0 }))
85 fniniseg 7061 . . . . . . . 8 (((eval1β€˜π‘…)β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯))) Fn 𝐡 β†’ (π‘₯ ∈ (β—‘((eval1β€˜π‘…)β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯))) β€œ { 0 }) ↔ (π‘₯ ∈ 𝐡 ∧ (((eval1β€˜π‘…)β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)))β€˜π‘₯) = 0 )))
8685simplbda 499 . . . . . . 7 ((((eval1β€˜π‘…)β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯))) Fn 𝐡 ∧ π‘₯ ∈ (β—‘((eval1β€˜π‘…)β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯))) β€œ { 0 })) β†’ (((eval1β€˜π‘…)β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)))β€˜π‘₯) = 0 )
8781, 84, 86syl2anc 583 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ (((eval1β€˜π‘…)β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)))β€˜π‘₯) = 0 )
8864, 87eqtrd 2771 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ ((π‘‚β€˜((var1β€˜π‘…)(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘₯)))β€˜π‘₯) = 0 )
8954, 58, 88rspcedvd 3614 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ βˆƒπ‘“ ∈ (Monic1pβ€˜π‘ˆ)((π‘‚β€˜π‘“)β€˜π‘₯) = 0 )
9059, 8, 3, 47, 28, 2elirng 33206 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ (𝑅 IntgRing 𝑆) ↔ (π‘₯ ∈ 𝐡 ∧ βˆƒπ‘“ ∈ (Monic1pβ€˜π‘ˆ)((π‘‚β€˜π‘“)β€˜π‘₯) = 0 )))
9190biimpar 477 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ βˆƒπ‘“ ∈ (Monic1pβ€˜π‘ˆ)((π‘‚β€˜π‘“)β€˜π‘₯) = 0 )) β†’ π‘₯ ∈ (𝑅 IntgRing 𝑆))
921, 6, 89, 91syl12anc 834 . . 3 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ (𝑅 IntgRing 𝑆))
9392ex 412 . 2 (πœ‘ β†’ (π‘₯ ∈ 𝑆 β†’ π‘₯ ∈ (𝑅 IntgRing 𝑆)))
9493ssrdv 3988 1 (πœ‘ β†’ 𝑆 βŠ† (𝑅 IntgRing 𝑆))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆƒwrex 3069  Vcvv 3473   ∩ cin 3947   βŠ† wss 3948  {csn 4628  β—‘ccnv 5675   β†Ύ cres 5678   β€œ cima 5679   Fn wfn 6538  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7412  1c1 11117  Basecbs 17151   β†Ύs cress 17180  0gc0g 17392   ↑s cpws 17399  Grpcgrp 18861  -gcsg 18863  SubGrpcsubg 19043  CRingccrg 20135   RingHom crh 20367  NzRingcnzr 20410  SubRingcsubrg 20465  algSccascl 21717  PwSer1cps1 22018  var1cv1 22019  Poly1cpl1 22020   evalSub1 ces1 22152  eval1ce1 22153   deg1 cdg1 25907  Monic1pcmn1 25981   IntgRing cirng 33203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-ofr 7675  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-tpos 8217  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-sup 9443  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-fzo 13635  df-seq 13974  df-hash 14298  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-0g 17394  df-gsum 17395  df-prds 17400  df-pws 17402  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-mhm 18711  df-submnd 18712  df-grp 18864  df-minusg 18865  df-sbg 18866  df-mulg 18994  df-subg 19046  df-ghm 19135  df-cntz 19229  df-cmn 19698  df-abl 19699  df-mgp 20036  df-rng 20054  df-ur 20083  df-srg 20088  df-ring 20136  df-cring 20137  df-oppr 20232  df-dvdsr 20255  df-unit 20256  df-invr 20286  df-rhm 20370  df-nzr 20411  df-subrng 20442  df-subrg 20467  df-lmod 20704  df-lss 20775  df-lsp 20815  df-rlreg 21188  df-cnfld 21234  df-assa 21718  df-asp 21719  df-ascl 21720  df-psr 21772  df-mvr 21773  df-mpl 21774  df-opsr 21776  df-evls 21946  df-evl 21947  df-psr1 22023  df-vr1 22024  df-ply1 22025  df-coe1 22026  df-evls1 22154  df-evl1 22155  df-mdeg 25908  df-deg1 25909  df-mon1 25986  df-irng 33204
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator