| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1mulgsumlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for ply1mulgsum 48490. (Contributed by AV, 20-Oct-2019.) |
| Ref | Expression |
|---|---|
| ply1mulgsum.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1mulgsum.b | ⊢ 𝐵 = (Base‘𝑃) |
| ply1mulgsum.a | ⊢ 𝐴 = (coe1‘𝐾) |
| ply1mulgsum.c | ⊢ 𝐶 = (coe1‘𝐿) |
| ply1mulgsum.x | ⊢ 𝑋 = (var1‘𝑅) |
| ply1mulgsum.pm | ⊢ × = (.r‘𝑃) |
| ply1mulgsum.sm | ⊢ · = ( ·𝑠 ‘𝑃) |
| ply1mulgsum.rm | ⊢ ∗ = (.r‘𝑅) |
| ply1mulgsum.m | ⊢ 𝑀 = (mulGrp‘𝑃) |
| ply1mulgsum.e | ⊢ ↑ = (.g‘𝑀) |
| Ref | Expression |
|---|---|
| ply1mulgsumlem3 | ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))))) finSupp (0g‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6837 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (0g‘𝑅) ∈ V) | |
| 2 | ovexd 7381 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) ∈ V) | |
| 3 | ply1mulgsum.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | ply1mulgsum.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 5 | ply1mulgsum.a | . . . 4 ⊢ 𝐴 = (coe1‘𝐾) | |
| 6 | ply1mulgsum.c | . . . 4 ⊢ 𝐶 = (coe1‘𝐿) | |
| 7 | ply1mulgsum.x | . . . 4 ⊢ 𝑋 = (var1‘𝑅) | |
| 8 | ply1mulgsum.pm | . . . 4 ⊢ × = (.r‘𝑃) | |
| 9 | ply1mulgsum.sm | . . . 4 ⊢ · = ( ·𝑠 ‘𝑃) | |
| 10 | ply1mulgsum.rm | . . . 4 ⊢ ∗ = (.r‘𝑅) | |
| 11 | ply1mulgsum.m | . . . 4 ⊢ 𝑀 = (mulGrp‘𝑃) | |
| 12 | ply1mulgsum.e | . . . 4 ⊢ ↑ = (.g‘𝑀) | |
| 13 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | ply1mulgsumlem2 48487 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅))) |
| 14 | vex 3440 | . . . . . . . . 9 ⊢ 𝑛 ∈ V | |
| 15 | csbov2g 7394 | . . . . . . . . . 10 ⊢ (𝑛 ∈ V → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (𝑅 Σg ⦋𝑛 / 𝑘⦌(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))))) | |
| 16 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ V → 𝑛 ∈ V) | |
| 17 | oveq2 7354 | . . . . . . . . . . . . . 14 ⊢ (𝑘 = 𝑛 → (0...𝑘) = (0...𝑛)) | |
| 18 | fvoveq1 7369 | . . . . . . . . . . . . . . 15 ⊢ (𝑘 = 𝑛 → (𝐶‘(𝑘 − 𝑙)) = (𝐶‘(𝑛 − 𝑙))) | |
| 19 | 18 | oveq2d 7362 | . . . . . . . . . . . . . 14 ⊢ (𝑘 = 𝑛 → ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))) = ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙)))) |
| 20 | 17, 19 | mpteq12dv 5176 | . . . . . . . . . . . . 13 ⊢ (𝑘 = 𝑛 → (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) |
| 21 | 20 | adantl 481 | . . . . . . . . . . . 12 ⊢ ((𝑛 ∈ V ∧ 𝑘 = 𝑛) → (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) |
| 22 | 16, 21 | csbied 3881 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ V → ⦋𝑛 / 𝑘⦌(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) |
| 23 | 22 | oveq2d 7362 | . . . . . . . . . 10 ⊢ (𝑛 ∈ V → (𝑅 Σg ⦋𝑛 / 𝑘⦌(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙)))))) |
| 24 | 15, 23 | eqtrd 2766 | . . . . . . . . 9 ⊢ (𝑛 ∈ V → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙)))))) |
| 25 | 14, 24 | ax-mp 5 | . . . . . . . 8 ⊢ ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) |
| 26 | simpr 484 | . . . . . . . 8 ⊢ (((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)) | |
| 27 | 25, 26 | eqtrid 2778 | . . . . . . 7 ⊢ (((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)) → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (0g‘𝑅)) |
| 28 | 27 | ex 412 | . . . . . 6 ⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅) → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (0g‘𝑅))) |
| 29 | 28 | imim2d 57 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)) → (𝑠 < 𝑛 → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (0g‘𝑅)))) |
| 30 | 29 | ralimdva 3144 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)) → ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (0g‘𝑅)))) |
| 31 | 30 | reximdva 3145 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (0g‘𝑅)))) |
| 32 | 13, 31 | mpd 15 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (0g‘𝑅))) |
| 33 | 1, 2, 32 | mptnn0fsupp 13904 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))))) finSupp (0g‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ⦋csb 3845 class class class wbr 5089 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 finSupp cfsupp 9245 0cc0 11006 < clt 11146 − cmin 11344 ℕ0cn0 12381 ...cfz 13407 Basecbs 17120 .rcmulr 17162 ·𝑠 cvsca 17165 0gc0g 17343 Σg cgsu 17344 .gcmg 18980 mulGrpcmgp 20058 Ringcrg 20151 var1cv1 22088 Poly1cpl1 22089 coe1cco1 22090 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-seq 13909 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-tset 17180 df-ple 17181 df-0g 17345 df-gsum 17346 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-psr 21846 df-mpl 21848 df-opsr 21850 df-psr1 22092 df-ply1 22094 df-coe1 22095 |
| This theorem is referenced by: ply1mulgsum 48490 |
| Copyright terms: Public domain | W3C validator |