![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1mulgsumlem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for ply1mulgsum 46461. (Contributed by AV, 20-Oct-2019.) |
Ref | Expression |
---|---|
ply1mulgsum.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1mulgsum.b | ⊢ 𝐵 = (Base‘𝑃) |
ply1mulgsum.a | ⊢ 𝐴 = (coe1‘𝐾) |
ply1mulgsum.c | ⊢ 𝐶 = (coe1‘𝐿) |
ply1mulgsum.x | ⊢ 𝑋 = (var1‘𝑅) |
ply1mulgsum.pm | ⊢ × = (.r‘𝑃) |
ply1mulgsum.sm | ⊢ · = ( ·𝑠 ‘𝑃) |
ply1mulgsum.rm | ⊢ ∗ = (.r‘𝑅) |
ply1mulgsum.m | ⊢ 𝑀 = (mulGrp‘𝑃) |
ply1mulgsum.e | ⊢ ↑ = (.g‘𝑀) |
Ref | Expression |
---|---|
ply1mulgsumlem3 | ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))))) finSupp (0g‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6857 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (0g‘𝑅) ∈ V) | |
2 | ovexd 7392 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) ∈ V) | |
3 | ply1mulgsum.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | ply1mulgsum.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
5 | ply1mulgsum.a | . . . 4 ⊢ 𝐴 = (coe1‘𝐾) | |
6 | ply1mulgsum.c | . . . 4 ⊢ 𝐶 = (coe1‘𝐿) | |
7 | ply1mulgsum.x | . . . 4 ⊢ 𝑋 = (var1‘𝑅) | |
8 | ply1mulgsum.pm | . . . 4 ⊢ × = (.r‘𝑃) | |
9 | ply1mulgsum.sm | . . . 4 ⊢ · = ( ·𝑠 ‘𝑃) | |
10 | ply1mulgsum.rm | . . . 4 ⊢ ∗ = (.r‘𝑅) | |
11 | ply1mulgsum.m | . . . 4 ⊢ 𝑀 = (mulGrp‘𝑃) | |
12 | ply1mulgsum.e | . . . 4 ⊢ ↑ = (.g‘𝑀) | |
13 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | ply1mulgsumlem2 46458 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅))) |
14 | vex 3449 | . . . . . . . . 9 ⊢ 𝑛 ∈ V | |
15 | csbov2g 7403 | . . . . . . . . . 10 ⊢ (𝑛 ∈ V → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (𝑅 Σg ⦋𝑛 / 𝑘⦌(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))))) | |
16 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ V → 𝑛 ∈ V) | |
17 | oveq2 7365 | . . . . . . . . . . . . . 14 ⊢ (𝑘 = 𝑛 → (0...𝑘) = (0...𝑛)) | |
18 | fvoveq1 7380 | . . . . . . . . . . . . . . 15 ⊢ (𝑘 = 𝑛 → (𝐶‘(𝑘 − 𝑙)) = (𝐶‘(𝑛 − 𝑙))) | |
19 | 18 | oveq2d 7373 | . . . . . . . . . . . . . 14 ⊢ (𝑘 = 𝑛 → ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))) = ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙)))) |
20 | 17, 19 | mpteq12dv 5196 | . . . . . . . . . . . . 13 ⊢ (𝑘 = 𝑛 → (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) |
21 | 20 | adantl 482 | . . . . . . . . . . . 12 ⊢ ((𝑛 ∈ V ∧ 𝑘 = 𝑛) → (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) |
22 | 16, 21 | csbied 3893 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ V → ⦋𝑛 / 𝑘⦌(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) |
23 | 22 | oveq2d 7373 | . . . . . . . . . 10 ⊢ (𝑛 ∈ V → (𝑅 Σg ⦋𝑛 / 𝑘⦌(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙)))))) |
24 | 15, 23 | eqtrd 2776 | . . . . . . . . 9 ⊢ (𝑛 ∈ V → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙)))))) |
25 | 14, 24 | ax-mp 5 | . . . . . . . 8 ⊢ ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) |
26 | simpr 485 | . . . . . . . 8 ⊢ (((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)) | |
27 | 25, 26 | eqtrid 2788 | . . . . . . 7 ⊢ (((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)) → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (0g‘𝑅)) |
28 | 27 | ex 413 | . . . . . 6 ⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅) → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (0g‘𝑅))) |
29 | 28 | imim2d 57 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)) → (𝑠 < 𝑛 → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (0g‘𝑅)))) |
30 | 29 | ralimdva 3164 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)) → ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (0g‘𝑅)))) |
31 | 30 | reximdva 3165 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (0g‘𝑅)))) |
32 | 13, 31 | mpd 15 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (0g‘𝑅))) |
33 | 1, 2, 32 | mptnn0fsupp 13902 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))))) finSupp (0g‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3064 ∃wrex 3073 Vcvv 3445 ⦋csb 3855 class class class wbr 5105 ↦ cmpt 5188 ‘cfv 6496 (class class class)co 7357 finSupp cfsupp 9305 0cc0 11051 < clt 11189 − cmin 11385 ℕ0cn0 12413 ...cfz 13424 Basecbs 17083 .rcmulr 17134 ·𝑠 cvsca 17137 0gc0g 17321 Σg cgsu 17322 .gcmg 18872 mulGrpcmgp 19896 Ringcrg 19964 var1cv1 21547 Poly1cpl1 21548 coe1cco1 21549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-fz 13425 df-seq 13907 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-sca 17149 df-vsca 17150 df-tset 17152 df-ple 17153 df-0g 17323 df-gsum 17324 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-grp 18751 df-minusg 18752 df-mgp 19897 df-ring 19966 df-psr 21311 df-mpl 21313 df-opsr 21315 df-psr1 21551 df-ply1 21553 df-coe1 21554 |
This theorem is referenced by: ply1mulgsum 46461 |
Copyright terms: Public domain | W3C validator |