Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irngss Structured version   Visualization version   GIF version

Theorem irngss 33682
Description: All elements of a subring 𝑆 are integral over 𝑆. This is only true in the case of a nonzero ring, since there are no integral elements in a zero ring (see 0ringirng 33684). (Contributed by Thierry Arnoux, 28-Jan-2025.)
Hypotheses
Ref Expression
irngval.o 𝑂 = (𝑅 evalSub1 𝑆)
irngval.u 𝑈 = (𝑅s 𝑆)
irngval.b 𝐵 = (Base‘𝑅)
irngval.0 0 = (0g𝑅)
elirng.r (𝜑𝑅 ∈ CRing)
elirng.s (𝜑𝑆 ∈ (SubRing‘𝑅))
irngss.1 (𝜑𝑅 ∈ NzRing)
Assertion
Ref Expression
irngss (𝜑𝑆 ⊆ (𝑅 IntgRing 𝑆))

Proof of Theorem irngss
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((𝜑𝑥𝑆) → 𝜑)
2 elirng.s . . . . . 6 (𝜑𝑆 ∈ (SubRing‘𝑅))
3 irngval.b . . . . . . 7 𝐵 = (Base‘𝑅)
43subrgss 20481 . . . . . 6 (𝑆 ∈ (SubRing‘𝑅) → 𝑆𝐵)
52, 4syl 17 . . . . 5 (𝜑𝑆𝐵)
65sselda 3946 . . . 4 ((𝜑𝑥𝑆) → 𝑥𝐵)
7 eqid 2729 . . . . . . . . . 10 (Poly1𝑅) = (Poly1𝑅)
8 irngval.u . . . . . . . . . 10 𝑈 = (𝑅s 𝑆)
9 eqid 2729 . . . . . . . . . 10 (Poly1𝑈) = (Poly1𝑈)
10 eqid 2729 . . . . . . . . . 10 (Base‘(Poly1𝑈)) = (Base‘(Poly1𝑈))
112adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝑆 ∈ (SubRing‘𝑅))
12 eqid 2729 . . . . . . . . . 10 ((Poly1𝑅) ↾s (Base‘(Poly1𝑈))) = ((Poly1𝑅) ↾s (Base‘(Poly1𝑈)))
13 eqid 2729 . . . . . . . . . . 11 (var1𝑅) = (var1𝑅)
1413, 11, 8, 9, 10subrgvr1cl 22148 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (var1𝑅) ∈ (Base‘(Poly1𝑈)))
15 eqid 2729 . . . . . . . . . . 11 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
16 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝑥𝑆)
1715, 8, 7, 9, 10, 11, 16asclply1subcl 22261 . . . . . . . . . 10 ((𝜑𝑥𝑆) → ((algSc‘(Poly1𝑅))‘𝑥) ∈ (Base‘(Poly1𝑈)))
187, 8, 9, 10, 11, 12, 14, 17ressply1sub 33539 . . . . . . . . 9 ((𝜑𝑥𝑆) → ((var1𝑅)(-g‘(Poly1𝑈))((algSc‘(Poly1𝑅))‘𝑥)) = ((var1𝑅)(-g‘((Poly1𝑅) ↾s (Base‘(Poly1𝑈))))((algSc‘(Poly1𝑅))‘𝑥)))
197, 8, 9, 10subrgply1 22117 . . . . . . . . . . . 12 (𝑆 ∈ (SubRing‘𝑅) → (Base‘(Poly1𝑈)) ∈ (SubRing‘(Poly1𝑅)))
20 subrgsubg 20486 . . . . . . . . . . . 12 ((Base‘(Poly1𝑈)) ∈ (SubRing‘(Poly1𝑅)) → (Base‘(Poly1𝑈)) ∈ (SubGrp‘(Poly1𝑅)))
212, 19, 203syl 18 . . . . . . . . . . 11 (𝜑 → (Base‘(Poly1𝑈)) ∈ (SubGrp‘(Poly1𝑅)))
2221adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (Base‘(Poly1𝑈)) ∈ (SubGrp‘(Poly1𝑅)))
23 eqid 2729 . . . . . . . . . . 11 (-g‘(Poly1𝑅)) = (-g‘(Poly1𝑅))
24 eqid 2729 . . . . . . . . . . 11 (-g‘((Poly1𝑅) ↾s (Base‘(Poly1𝑈)))) = (-g‘((Poly1𝑅) ↾s (Base‘(Poly1𝑈))))
2523, 12, 24subgsub 19070 . . . . . . . . . 10 (((Base‘(Poly1𝑈)) ∈ (SubGrp‘(Poly1𝑅)) ∧ (var1𝑅) ∈ (Base‘(Poly1𝑈)) ∧ ((algSc‘(Poly1𝑅))‘𝑥) ∈ (Base‘(Poly1𝑈))) → ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) = ((var1𝑅)(-g‘((Poly1𝑅) ↾s (Base‘(Poly1𝑈))))((algSc‘(Poly1𝑅))‘𝑥)))
2622, 14, 17, 25syl3anc 1373 . . . . . . . . 9 ((𝜑𝑥𝑆) → ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) = ((var1𝑅)(-g‘((Poly1𝑅) ↾s (Base‘(Poly1𝑈))))((algSc‘(Poly1𝑅))‘𝑥)))
2718, 26eqtr4d 2767 . . . . . . . 8 ((𝜑𝑥𝑆) → ((var1𝑅)(-g‘(Poly1𝑈))((algSc‘(Poly1𝑅))‘𝑥)) = ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)))
28 elirng.r . . . . . . . . . . . . 13 (𝜑𝑅 ∈ CRing)
298subrgcrng 20484 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑅)) → 𝑈 ∈ CRing)
3028, 2, 29syl2anc 584 . . . . . . . . . . . 12 (𝜑𝑈 ∈ CRing)
319ply1crng 22083 . . . . . . . . . . . 12 (𝑈 ∈ CRing → (Poly1𝑈) ∈ CRing)
3230, 31syl 17 . . . . . . . . . . 11 (𝜑 → (Poly1𝑈) ∈ CRing)
3332adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (Poly1𝑈) ∈ CRing)
3433crnggrpd 20156 . . . . . . . . 9 ((𝜑𝑥𝑆) → (Poly1𝑈) ∈ Grp)
35 eqid 2729 . . . . . . . . . 10 (-g‘(Poly1𝑈)) = (-g‘(Poly1𝑈))
3610, 35grpsubcl 18952 . . . . . . . . 9 (((Poly1𝑈) ∈ Grp ∧ (var1𝑅) ∈ (Base‘(Poly1𝑈)) ∧ ((algSc‘(Poly1𝑅))‘𝑥) ∈ (Base‘(Poly1𝑈))) → ((var1𝑅)(-g‘(Poly1𝑈))((algSc‘(Poly1𝑅))‘𝑥)) ∈ (Base‘(Poly1𝑈)))
3734, 14, 17, 36syl3anc 1373 . . . . . . . 8 ((𝜑𝑥𝑆) → ((var1𝑅)(-g‘(Poly1𝑈))((algSc‘(Poly1𝑅))‘𝑥)) ∈ (Base‘(Poly1𝑈)))
3827, 37eqeltrrd 2829 . . . . . . 7 ((𝜑𝑥𝑆) → ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) ∈ (Base‘(Poly1𝑈)))
39 eqid 2729 . . . . . . . . 9 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
40 eqid 2729 . . . . . . . . 9 ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) = ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))
41 eqid 2729 . . . . . . . . 9 (eval1𝑅) = (eval1𝑅)
42 irngss.1 . . . . . . . . . 10 (𝜑𝑅 ∈ NzRing)
4342adantr 480 . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝑅 ∈ NzRing)
4428adantr 480 . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝑅 ∈ CRing)
45 eqid 2729 . . . . . . . . 9 (Monic1p𝑅) = (Monic1p𝑅)
46 eqid 2729 . . . . . . . . 9 (deg1𝑅) = (deg1𝑅)
47 irngval.0 . . . . . . . . 9 0 = (0g𝑅)
487, 39, 3, 13, 23, 15, 40, 41, 43, 44, 6, 45, 46, 47ply1remlem 26070 . . . . . . . 8 ((𝜑𝑥𝑆) → (((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) ∈ (Monic1p𝑅) ∧ ((deg1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) = 1 ∧ (((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) “ { 0 }) = {𝑥}))
4948simp1d 1142 . . . . . . 7 ((𝜑𝑥𝑆) → ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) ∈ (Monic1p𝑅))
5038, 49elind 4163 . . . . . 6 ((𝜑𝑥𝑆) → ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) ∈ ((Base‘(Poly1𝑈)) ∩ (Monic1p𝑅)))
51 eqid 2729 . . . . . . . 8 (Monic1p𝑈) = (Monic1p𝑈)
527, 8, 9, 10, 2, 45, 51ressply1mon1p 33537 . . . . . . 7 (𝜑 → (Monic1p𝑈) = ((Base‘(Poly1𝑈)) ∩ (Monic1p𝑅)))
5352adantr 480 . . . . . 6 ((𝜑𝑥𝑆) → (Monic1p𝑈) = ((Base‘(Poly1𝑈)) ∩ (Monic1p𝑅)))
5450, 53eleqtrrd 2831 . . . . 5 ((𝜑𝑥𝑆) → ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) ∈ (Monic1p𝑈))
55 fveq2 6858 . . . . . . . 8 (𝑓 = ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) → (𝑂𝑓) = (𝑂‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))))
5655fveq1d 6860 . . . . . . 7 (𝑓 = ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) → ((𝑂𝑓)‘𝑥) = ((𝑂‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)))‘𝑥))
5756eqeq1d 2731 . . . . . 6 (𝑓 = ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) → (((𝑂𝑓)‘𝑥) = 0 ↔ ((𝑂‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)))‘𝑥) = 0 ))
5857adantl 481 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝑓 = ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) → (((𝑂𝑓)‘𝑥) = 0 ↔ ((𝑂‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)))‘𝑥) = 0 ))
59 irngval.o . . . . . . . . . 10 𝑂 = (𝑅 evalSub1 𝑆)
6059, 3, 9, 8, 10, 41, 44, 11ressply1evl 22257 . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝑂 = ((eval1𝑅) ↾ (Base‘(Poly1𝑈))))
6160fveq1d 6860 . . . . . . . 8 ((𝜑𝑥𝑆) → (𝑂‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) = (((eval1𝑅) ↾ (Base‘(Poly1𝑈)))‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))))
6238fvresd 6878 . . . . . . . 8 ((𝜑𝑥𝑆) → (((eval1𝑅) ↾ (Base‘(Poly1𝑈)))‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) = ((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))))
6361, 62eqtrd 2764 . . . . . . 7 ((𝜑𝑥𝑆) → (𝑂‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) = ((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))))
6463fveq1d 6860 . . . . . 6 ((𝜑𝑥𝑆) → ((𝑂‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)))‘𝑥) = (((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)))‘𝑥))
65 eqid 2729 . . . . . . . . 9 (𝑅s 𝐵) = (𝑅s 𝐵)
66 eqid 2729 . . . . . . . . 9 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
673fvexi 6872 . . . . . . . . . 10 𝐵 ∈ V
6867a1i 11 . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝐵 ∈ V)
6941, 7, 65, 3evl1rhm 22219 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
7039, 66rhmf 20394 . . . . . . . . . . . 12 ((eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)) → (eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)))
7128, 69, 703syl 18 . . . . . . . . . . 11 (𝜑 → (eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)))
7271adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)))
73 eqid 2729 . . . . . . . . . . . . . 14 (PwSer1𝑈) = (PwSer1𝑈)
74 eqid 2729 . . . . . . . . . . . . . 14 (Base‘(PwSer1𝑈)) = (Base‘(PwSer1𝑈))
757, 8, 9, 10, 2, 73, 74, 39ressply1bas2 22112 . . . . . . . . . . . . 13 (𝜑 → (Base‘(Poly1𝑈)) = ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑅))))
7675adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → (Base‘(Poly1𝑈)) = ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑅))))
7738, 76eleqtrd 2830 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) ∈ ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑅))))
7877elin2d 4168 . . . . . . . . . 10 ((𝜑𝑥𝑆) → ((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)) ∈ (Base‘(Poly1𝑅)))
7972, 78ffvelcdmd 7057 . . . . . . . . 9 ((𝜑𝑥𝑆) → ((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) ∈ (Base‘(𝑅s 𝐵)))
8065, 3, 66, 43, 68, 79pwselbas 17452 . . . . . . . 8 ((𝜑𝑥𝑆) → ((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))):𝐵𝐵)
8180ffnd 6689 . . . . . . 7 ((𝜑𝑥𝑆) → ((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) Fn 𝐵)
82 vsnid 4627 . . . . . . . 8 𝑥 ∈ {𝑥}
8348simp3d 1144 . . . . . . . 8 ((𝜑𝑥𝑆) → (((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) “ { 0 }) = {𝑥})
8482, 83eleqtrrid 2835 . . . . . . 7 ((𝜑𝑥𝑆) → 𝑥 ∈ (((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) “ { 0 }))
85 fniniseg 7032 . . . . . . . 8 (((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) Fn 𝐵 → (𝑥 ∈ (((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) “ { 0 }) ↔ (𝑥𝐵 ∧ (((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)))‘𝑥) = 0 )))
8685simplbda 499 . . . . . . 7 ((((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) Fn 𝐵𝑥 ∈ (((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥))) “ { 0 })) → (((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)))‘𝑥) = 0 )
8781, 84, 86syl2anc 584 . . . . . 6 ((𝜑𝑥𝑆) → (((eval1𝑅)‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)))‘𝑥) = 0 )
8864, 87eqtrd 2764 . . . . 5 ((𝜑𝑥𝑆) → ((𝑂‘((var1𝑅)(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑥)))‘𝑥) = 0 )
8954, 58, 88rspcedvd 3590 . . . 4 ((𝜑𝑥𝑆) → ∃𝑓 ∈ (Monic1p𝑈)((𝑂𝑓)‘𝑥) = 0 )
9059, 8, 3, 47, 28, 2elirng 33681 . . . . 5 (𝜑 → (𝑥 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑥𝐵 ∧ ∃𝑓 ∈ (Monic1p𝑈)((𝑂𝑓)‘𝑥) = 0 )))
9190biimpar 477 . . . 4 ((𝜑 ∧ (𝑥𝐵 ∧ ∃𝑓 ∈ (Monic1p𝑈)((𝑂𝑓)‘𝑥) = 0 )) → 𝑥 ∈ (𝑅 IntgRing 𝑆))
921, 6, 89, 91syl12anc 836 . . 3 ((𝜑𝑥𝑆) → 𝑥 ∈ (𝑅 IntgRing 𝑆))
9392ex 412 . 2 (𝜑 → (𝑥𝑆𝑥 ∈ (𝑅 IntgRing 𝑆)))
9493ssrdv 3952 1 (𝜑𝑆 ⊆ (𝑅 IntgRing 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  cin 3913  wss 3914  {csn 4589  ccnv 5637  cres 5640  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  1c1 11069  Basecbs 17179  s cress 17200  0gc0g 17402  s cpws 17409  Grpcgrp 18865  -gcsg 18867  SubGrpcsubg 19052  CRingccrg 20143   RingHom crh 20378  NzRingcnzr 20421  SubRingcsubrg 20478  algSccascl 21761  PwSer1cps1 22059  var1cv1 22060  Poly1cpl1 22061   evalSub1 ces1 22200  eval1ce1 22201  deg1cdg1 25959  Monic1pcmn1 26031   IntgRing cirng 33678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-rhm 20381  df-nzr 20422  df-subrng 20455  df-subrg 20479  df-rlreg 20603  df-lmod 20768  df-lss 20838  df-lsp 20878  df-cnfld 21265  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-evls1 22202  df-evl1 22203  df-mdeg 25960  df-deg1 25961  df-mon1 26036  df-irng 33679
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator