Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1mulgsum Structured version   Visualization version   GIF version

Theorem ply1mulgsum 42779
Description: The product of two polynomials expressed as group sum of scaled monomials. (Contributed by AV, 20-Oct-2019.)
Hypotheses
Ref Expression
ply1mulgsum.p 𝑃 = (Poly1𝑅)
ply1mulgsum.b 𝐵 = (Base‘𝑃)
ply1mulgsum.a 𝐴 = (coe1𝐾)
ply1mulgsum.c 𝐶 = (coe1𝐿)
ply1mulgsum.x 𝑋 = (var1𝑅)
ply1mulgsum.pm × = (.r𝑃)
ply1mulgsum.sm · = ( ·𝑠𝑃)
ply1mulgsum.rm = (.r𝑅)
ply1mulgsum.m 𝑀 = (mulGrp‘𝑃)
ply1mulgsum.e = (.g𝑀)
Assertion
Ref Expression
ply1mulgsum ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))
Distinct variable groups:   𝐴,𝑙   𝐵,𝑙   𝐶,𝑙   𝐾,𝑙   𝐿,𝑙   𝑅,𝑙   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝑘,𝐾   𝑘,𝐿   𝑅,𝑘   ,𝑘,𝑙   𝑘,𝑋   ,𝑘   · ,𝑘   𝑃,𝑘   ,𝑙
Allowed substitution hints:   𝑃(𝑙)   · (𝑙)   × (𝑘,𝑙)   (𝑙)   𝑀(𝑘,𝑙)   𝑋(𝑙)

Proof of Theorem ply1mulgsum
Dummy variables 𝑛 𝑖 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1mulgsum.p . . . . . . 7 𝑃 = (Poly1𝑅)
2 ply1mulgsum.pm . . . . . . 7 × = (.r𝑃)
3 ply1mulgsum.rm . . . . . . 7 = (.r𝑅)
4 ply1mulgsum.b . . . . . . 7 𝐵 = (Base‘𝑃)
51, 2, 3, 4coe1mul 19913 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (coe1‘(𝐾 × 𝐿)) = (𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))))))
65adantr 472 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (coe1‘(𝐾 × 𝐿)) = (𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))))))
76fveq1d 6377 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))))))‘𝑛))
8 eqidd 2766 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))))) = (𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))))))
9 oveq2 6850 . . . . . . . 8 (𝑚 = 𝑛 → (0...𝑚) = (0...𝑛))
10 fvoveq1 6865 . . . . . . . . 9 (𝑚 = 𝑛 → ((coe1𝐿)‘(𝑚𝑖)) = ((coe1𝐿)‘(𝑛𝑖)))
1110oveq2d 6858 . . . . . . . 8 (𝑚 = 𝑛 → (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))) = (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))
129, 11mpteq12dv 4892 . . . . . . 7 (𝑚 = 𝑛 → (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))) = (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖)))))
1312oveq2d 6858 . . . . . 6 (𝑚 = 𝑛 → (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))))) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))))
1413adantl 473 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑚 = 𝑛) → (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))))) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))))
15 simpr 477 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
16 ovexd 6876 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))) ∈ V)
178, 14, 15, 16fvmptd 6477 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))))))‘𝑛) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))))
18 ply1mulgsum.x . . . . . 6 𝑋 = (var1𝑅)
19 ply1mulgsum.e . . . . . . 7 = (.g𝑀)
20 ply1mulgsum.m . . . . . . . 8 𝑀 = (mulGrp‘𝑃)
2120fveq2i 6378 . . . . . . 7 (.g𝑀) = (.g‘(mulGrp‘𝑃))
2219, 21eqtri 2787 . . . . . 6 = (.g‘(mulGrp‘𝑃))
23 simp1 1166 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑅 ∈ Ring)
2423adantr 472 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
25 eqid 2765 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
26 ply1mulgsum.sm . . . . . 6 · = ( ·𝑠𝑃)
27 eqid 2765 . . . . . 6 (0g𝑅) = (0g𝑅)
28 ringcmn 18848 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
29283ad2ant1 1163 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑅 ∈ CMnd)
3029ad2antrr 717 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ CMnd)
31 fzfid 12980 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
32 simpll1 1269 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
3332adantr 472 . . . . . . . . . 10 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
34 simp2 1167 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝐾𝐵)
3534ad2antrr 717 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐾𝐵)
36 elfznn0 12640 . . . . . . . . . . 11 (𝑙 ∈ (0...𝑘) → 𝑙 ∈ ℕ0)
37 ply1mulgsum.a . . . . . . . . . . . 12 𝐴 = (coe1𝐾)
3837, 4, 1, 25coe1fvalcl 19855 . . . . . . . . . . 11 ((𝐾𝐵𝑙 ∈ ℕ0) → (𝐴𝑙) ∈ (Base‘𝑅))
3935, 36, 38syl2an 589 . . . . . . . . . 10 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝐴𝑙) ∈ (Base‘𝑅))
40 simp3 1168 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝐿𝐵)
4140ad2antrr 717 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐿𝐵)
42 fznn0sub 12580 . . . . . . . . . . 11 (𝑙 ∈ (0...𝑘) → (𝑘𝑙) ∈ ℕ0)
43 ply1mulgsum.c . . . . . . . . . . . 12 𝐶 = (coe1𝐿)
4443, 4, 1, 25coe1fvalcl 19855 . . . . . . . . . . 11 ((𝐿𝐵 ∧ (𝑘𝑙) ∈ ℕ0) → (𝐶‘(𝑘𝑙)) ∈ (Base‘𝑅))
4541, 42, 44syl2an 589 . . . . . . . . . 10 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝐶‘(𝑘𝑙)) ∈ (Base‘𝑅))
4625, 3ringcl 18828 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝐴𝑙) ∈ (Base‘𝑅) ∧ (𝐶‘(𝑘𝑙)) ∈ (Base‘𝑅)) → ((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
4733, 39, 45, 46syl3anc 1490 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → ((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
4847ralrimiva 3113 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ∀𝑙 ∈ (0...𝑘)((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
4925, 30, 31, 48gsummptcl 18632 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘𝑅))
5049ralrimiva 3113 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘𝑅))
511, 4, 37, 43, 18, 2, 26, 3, 20, 19ply1mulgsumlem3 42777 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))))) finSupp (0g𝑅))
5251adantr 472 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))))) finSupp (0g𝑅))
531, 4, 18, 22, 24, 25, 26, 27, 50, 52, 15gsummoncoe1 19947 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛) = 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))))
54 vex 3353 . . . . . 6 𝑛 ∈ V
55 csbov2g 6887 . . . . . . 7 (𝑛 ∈ V → 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))))
56 id 22 . . . . . . . . 9 (𝑛 ∈ V → 𝑛 ∈ V)
57 oveq2 6850 . . . . . . . . . . 11 (𝑘 = 𝑛 → (0...𝑘) = (0...𝑛))
58 fvoveq1 6865 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝐶‘(𝑘𝑙)) = (𝐶‘(𝑛𝑙)))
5958oveq2d 6858 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((𝐴𝑙) (𝐶‘(𝑘𝑙))) = ((𝐴𝑙) (𝐶‘(𝑛𝑙))))
6057, 59mpteq12dv 4892 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
6160adantl 473 . . . . . . . . 9 ((𝑛 ∈ V ∧ 𝑘 = 𝑛) → (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
6256, 61csbied 3718 . . . . . . . 8 (𝑛 ∈ V → 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
6362oveq2d 6858 . . . . . . 7 (𝑛 ∈ V → (𝑅 Σg 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))))
6455, 63eqtrd 2799 . . . . . 6 (𝑛 ∈ V → 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))))
6554, 64mp1i 13 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))))
66 fveq2 6375 . . . . . . . . . 10 (𝑙 = 𝑖 → (𝐴𝑙) = (𝐴𝑖))
6737fveq1i 6376 . . . . . . . . . 10 (𝐴𝑖) = ((coe1𝐾)‘𝑖)
6866, 67syl6eq 2815 . . . . . . . . 9 (𝑙 = 𝑖 → (𝐴𝑙) = ((coe1𝐾)‘𝑖))
69 oveq2 6850 . . . . . . . . . . 11 (𝑙 = 𝑖 → (𝑛𝑙) = (𝑛𝑖))
7069fveq2d 6379 . . . . . . . . . 10 (𝑙 = 𝑖 → (𝐶‘(𝑛𝑙)) = (𝐶‘(𝑛𝑖)))
7143fveq1i 6376 . . . . . . . . . 10 (𝐶‘(𝑛𝑖)) = ((coe1𝐿)‘(𝑛𝑖))
7270, 71syl6eq 2815 . . . . . . . . 9 (𝑙 = 𝑖 → (𝐶‘(𝑛𝑙)) = ((coe1𝐿)‘(𝑛𝑖)))
7368, 72oveq12d 6860 . . . . . . . 8 (𝑙 = 𝑖 → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))
7473cbvmptv 4909 . . . . . . 7 (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))) = (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))
7574a1i 11 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))) = (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖)))))
7675oveq2d 6858 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))))
7753, 65, 763eqtrrd 2804 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛))
787, 17, 773eqtrd 2803 . . 3 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛))
7978ralrimiva 3113 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∀𝑛 ∈ ℕ0 ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛))
801ply1ring 19891 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
814, 2ringcl 18828 . . . 4 ((𝑃 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝐾 × 𝐿) ∈ 𝐵)
8280, 81syl3an1 1202 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝐾 × 𝐿) ∈ 𝐵)
83 eqid 2765 . . . 4 (0g𝑃) = (0g𝑃)
84 ringcmn 18848 . . . . . 6 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
8580, 84syl 17 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ CMnd)
86853ad2ant1 1163 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑃 ∈ CMnd)
87 nn0ex 11545 . . . . 5 0 ∈ V
8887a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ℕ0 ∈ V)
891ply1lmod 19895 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
90893ad2ant1 1163 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑃 ∈ LMod)
9190adantr 472 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ LMod)
9229adantr 472 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ CMnd)
93 fzfid 12980 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
94 simpll1 1269 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
9534adantr 472 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝐾𝐵)
9695, 36, 38syl2an 589 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝐴𝑙) ∈ (Base‘𝑅))
9740adantr 472 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝐿𝐵)
9897, 42, 44syl2an 589 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝐶‘(𝑘𝑙)) ∈ (Base‘𝑅))
9994, 96, 98, 46syl3anc 1490 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → ((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
10099ralrimiva 3113 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → ∀𝑙 ∈ (0...𝑘)((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
10125, 92, 93, 100gsummptcl 18632 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘𝑅))
10223adantr 472 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
1031ply1sca 19896 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
104102, 103syl 17 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 = (Scalar‘𝑃))
105104fveq2d 6379 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
106101, 105eleqtrd 2846 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘(Scalar‘𝑃)))
10720ringmgp 18820 . . . . . . . . . 10 (𝑃 ∈ Ring → 𝑀 ∈ Mnd)
10880, 107syl 17 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
1091083ad2ant1 1163 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑀 ∈ Mnd)
110109adantr 472 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ Mnd)
111 simpr 477 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
11218, 1, 4vr1cl 19860 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑋𝐵)
1131123ad2ant1 1163 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑋𝐵)
114113adantr 472 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑋𝐵)
11520, 4mgpbas 18762 . . . . . . . 8 𝐵 = (Base‘𝑀)
116115, 19mulgnn0cl 17826 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑘 ∈ ℕ0𝑋𝐵) → (𝑘 𝑋) ∈ 𝐵)
117110, 111, 114, 116syl3anc 1490 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐵)
118 eqid 2765 . . . . . . 7 (Scalar‘𝑃) = (Scalar‘𝑃)
119 eqid 2765 . . . . . . 7 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
1204, 118, 26, 119lmodvscl 19149 . . . . . 6 ((𝑃 ∈ LMod ∧ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑘 𝑋) ∈ 𝐵) → ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) ∈ 𝐵)
12191, 106, 117, 120syl3anc 1490 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) ∈ 𝐵)
122121fmpttd 6575 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))):ℕ0𝐵)
1231, 4, 37, 43, 18, 2, 26, 3, 20, 19ply1mulgsumlem4 42778 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))) finSupp (0g𝑃))
1244, 83, 86, 88, 122, 123gsumcl 18582 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))) ∈ 𝐵)
125 eqid 2765 . . . 4 (coe1‘(𝐾 × 𝐿)) = (coe1‘(𝐾 × 𝐿))
126 eqid 2765 . . . 4 (coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))))) = (coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))
1271, 4, 125, 126ply1coe1eq 19941 . . 3 ((𝑅 ∈ Ring ∧ (𝐾 × 𝐿) ∈ 𝐵 ∧ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))) ∈ 𝐵) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛) ↔ (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))))))
12823, 82, 124, 127syl3anc 1490 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛) ↔ (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))))))
12979, 128mpbid 223 1 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wral 3055  Vcvv 3350  csb 3691   class class class wbr 4809  cmpt 4888  cfv 6068  (class class class)co 6842   finSupp cfsupp 8482  0cc0 10189  cmin 10520  0cn0 11538  ...cfz 12533  Basecbs 16132  .rcmulr 16217  Scalarcsca 16219   ·𝑠 cvsca 16220  0gc0g 16368   Σg cgsu 16369  Mndcmnd 17562  .gcmg 17809  CMndccmn 18459  mulGrpcmgp 18756  Ringcrg 18814  LModclmod 19132  var1cv1 19819  Poly1cpl1 19820  coe1cco1 19821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-ofr 7096  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-sca 16232  df-vsca 16233  df-tset 16235  df-ple 16236  df-0g 16370  df-gsum 16371  df-mre 16514  df-mrc 16515  df-acs 16517  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-mhm 17603  df-submnd 17604  df-grp 17694  df-minusg 17695  df-sbg 17696  df-mulg 17810  df-subg 17857  df-ghm 17924  df-cntz 18015  df-cmn 18461  df-abl 18462  df-mgp 18757  df-ur 18769  df-srg 18773  df-ring 18816  df-subrg 19047  df-lmod 19134  df-lss 19202  df-psr 19630  df-mvr 19631  df-mpl 19632  df-opsr 19634  df-psr1 19823  df-vr1 19824  df-ply1 19825  df-coe1 19826
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator