Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1mulgsum Structured version   Visualization version   GIF version

Theorem ply1mulgsum 44798
Description: The product of two polynomials expressed as group sum of scaled monomials. (Contributed by AV, 20-Oct-2019.)
Hypotheses
Ref Expression
ply1mulgsum.p 𝑃 = (Poly1𝑅)
ply1mulgsum.b 𝐵 = (Base‘𝑃)
ply1mulgsum.a 𝐴 = (coe1𝐾)
ply1mulgsum.c 𝐶 = (coe1𝐿)
ply1mulgsum.x 𝑋 = (var1𝑅)
ply1mulgsum.pm × = (.r𝑃)
ply1mulgsum.sm · = ( ·𝑠𝑃)
ply1mulgsum.rm = (.r𝑅)
ply1mulgsum.m 𝑀 = (mulGrp‘𝑃)
ply1mulgsum.e = (.g𝑀)
Assertion
Ref Expression
ply1mulgsum ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))
Distinct variable groups:   𝐴,𝑙   𝐵,𝑙   𝐶,𝑙   𝐾,𝑙   𝐿,𝑙   𝑅,𝑙   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝑘,𝐾   𝑘,𝐿   𝑅,𝑘   ,𝑘,𝑙   𝑘,𝑋   ,𝑘   · ,𝑘   𝑃,𝑘   ,𝑙
Allowed substitution hints:   𝑃(𝑙)   · (𝑙)   × (𝑘,𝑙)   (𝑙)   𝑀(𝑘,𝑙)   𝑋(𝑙)

Proof of Theorem ply1mulgsum
Dummy variables 𝑛 𝑖 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1mulgsum.p . . . . . . 7 𝑃 = (Poly1𝑅)
2 ply1mulgsum.pm . . . . . . 7 × = (.r𝑃)
3 ply1mulgsum.rm . . . . . . 7 = (.r𝑅)
4 ply1mulgsum.b . . . . . . 7 𝐵 = (Base‘𝑃)
51, 2, 3, 4coe1mul 20899 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (coe1‘(𝐾 × 𝐿)) = (𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))))))
65adantr 484 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (coe1‘(𝐾 × 𝐿)) = (𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))))))
76fveq1d 6647 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))))))‘𝑛))
8 eqidd 2799 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))))) = (𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))))))
9 oveq2 7143 . . . . . . . 8 (𝑚 = 𝑛 → (0...𝑚) = (0...𝑛))
10 fvoveq1 7158 . . . . . . . . 9 (𝑚 = 𝑛 → ((coe1𝐿)‘(𝑚𝑖)) = ((coe1𝐿)‘(𝑛𝑖)))
1110oveq2d 7151 . . . . . . . 8 (𝑚 = 𝑛 → (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))) = (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))
129, 11mpteq12dv 5115 . . . . . . 7 (𝑚 = 𝑛 → (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))) = (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖)))))
1312oveq2d 7151 . . . . . 6 (𝑚 = 𝑛 → (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))))) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))))
1413adantl 485 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑚 = 𝑛) → (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))))) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))))
15 simpr 488 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
16 ovexd 7170 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))) ∈ V)
178, 14, 15, 16fvmptd 6752 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))))))‘𝑛) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))))
18 ply1mulgsum.x . . . . . 6 𝑋 = (var1𝑅)
19 ply1mulgsum.e . . . . . . 7 = (.g𝑀)
20 ply1mulgsum.m . . . . . . . 8 𝑀 = (mulGrp‘𝑃)
2120fveq2i 6648 . . . . . . 7 (.g𝑀) = (.g‘(mulGrp‘𝑃))
2219, 21eqtri 2821 . . . . . 6 = (.g‘(mulGrp‘𝑃))
23 simp1 1133 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑅 ∈ Ring)
2423adantr 484 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
25 eqid 2798 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
26 ply1mulgsum.sm . . . . . 6 · = ( ·𝑠𝑃)
27 eqid 2798 . . . . . 6 (0g𝑅) = (0g𝑅)
28 ringcmn 19327 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
29283ad2ant1 1130 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑅 ∈ CMnd)
3029ad2antrr 725 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ CMnd)
31 fzfid 13336 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
32 simpll1 1209 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
3332adantr 484 . . . . . . . . . 10 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
34 simp2 1134 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝐾𝐵)
3534ad2antrr 725 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐾𝐵)
36 elfznn0 12995 . . . . . . . . . . 11 (𝑙 ∈ (0...𝑘) → 𝑙 ∈ ℕ0)
37 ply1mulgsum.a . . . . . . . . . . . 12 𝐴 = (coe1𝐾)
3837, 4, 1, 25coe1fvalcl 20841 . . . . . . . . . . 11 ((𝐾𝐵𝑙 ∈ ℕ0) → (𝐴𝑙) ∈ (Base‘𝑅))
3935, 36, 38syl2an 598 . . . . . . . . . 10 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝐴𝑙) ∈ (Base‘𝑅))
40 simp3 1135 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝐿𝐵)
4140ad2antrr 725 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐿𝐵)
42 fznn0sub 12934 . . . . . . . . . . 11 (𝑙 ∈ (0...𝑘) → (𝑘𝑙) ∈ ℕ0)
43 ply1mulgsum.c . . . . . . . . . . . 12 𝐶 = (coe1𝐿)
4443, 4, 1, 25coe1fvalcl 20841 . . . . . . . . . . 11 ((𝐿𝐵 ∧ (𝑘𝑙) ∈ ℕ0) → (𝐶‘(𝑘𝑙)) ∈ (Base‘𝑅))
4541, 42, 44syl2an 598 . . . . . . . . . 10 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝐶‘(𝑘𝑙)) ∈ (Base‘𝑅))
4625, 3ringcl 19307 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝐴𝑙) ∈ (Base‘𝑅) ∧ (𝐶‘(𝑘𝑙)) ∈ (Base‘𝑅)) → ((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
4733, 39, 45, 46syl3anc 1368 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → ((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
4847ralrimiva 3149 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ∀𝑙 ∈ (0...𝑘)((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
4925, 30, 31, 48gsummptcl 19080 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘𝑅))
5049ralrimiva 3149 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘𝑅))
511, 4, 37, 43, 18, 2, 26, 3, 20, 19ply1mulgsumlem3 44796 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))))) finSupp (0g𝑅))
5251adantr 484 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))))) finSupp (0g𝑅))
531, 4, 18, 22, 24, 25, 26, 27, 50, 52, 15gsummoncoe1 20933 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛) = 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))))
54 vex 3444 . . . . . 6 𝑛 ∈ V
55 csbov2g 7181 . . . . . . 7 (𝑛 ∈ V → 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))))
56 id 22 . . . . . . . . 9 (𝑛 ∈ V → 𝑛 ∈ V)
57 oveq2 7143 . . . . . . . . . . 11 (𝑘 = 𝑛 → (0...𝑘) = (0...𝑛))
58 fvoveq1 7158 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝐶‘(𝑘𝑙)) = (𝐶‘(𝑛𝑙)))
5958oveq2d 7151 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((𝐴𝑙) (𝐶‘(𝑘𝑙))) = ((𝐴𝑙) (𝐶‘(𝑛𝑙))))
6057, 59mpteq12dv 5115 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
6160adantl 485 . . . . . . . . 9 ((𝑛 ∈ V ∧ 𝑘 = 𝑛) → (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
6256, 61csbied 3864 . . . . . . . 8 (𝑛 ∈ V → 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
6362oveq2d 7151 . . . . . . 7 (𝑛 ∈ V → (𝑅 Σg 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))))
6455, 63eqtrd 2833 . . . . . 6 (𝑛 ∈ V → 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))))
6554, 64mp1i 13 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))))
66 fveq2 6645 . . . . . . . . . 10 (𝑙 = 𝑖 → (𝐴𝑙) = (𝐴𝑖))
6737fveq1i 6646 . . . . . . . . . 10 (𝐴𝑖) = ((coe1𝐾)‘𝑖)
6866, 67eqtrdi 2849 . . . . . . . . 9 (𝑙 = 𝑖 → (𝐴𝑙) = ((coe1𝐾)‘𝑖))
69 oveq2 7143 . . . . . . . . . . 11 (𝑙 = 𝑖 → (𝑛𝑙) = (𝑛𝑖))
7069fveq2d 6649 . . . . . . . . . 10 (𝑙 = 𝑖 → (𝐶‘(𝑛𝑙)) = (𝐶‘(𝑛𝑖)))
7143fveq1i 6646 . . . . . . . . . 10 (𝐶‘(𝑛𝑖)) = ((coe1𝐿)‘(𝑛𝑖))
7270, 71eqtrdi 2849 . . . . . . . . 9 (𝑙 = 𝑖 → (𝐶‘(𝑛𝑙)) = ((coe1𝐿)‘(𝑛𝑖)))
7368, 72oveq12d 7153 . . . . . . . 8 (𝑙 = 𝑖 → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))
7473cbvmptv 5133 . . . . . . 7 (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))) = (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))
7574a1i 11 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))) = (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖)))))
7675oveq2d 7151 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))))
7753, 65, 763eqtrrd 2838 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛))
787, 17, 773eqtrd 2837 . . 3 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛))
7978ralrimiva 3149 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∀𝑛 ∈ ℕ0 ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛))
801ply1ring 20877 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
814, 2ringcl 19307 . . . 4 ((𝑃 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝐾 × 𝐿) ∈ 𝐵)
8280, 81syl3an1 1160 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝐾 × 𝐿) ∈ 𝐵)
83 eqid 2798 . . . 4 (0g𝑃) = (0g𝑃)
84 ringcmn 19327 . . . . . 6 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
8580, 84syl 17 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ CMnd)
86853ad2ant1 1130 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑃 ∈ CMnd)
87 nn0ex 11891 . . . . 5 0 ∈ V
8887a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ℕ0 ∈ V)
891ply1lmod 20881 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
90893ad2ant1 1130 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑃 ∈ LMod)
9190adantr 484 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ LMod)
9229adantr 484 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ CMnd)
93 fzfid 13336 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
94 simpll1 1209 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
9534adantr 484 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝐾𝐵)
9695, 36, 38syl2an 598 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝐴𝑙) ∈ (Base‘𝑅))
9740adantr 484 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝐿𝐵)
9897, 42, 44syl2an 598 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝐶‘(𝑘𝑙)) ∈ (Base‘𝑅))
9994, 96, 98, 46syl3anc 1368 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → ((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
10099ralrimiva 3149 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → ∀𝑙 ∈ (0...𝑘)((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
10125, 92, 93, 100gsummptcl 19080 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘𝑅))
10223adantr 484 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
1031ply1sca 20882 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
104102, 103syl 17 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 = (Scalar‘𝑃))
105104fveq2d 6649 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
106101, 105eleqtrd 2892 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘(Scalar‘𝑃)))
10720ringmgp 19296 . . . . . . . . . 10 (𝑃 ∈ Ring → 𝑀 ∈ Mnd)
10880, 107syl 17 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
1091083ad2ant1 1130 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑀 ∈ Mnd)
110109adantr 484 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ Mnd)
111 simpr 488 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
11218, 1, 4vr1cl 20846 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑋𝐵)
1131123ad2ant1 1130 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑋𝐵)
114113adantr 484 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑋𝐵)
11520, 4mgpbas 19238 . . . . . . . 8 𝐵 = (Base‘𝑀)
116115, 19mulgnn0cl 18236 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑘 ∈ ℕ0𝑋𝐵) → (𝑘 𝑋) ∈ 𝐵)
117110, 111, 114, 116syl3anc 1368 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐵)
118 eqid 2798 . . . . . . 7 (Scalar‘𝑃) = (Scalar‘𝑃)
119 eqid 2798 . . . . . . 7 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
1204, 118, 26, 119lmodvscl 19644 . . . . . 6 ((𝑃 ∈ LMod ∧ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑘 𝑋) ∈ 𝐵) → ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) ∈ 𝐵)
12191, 106, 117, 120syl3anc 1368 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) ∈ 𝐵)
122121fmpttd 6856 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))):ℕ0𝐵)
1231, 4, 37, 43, 18, 2, 26, 3, 20, 19ply1mulgsumlem4 44797 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))) finSupp (0g𝑃))
1244, 83, 86, 88, 122, 123gsumcl 19028 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))) ∈ 𝐵)
125 eqid 2798 . . . 4 (coe1‘(𝐾 × 𝐿)) = (coe1‘(𝐾 × 𝐿))
126 eqid 2798 . . . 4 (coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))))) = (coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))
1271, 4, 125, 126ply1coe1eq 20927 . . 3 ((𝑅 ∈ Ring ∧ (𝐾 × 𝐿) ∈ 𝐵 ∧ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))) ∈ 𝐵) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛) ↔ (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))))))
12823, 82, 124, 127syl3anc 1368 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛) ↔ (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))))))
12979, 128mpbid 235 1 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  csb 3828   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135   finSupp cfsupp 8817  0cc0 10526  cmin 10859  0cn0 11885  ...cfz 12885  Basecbs 16475  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705   Σg cgsu 16706  Mndcmnd 17903  .gcmg 18216  CMndccmn 18898  mulGrpcmgp 19232  Ringcrg 19290  LModclmod 19627  var1cv1 20805  Poly1cpl1 20806  coe1cco1 20807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-ple 16577  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-srg 19249  df-ring 19292  df-subrg 19526  df-lmod 19629  df-lss 19697  df-psr 20594  df-mvr 20595  df-mpl 20596  df-opsr 20598  df-psr1 20809  df-vr1 20810  df-ply1 20811  df-coe1 20812
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator