| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1mulgsumlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for ply1mulgsum 48307. (Contributed by AV, 20-Oct-2019.) |
| Ref | Expression |
|---|---|
| ply1mulgsum.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1mulgsum.b | ⊢ 𝐵 = (Base‘𝑃) |
| ply1mulgsum.a | ⊢ 𝐴 = (coe1‘𝐾) |
| ply1mulgsum.c | ⊢ 𝐶 = (coe1‘𝐿) |
| ply1mulgsum.x | ⊢ 𝑋 = (var1‘𝑅) |
| ply1mulgsum.pm | ⊢ × = (.r‘𝑃) |
| ply1mulgsum.sm | ⊢ · = ( ·𝑠 ‘𝑃) |
| ply1mulgsum.rm | ⊢ ∗ = (.r‘𝑅) |
| ply1mulgsum.m | ⊢ 𝑀 = (mulGrp‘𝑃) |
| ply1mulgsum.e | ⊢ ↑ = (.g‘𝑀) |
| Ref | Expression |
|---|---|
| ply1mulgsumlem3 | ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))))) finSupp (0g‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6921 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (0g‘𝑅) ∈ V) | |
| 2 | ovexd 7466 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) ∈ V) | |
| 3 | ply1mulgsum.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | ply1mulgsum.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 5 | ply1mulgsum.a | . . . 4 ⊢ 𝐴 = (coe1‘𝐾) | |
| 6 | ply1mulgsum.c | . . . 4 ⊢ 𝐶 = (coe1‘𝐿) | |
| 7 | ply1mulgsum.x | . . . 4 ⊢ 𝑋 = (var1‘𝑅) | |
| 8 | ply1mulgsum.pm | . . . 4 ⊢ × = (.r‘𝑃) | |
| 9 | ply1mulgsum.sm | . . . 4 ⊢ · = ( ·𝑠 ‘𝑃) | |
| 10 | ply1mulgsum.rm | . . . 4 ⊢ ∗ = (.r‘𝑅) | |
| 11 | ply1mulgsum.m | . . . 4 ⊢ 𝑀 = (mulGrp‘𝑃) | |
| 12 | ply1mulgsum.e | . . . 4 ⊢ ↑ = (.g‘𝑀) | |
| 13 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | ply1mulgsumlem2 48304 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅))) |
| 14 | vex 3484 | . . . . . . . . 9 ⊢ 𝑛 ∈ V | |
| 15 | csbov2g 7479 | . . . . . . . . . 10 ⊢ (𝑛 ∈ V → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (𝑅 Σg ⦋𝑛 / 𝑘⦌(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))))) | |
| 16 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ V → 𝑛 ∈ V) | |
| 17 | oveq2 7439 | . . . . . . . . . . . . . 14 ⊢ (𝑘 = 𝑛 → (0...𝑘) = (0...𝑛)) | |
| 18 | fvoveq1 7454 | . . . . . . . . . . . . . . 15 ⊢ (𝑘 = 𝑛 → (𝐶‘(𝑘 − 𝑙)) = (𝐶‘(𝑛 − 𝑙))) | |
| 19 | 18 | oveq2d 7447 | . . . . . . . . . . . . . 14 ⊢ (𝑘 = 𝑛 → ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))) = ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙)))) |
| 20 | 17, 19 | mpteq12dv 5233 | . . . . . . . . . . . . 13 ⊢ (𝑘 = 𝑛 → (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) |
| 21 | 20 | adantl 481 | . . . . . . . . . . . 12 ⊢ ((𝑛 ∈ V ∧ 𝑘 = 𝑛) → (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) |
| 22 | 16, 21 | csbied 3935 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ V → ⦋𝑛 / 𝑘⦌(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) |
| 23 | 22 | oveq2d 7447 | . . . . . . . . . 10 ⊢ (𝑛 ∈ V → (𝑅 Σg ⦋𝑛 / 𝑘⦌(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙)))))) |
| 24 | 15, 23 | eqtrd 2777 | . . . . . . . . 9 ⊢ (𝑛 ∈ V → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙)))))) |
| 25 | 14, 24 | ax-mp 5 | . . . . . . . 8 ⊢ ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) |
| 26 | simpr 484 | . . . . . . . 8 ⊢ (((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)) | |
| 27 | 25, 26 | eqtrid 2789 | . . . . . . 7 ⊢ (((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)) → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (0g‘𝑅)) |
| 28 | 27 | ex 412 | . . . . . 6 ⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅) → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (0g‘𝑅))) |
| 29 | 28 | imim2d 57 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)) → (𝑠 < 𝑛 → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (0g‘𝑅)))) |
| 30 | 29 | ralimdva 3167 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)) → ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (0g‘𝑅)))) |
| 31 | 30 | reximdva 3168 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (0g‘𝑅)))) |
| 32 | 13, 31 | mpd 15 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (0g‘𝑅))) |
| 33 | 1, 2, 32 | mptnn0fsupp 14038 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))))) finSupp (0g‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 Vcvv 3480 ⦋csb 3899 class class class wbr 5143 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 finSupp cfsupp 9401 0cc0 11155 < clt 11295 − cmin 11492 ℕ0cn0 12526 ...cfz 13547 Basecbs 17247 .rcmulr 17298 ·𝑠 cvsca 17301 0gc0g 17484 Σg cgsu 17485 .gcmg 19085 mulGrpcmgp 20137 Ringcrg 20230 var1cv1 22177 Poly1cpl1 22178 coe1cco1 22179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-seq 14043 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-tset 17316 df-ple 17317 df-0g 17486 df-gsum 17487 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-psr 21929 df-mpl 21931 df-opsr 21933 df-psr1 22181 df-ply1 22183 df-coe1 22184 |
| This theorem is referenced by: ply1mulgsum 48307 |
| Copyright terms: Public domain | W3C validator |