| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ply1mulgsum.p | . . . . . . 7
⊢ 𝑃 = (Poly1‘𝑅) | 
| 2 |  | ply1mulgsum.pm | . . . . . . 7
⊢  × =
(.r‘𝑃) | 
| 3 |  | ply1mulgsum.rm | . . . . . . 7
⊢  ∗ =
(.r‘𝑅) | 
| 4 |  | ply1mulgsum.b | . . . . . . 7
⊢ 𝐵 = (Base‘𝑃) | 
| 5 | 1, 2, 3, 4 | coe1mul 22273 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (coe1‘(𝐾 × 𝐿)) = (𝑚 ∈ ℕ0 ↦ (𝑅 Σg
(𝑖 ∈ (0...𝑚) ↦
(((coe1‘𝐾)‘𝑖) ∗
((coe1‘𝐿)‘(𝑚 − 𝑖))))))) | 
| 6 | 5 | adantr 480 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) →
(coe1‘(𝐾
×
𝐿)) = (𝑚 ∈ ℕ0 ↦ (𝑅 Σg
(𝑖 ∈ (0...𝑚) ↦
(((coe1‘𝐾)‘𝑖) ∗
((coe1‘𝐿)‘(𝑚 − 𝑖))))))) | 
| 7 | 6 | fveq1d 6908 | . . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝐾
×
𝐿))‘𝑛) = ((𝑚 ∈ ℕ0 ↦ (𝑅 Σg
(𝑖 ∈ (0...𝑚) ↦
(((coe1‘𝐾)‘𝑖) ∗
((coe1‘𝐿)‘(𝑚 − 𝑖))))))‘𝑛)) | 
| 8 |  | eqidd 2738 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑚 ∈ ℕ0
↦ (𝑅
Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1‘𝐾)‘𝑖) ∗
((coe1‘𝐿)‘(𝑚 − 𝑖)))))) = (𝑚 ∈ ℕ0 ↦ (𝑅 Σg
(𝑖 ∈ (0...𝑚) ↦
(((coe1‘𝐾)‘𝑖) ∗
((coe1‘𝐿)‘(𝑚 − 𝑖))))))) | 
| 9 |  | oveq2 7439 | . . . . . . . 8
⊢ (𝑚 = 𝑛 → (0...𝑚) = (0...𝑛)) | 
| 10 |  | fvoveq1 7454 | . . . . . . . . 9
⊢ (𝑚 = 𝑛 → ((coe1‘𝐿)‘(𝑚 − 𝑖)) = ((coe1‘𝐿)‘(𝑛 − 𝑖))) | 
| 11 | 10 | oveq2d 7447 | . . . . . . . 8
⊢ (𝑚 = 𝑛 → (((coe1‘𝐾)‘𝑖) ∗
((coe1‘𝐿)‘(𝑚 − 𝑖))) = (((coe1‘𝐾)‘𝑖) ∗
((coe1‘𝐿)‘(𝑛 − 𝑖)))) | 
| 12 | 9, 11 | mpteq12dv 5233 | . . . . . . 7
⊢ (𝑚 = 𝑛 → (𝑖 ∈ (0...𝑚) ↦ (((coe1‘𝐾)‘𝑖) ∗
((coe1‘𝐿)‘(𝑚 − 𝑖)))) = (𝑖 ∈ (0...𝑛) ↦ (((coe1‘𝐾)‘𝑖) ∗
((coe1‘𝐿)‘(𝑛 − 𝑖))))) | 
| 13 | 12 | oveq2d 7447 | . . . . . 6
⊢ (𝑚 = 𝑛 → (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1‘𝐾)‘𝑖) ∗
((coe1‘𝐿)‘(𝑚 − 𝑖))))) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1‘𝐾)‘𝑖) ∗
((coe1‘𝐿)‘(𝑛 − 𝑖)))))) | 
| 14 | 13 | adantl 481 | . . . . 5
⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑚 = 𝑛) → (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1‘𝐾)‘𝑖) ∗
((coe1‘𝐿)‘(𝑚 − 𝑖))))) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1‘𝐾)‘𝑖) ∗
((coe1‘𝐿)‘(𝑛 − 𝑖)))))) | 
| 15 |  | simpr 484 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) | 
| 16 |  | ovexd 7466 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑅 Σg
(𝑖 ∈ (0...𝑛) ↦
(((coe1‘𝐾)‘𝑖) ∗
((coe1‘𝐿)‘(𝑛 − 𝑖))))) ∈ V) | 
| 17 | 8, 14, 15, 16 | fvmptd 7023 | . . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑚 ∈ ℕ0
↦ (𝑅
Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1‘𝐾)‘𝑖) ∗
((coe1‘𝐿)‘(𝑚 − 𝑖))))))‘𝑛) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1‘𝐾)‘𝑖) ∗
((coe1‘𝐿)‘(𝑛 − 𝑖)))))) | 
| 18 |  | ply1mulgsum.x | . . . . . 6
⊢ 𝑋 = (var1‘𝑅) | 
| 19 |  | ply1mulgsum.e | . . . . . . 7
⊢  ↑ =
(.g‘𝑀) | 
| 20 |  | ply1mulgsum.m | . . . . . . . 8
⊢ 𝑀 = (mulGrp‘𝑃) | 
| 21 | 20 | fveq2i 6909 | . . . . . . 7
⊢
(.g‘𝑀) = (.g‘(mulGrp‘𝑃)) | 
| 22 | 19, 21 | eqtri 2765 | . . . . . 6
⊢  ↑ =
(.g‘(mulGrp‘𝑃)) | 
| 23 |  | simp1 1137 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → 𝑅 ∈ Ring) | 
| 24 | 23 | adantr 480 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring) | 
| 25 |  | eqid 2737 | . . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 26 |  | ply1mulgsum.sm | . . . . . 6
⊢  · = (
·𝑠 ‘𝑃) | 
| 27 |  | eqid 2737 | . . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) | 
| 28 |  | ringcmn 20279 | . . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) | 
| 29 | 28 | 3ad2ant1 1134 | . . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → 𝑅 ∈ CMnd) | 
| 30 | 29 | ad2antrr 726 | . . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝑅 ∈
CMnd) | 
| 31 |  | fzfid 14014 | . . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (0...𝑘) ∈
Fin) | 
| 32 |  | simpll1 1213 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝑅 ∈
Ring) | 
| 33 | 32 | adantr 480 | . . . . . . . . . 10
⊢
(((((𝑅 ∈ Ring
∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
∧ 𝑙 ∈ (0...𝑘)) → 𝑅 ∈ Ring) | 
| 34 |  | simp2 1138 | . . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → 𝐾 ∈ 𝐵) | 
| 35 | 34 | ad2antrr 726 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝐾 ∈ 𝐵) | 
| 36 |  | elfznn0 13660 | . . . . . . . . . . 11
⊢ (𝑙 ∈ (0...𝑘) → 𝑙 ∈ ℕ0) | 
| 37 |  | ply1mulgsum.a | . . . . . . . . . . . 12
⊢ 𝐴 = (coe1‘𝐾) | 
| 38 | 37, 4, 1, 25 | coe1fvalcl 22214 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ 𝐵 ∧ 𝑙 ∈ ℕ0) → (𝐴‘𝑙) ∈ (Base‘𝑅)) | 
| 39 | 35, 36, 38 | syl2an 596 | . . . . . . . . . 10
⊢
(((((𝑅 ∈ Ring
∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
∧ 𝑙 ∈ (0...𝑘)) → (𝐴‘𝑙) ∈ (Base‘𝑅)) | 
| 40 |  | simp3 1139 | . . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → 𝐿 ∈ 𝐵) | 
| 41 | 40 | ad2antrr 726 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝐿 ∈ 𝐵) | 
| 42 |  | fznn0sub 13596 | . . . . . . . . . . 11
⊢ (𝑙 ∈ (0...𝑘) → (𝑘 − 𝑙) ∈
ℕ0) | 
| 43 |  | ply1mulgsum.c | . . . . . . . . . . . 12
⊢ 𝐶 = (coe1‘𝐿) | 
| 44 | 43, 4, 1, 25 | coe1fvalcl 22214 | . . . . . . . . . . 11
⊢ ((𝐿 ∈ 𝐵 ∧ (𝑘 − 𝑙) ∈ ℕ0) → (𝐶‘(𝑘 − 𝑙)) ∈ (Base‘𝑅)) | 
| 45 | 41, 42, 44 | syl2an 596 | . . . . . . . . . 10
⊢
(((((𝑅 ∈ Ring
∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
∧ 𝑙 ∈ (0...𝑘)) → (𝐶‘(𝑘 − 𝑙)) ∈ (Base‘𝑅)) | 
| 46 | 25, 3 | ringcl 20247 | . . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ (𝐴‘𝑙) ∈ (Base‘𝑅) ∧ (𝐶‘(𝑘 − 𝑙)) ∈ (Base‘𝑅)) → ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))) ∈ (Base‘𝑅)) | 
| 47 | 33, 39, 45, 46 | syl3anc 1373 | . . . . . . . . 9
⊢
(((((𝑅 ∈ Ring
∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
∧ 𝑙 ∈ (0...𝑘)) → ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))) ∈ (Base‘𝑅)) | 
| 48 | 47 | ralrimiva 3146 | . . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ∀𝑙 ∈
(0...𝑘)((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))) ∈ (Base‘𝑅)) | 
| 49 | 25, 30, 31, 48 | gsummptcl 19985 | . . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝑅
Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) ∈ (Base‘𝑅)) | 
| 50 | 49 | ralrimiva 3146 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) →
∀𝑘 ∈
ℕ0 (𝑅
Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) ∈ (Base‘𝑅)) | 
| 51 | 1, 4, 37, 43, 18, 2, 26, 3, 20, 19 | ply1mulgsumlem3 48305 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg
(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))))) finSupp (0g‘𝑅)) | 
| 52 | 51 | adantr 480 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0
↦ (𝑅
Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))))) finSupp (0g‘𝑅)) | 
| 53 | 1, 4, 18, 22, 24, 25, 26, 27, 50, 52, 15 | gsummoncoe1 22312 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝑃
Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg
(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) · (𝑘 ↑ 𝑋)))))‘𝑛) = ⦋𝑛 / 𝑘⦌(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))))) | 
| 54 |  | vex 3484 | . . . . . 6
⊢ 𝑛 ∈ V | 
| 55 |  | csbov2g 7479 | . . . . . . 7
⊢ (𝑛 ∈ V →
⦋𝑛 / 𝑘⦌(𝑅 Σg
(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (𝑅 Σg
⦋𝑛 / 𝑘⦌(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))))) | 
| 56 |  | id 22 | . . . . . . . . 9
⊢ (𝑛 ∈ V → 𝑛 ∈ V) | 
| 57 |  | oveq2 7439 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑛 → (0...𝑘) = (0...𝑛)) | 
| 58 |  | fvoveq1 7454 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → (𝐶‘(𝑘 − 𝑙)) = (𝐶‘(𝑛 − 𝑙))) | 
| 59 | 58 | oveq2d 7447 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑛 → ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))) = ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙)))) | 
| 60 | 57, 59 | mpteq12dv 5233 | . . . . . . . . . 10
⊢ (𝑘 = 𝑛 → (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) | 
| 61 | 60 | adantl 481 | . . . . . . . . 9
⊢ ((𝑛 ∈ V ∧ 𝑘 = 𝑛) → (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) | 
| 62 | 56, 61 | csbied 3935 | . . . . . . . 8
⊢ (𝑛 ∈ V →
⦋𝑛 / 𝑘⦌(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) | 
| 63 | 62 | oveq2d 7447 | . . . . . . 7
⊢ (𝑛 ∈ V → (𝑅 Σg
⦋𝑛 / 𝑘⦌(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙)))))) | 
| 64 | 55, 63 | eqtrd 2777 | . . . . . 6
⊢ (𝑛 ∈ V →
⦋𝑛 / 𝑘⦌(𝑅 Σg
(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙)))))) | 
| 65 | 54, 64 | mp1i 13 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) →
⦋𝑛 / 𝑘⦌(𝑅 Σg
(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙)))))) | 
| 66 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑙 = 𝑖 → (𝐴‘𝑙) = (𝐴‘𝑖)) | 
| 67 | 37 | fveq1i 6907 | . . . . . . . . . 10
⊢ (𝐴‘𝑖) = ((coe1‘𝐾)‘𝑖) | 
| 68 | 66, 67 | eqtrdi 2793 | . . . . . . . . 9
⊢ (𝑙 = 𝑖 → (𝐴‘𝑙) = ((coe1‘𝐾)‘𝑖)) | 
| 69 |  | oveq2 7439 | . . . . . . . . . . 11
⊢ (𝑙 = 𝑖 → (𝑛 − 𝑙) = (𝑛 − 𝑖)) | 
| 70 | 69 | fveq2d 6910 | . . . . . . . . . 10
⊢ (𝑙 = 𝑖 → (𝐶‘(𝑛 − 𝑙)) = (𝐶‘(𝑛 − 𝑖))) | 
| 71 | 43 | fveq1i 6907 | . . . . . . . . . 10
⊢ (𝐶‘(𝑛 − 𝑖)) = ((coe1‘𝐿)‘(𝑛 − 𝑖)) | 
| 72 | 70, 71 | eqtrdi 2793 | . . . . . . . . 9
⊢ (𝑙 = 𝑖 → (𝐶‘(𝑛 − 𝑙)) = ((coe1‘𝐿)‘(𝑛 − 𝑖))) | 
| 73 | 68, 72 | oveq12d 7449 | . . . . . . . 8
⊢ (𝑙 = 𝑖 → ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))) = (((coe1‘𝐾)‘𝑖) ∗
((coe1‘𝐿)‘(𝑛 − 𝑖)))) | 
| 74 | 73 | cbvmptv 5255 | . . . . . . 7
⊢ (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙)))) = (𝑖 ∈ (0...𝑛) ↦ (((coe1‘𝐾)‘𝑖) ∗
((coe1‘𝐿)‘(𝑛 − 𝑖)))) | 
| 75 | 74 | a1i 11 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙)))) = (𝑖 ∈ (0...𝑛) ↦ (((coe1‘𝐾)‘𝑖) ∗
((coe1‘𝐿)‘(𝑛 − 𝑖))))) | 
| 76 | 75 | oveq2d 7447 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑅 Σg
(𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1‘𝐾)‘𝑖) ∗
((coe1‘𝐿)‘(𝑛 − 𝑖)))))) | 
| 77 | 53, 65, 76 | 3eqtrrd 2782 | . . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑅 Σg
(𝑖 ∈ (0...𝑛) ↦
(((coe1‘𝐾)‘𝑖) ∗
((coe1‘𝐿)‘(𝑛 − 𝑖))))) = ((coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) · (𝑘 ↑ 𝑋)))))‘𝑛)) | 
| 78 | 7, 17, 77 | 3eqtrd 2781 | . . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝐾
×
𝐿))‘𝑛) =
((coe1‘(𝑃
Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg
(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) · (𝑘 ↑ 𝑋)))))‘𝑛)) | 
| 79 | 78 | ralrimiva 3146 | . 2
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → ∀𝑛 ∈ ℕ0
((coe1‘(𝐾
×
𝐿))‘𝑛) =
((coe1‘(𝑃
Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg
(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) · (𝑘 ↑ 𝑋)))))‘𝑛)) | 
| 80 | 1 | ply1ring 22249 | . . . 4
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) | 
| 81 | 4, 2 | ringcl 20247 | . . . 4
⊢ ((𝑃 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝐾 × 𝐿) ∈ 𝐵) | 
| 82 | 80, 81 | syl3an1 1164 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝐾 × 𝐿) ∈ 𝐵) | 
| 83 |  | eqid 2737 | . . . 4
⊢
(0g‘𝑃) = (0g‘𝑃) | 
| 84 |  | ringcmn 20279 | . . . . . 6
⊢ (𝑃 ∈ Ring → 𝑃 ∈ CMnd) | 
| 85 | 80, 84 | syl 17 | . . . . 5
⊢ (𝑅 ∈ Ring → 𝑃 ∈ CMnd) | 
| 86 | 85 | 3ad2ant1 1134 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → 𝑃 ∈ CMnd) | 
| 87 |  | nn0ex 12532 | . . . . 5
⊢
ℕ0 ∈ V | 
| 88 | 87 | a1i 11 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → ℕ0 ∈
V) | 
| 89 | 1 | ply1lmod 22253 | . . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) | 
| 90 | 89 | 3ad2ant1 1134 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → 𝑃 ∈ LMod) | 
| 91 | 90 | adantr 480 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ LMod) | 
| 92 | 29 | adantr 480 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ CMnd) | 
| 93 |  | fzfid 14014 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) →
(0...𝑘) ∈
Fin) | 
| 94 |  | simpll1 1213 | . . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → 𝑅 ∈ Ring) | 
| 95 | 34 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝐾 ∈ 𝐵) | 
| 96 | 95, 36, 38 | syl2an 596 | . . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝐴‘𝑙) ∈ (Base‘𝑅)) | 
| 97 | 40 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝐿 ∈ 𝐵) | 
| 98 | 97, 42, 44 | syl2an 596 | . . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝐶‘(𝑘 − 𝑙)) ∈ (Base‘𝑅)) | 
| 99 | 94, 96, 98, 46 | syl3anc 1373 | . . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))) ∈ (Base‘𝑅)) | 
| 100 | 99 | ralrimiva 3146 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) →
∀𝑙 ∈ (0...𝑘)((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))) ∈ (Base‘𝑅)) | 
| 101 | 25, 92, 93, 100 | gsummptcl 19985 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg
(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) ∈ (Base‘𝑅)) | 
| 102 | 23 | adantr 480 | . . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring) | 
| 103 | 1 | ply1sca 22254 | . . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) | 
| 104 | 102, 103 | syl 17 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 = (Scalar‘𝑃)) | 
| 105 | 104 | fveq2d 6910 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) →
(Base‘𝑅) =
(Base‘(Scalar‘𝑃))) | 
| 106 | 101, 105 | eleqtrd 2843 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg
(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) ∈ (Base‘(Scalar‘𝑃))) | 
| 107 | 20, 4 | mgpbas 20142 | . . . . . . 7
⊢ 𝐵 = (Base‘𝑀) | 
| 108 | 20 | ringmgp 20236 | . . . . . . . . . 10
⊢ (𝑃 ∈ Ring → 𝑀 ∈ Mnd) | 
| 109 | 80, 108 | syl 17 | . . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) | 
| 110 | 109 | 3ad2ant1 1134 | . . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → 𝑀 ∈ Mnd) | 
| 111 | 110 | adantr 480 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ Mnd) | 
| 112 |  | simpr 484 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) | 
| 113 | 18, 1, 4 | vr1cl 22219 | . . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) | 
| 114 | 113 | 3ad2ant1 1134 | . . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → 𝑋 ∈ 𝐵) | 
| 115 | 114 | adantr 480 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑋 ∈ 𝐵) | 
| 116 | 107, 19, 111, 112, 115 | mulgnn0cld 19113 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑘 ↑ 𝑋) ∈ 𝐵) | 
| 117 |  | eqid 2737 | . . . . . . 7
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) | 
| 118 |  | eqid 2737 | . . . . . . 7
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | 
| 119 | 4, 117, 26, 118 | lmodvscl 20876 | . . . . . 6
⊢ ((𝑃 ∈ LMod ∧ (𝑅 Σg
(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑘 ↑ 𝑋) ∈ 𝐵) → ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) · (𝑘 ↑ 𝑋)) ∈ 𝐵) | 
| 120 | 91, 106, 116, 119 | syl3anc 1373 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑅 Σg
(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) · (𝑘 ↑ 𝑋)) ∈ 𝐵) | 
| 121 | 120 | fmpttd 7135 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg
(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) · (𝑘 ↑ 𝑋))):ℕ0⟶𝐵) | 
| 122 | 1, 4, 37, 43, 18, 2, 26, 3, 20, 19 | ply1mulgsumlem4 48306 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg
(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) · (𝑘 ↑ 𝑋))) finSupp (0g‘𝑃)) | 
| 123 | 4, 83, 86, 88, 121, 122 | gsumcl 19933 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑅
Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) · (𝑘 ↑ 𝑋)))) ∈ 𝐵) | 
| 124 |  | eqid 2737 | . . . 4
⊢
(coe1‘(𝐾 × 𝐿)) = (coe1‘(𝐾 × 𝐿)) | 
| 125 |  | eqid 2737 | . . . 4
⊢
(coe1‘(𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑅
Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) · (𝑘 ↑ 𝑋))))) = (coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) · (𝑘 ↑ 𝑋))))) | 
| 126 | 1, 4, 124, 125 | ply1coe1eq 22304 | . . 3
⊢ ((𝑅 ∈ Ring ∧ (𝐾 × 𝐿) ∈ 𝐵 ∧ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑅
Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) · (𝑘 ↑ 𝑋)))) ∈ 𝐵) → (∀𝑛 ∈ ℕ0
((coe1‘(𝐾
×
𝐿))‘𝑛) =
((coe1‘(𝑃
Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg
(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) · (𝑘 ↑ 𝑋)))))‘𝑛) ↔ (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑅
Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) · (𝑘 ↑ 𝑋)))))) | 
| 127 | 23, 82, 123, 126 | syl3anc 1373 | . 2
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (∀𝑛 ∈ ℕ0
((coe1‘(𝐾
×
𝐿))‘𝑛) =
((coe1‘(𝑃
Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg
(𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) · (𝑘 ↑ 𝑋)))))‘𝑛) ↔ (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑅
Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) · (𝑘 ↑ 𝑋)))))) | 
| 128 | 79, 127 | mpbid 232 | 1
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑅
Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) · (𝑘 ↑ 𝑋))))) |