Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1mulgsum Structured version   Visualization version   GIF version

Theorem ply1mulgsum 48119
Description: The product of two polynomials expressed as group sum of scaled monomials. (Contributed by AV, 20-Oct-2019.)
Hypotheses
Ref Expression
ply1mulgsum.p 𝑃 = (Poly1𝑅)
ply1mulgsum.b 𝐵 = (Base‘𝑃)
ply1mulgsum.a 𝐴 = (coe1𝐾)
ply1mulgsum.c 𝐶 = (coe1𝐿)
ply1mulgsum.x 𝑋 = (var1𝑅)
ply1mulgsum.pm × = (.r𝑃)
ply1mulgsum.sm · = ( ·𝑠𝑃)
ply1mulgsum.rm = (.r𝑅)
ply1mulgsum.m 𝑀 = (mulGrp‘𝑃)
ply1mulgsum.e = (.g𝑀)
Assertion
Ref Expression
ply1mulgsum ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))
Distinct variable groups:   𝐴,𝑙   𝐵,𝑙   𝐶,𝑙   𝐾,𝑙   𝐿,𝑙   𝑅,𝑙   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝑘,𝐾   𝑘,𝐿   𝑅,𝑘   ,𝑘,𝑙   𝑘,𝑋   ,𝑘   · ,𝑘   𝑃,𝑘   ,𝑙
Allowed substitution hints:   𝑃(𝑙)   · (𝑙)   × (𝑘,𝑙)   (𝑙)   𝑀(𝑘,𝑙)   𝑋(𝑙)

Proof of Theorem ply1mulgsum
Dummy variables 𝑛 𝑖 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1mulgsum.p . . . . . . 7 𝑃 = (Poly1𝑅)
2 ply1mulgsum.pm . . . . . . 7 × = (.r𝑃)
3 ply1mulgsum.rm . . . . . . 7 = (.r𝑅)
4 ply1mulgsum.b . . . . . . 7 𝐵 = (Base‘𝑃)
51, 2, 3, 4coe1mul 22294 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (coe1‘(𝐾 × 𝐿)) = (𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))))))
65adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (coe1‘(𝐾 × 𝐿)) = (𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))))))
76fveq1d 6922 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))))))‘𝑛))
8 eqidd 2741 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))))) = (𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))))))
9 oveq2 7456 . . . . . . . 8 (𝑚 = 𝑛 → (0...𝑚) = (0...𝑛))
10 fvoveq1 7471 . . . . . . . . 9 (𝑚 = 𝑛 → ((coe1𝐿)‘(𝑚𝑖)) = ((coe1𝐿)‘(𝑛𝑖)))
1110oveq2d 7464 . . . . . . . 8 (𝑚 = 𝑛 → (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))) = (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))
129, 11mpteq12dv 5257 . . . . . . 7 (𝑚 = 𝑛 → (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))) = (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖)))))
1312oveq2d 7464 . . . . . 6 (𝑚 = 𝑛 → (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))))) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))))
1413adantl 481 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑚 = 𝑛) → (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))))) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))))
15 simpr 484 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
16 ovexd 7483 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))) ∈ V)
178, 14, 15, 16fvmptd 7036 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))))))‘𝑛) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))))
18 ply1mulgsum.x . . . . . 6 𝑋 = (var1𝑅)
19 ply1mulgsum.e . . . . . . 7 = (.g𝑀)
20 ply1mulgsum.m . . . . . . . 8 𝑀 = (mulGrp‘𝑃)
2120fveq2i 6923 . . . . . . 7 (.g𝑀) = (.g‘(mulGrp‘𝑃))
2219, 21eqtri 2768 . . . . . 6 = (.g‘(mulGrp‘𝑃))
23 simp1 1136 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑅 ∈ Ring)
2423adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
25 eqid 2740 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
26 ply1mulgsum.sm . . . . . 6 · = ( ·𝑠𝑃)
27 eqid 2740 . . . . . 6 (0g𝑅) = (0g𝑅)
28 ringcmn 20305 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
29283ad2ant1 1133 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑅 ∈ CMnd)
3029ad2antrr 725 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ CMnd)
31 fzfid 14024 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
32 simpll1 1212 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
3332adantr 480 . . . . . . . . . 10 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
34 simp2 1137 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝐾𝐵)
3534ad2antrr 725 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐾𝐵)
36 elfznn0 13677 . . . . . . . . . . 11 (𝑙 ∈ (0...𝑘) → 𝑙 ∈ ℕ0)
37 ply1mulgsum.a . . . . . . . . . . . 12 𝐴 = (coe1𝐾)
3837, 4, 1, 25coe1fvalcl 22235 . . . . . . . . . . 11 ((𝐾𝐵𝑙 ∈ ℕ0) → (𝐴𝑙) ∈ (Base‘𝑅))
3935, 36, 38syl2an 595 . . . . . . . . . 10 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝐴𝑙) ∈ (Base‘𝑅))
40 simp3 1138 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝐿𝐵)
4140ad2antrr 725 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐿𝐵)
42 fznn0sub 13616 . . . . . . . . . . 11 (𝑙 ∈ (0...𝑘) → (𝑘𝑙) ∈ ℕ0)
43 ply1mulgsum.c . . . . . . . . . . . 12 𝐶 = (coe1𝐿)
4443, 4, 1, 25coe1fvalcl 22235 . . . . . . . . . . 11 ((𝐿𝐵 ∧ (𝑘𝑙) ∈ ℕ0) → (𝐶‘(𝑘𝑙)) ∈ (Base‘𝑅))
4541, 42, 44syl2an 595 . . . . . . . . . 10 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝐶‘(𝑘𝑙)) ∈ (Base‘𝑅))
4625, 3ringcl 20277 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝐴𝑙) ∈ (Base‘𝑅) ∧ (𝐶‘(𝑘𝑙)) ∈ (Base‘𝑅)) → ((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
4733, 39, 45, 46syl3anc 1371 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → ((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
4847ralrimiva 3152 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ∀𝑙 ∈ (0...𝑘)((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
4925, 30, 31, 48gsummptcl 20009 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘𝑅))
5049ralrimiva 3152 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘𝑅))
511, 4, 37, 43, 18, 2, 26, 3, 20, 19ply1mulgsumlem3 48117 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))))) finSupp (0g𝑅))
5251adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))))) finSupp (0g𝑅))
531, 4, 18, 22, 24, 25, 26, 27, 50, 52, 15gsummoncoe1 22333 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛) = 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))))
54 vex 3492 . . . . . 6 𝑛 ∈ V
55 csbov2g 7496 . . . . . . 7 (𝑛 ∈ V → 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))))
56 id 22 . . . . . . . . 9 (𝑛 ∈ V → 𝑛 ∈ V)
57 oveq2 7456 . . . . . . . . . . 11 (𝑘 = 𝑛 → (0...𝑘) = (0...𝑛))
58 fvoveq1 7471 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝐶‘(𝑘𝑙)) = (𝐶‘(𝑛𝑙)))
5958oveq2d 7464 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((𝐴𝑙) (𝐶‘(𝑘𝑙))) = ((𝐴𝑙) (𝐶‘(𝑛𝑙))))
6057, 59mpteq12dv 5257 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
6160adantl 481 . . . . . . . . 9 ((𝑛 ∈ V ∧ 𝑘 = 𝑛) → (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
6256, 61csbied 3959 . . . . . . . 8 (𝑛 ∈ V → 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
6362oveq2d 7464 . . . . . . 7 (𝑛 ∈ V → (𝑅 Σg 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))))
6455, 63eqtrd 2780 . . . . . 6 (𝑛 ∈ V → 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))))
6554, 64mp1i 13 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))))
66 fveq2 6920 . . . . . . . . . 10 (𝑙 = 𝑖 → (𝐴𝑙) = (𝐴𝑖))
6737fveq1i 6921 . . . . . . . . . 10 (𝐴𝑖) = ((coe1𝐾)‘𝑖)
6866, 67eqtrdi 2796 . . . . . . . . 9 (𝑙 = 𝑖 → (𝐴𝑙) = ((coe1𝐾)‘𝑖))
69 oveq2 7456 . . . . . . . . . . 11 (𝑙 = 𝑖 → (𝑛𝑙) = (𝑛𝑖))
7069fveq2d 6924 . . . . . . . . . 10 (𝑙 = 𝑖 → (𝐶‘(𝑛𝑙)) = (𝐶‘(𝑛𝑖)))
7143fveq1i 6921 . . . . . . . . . 10 (𝐶‘(𝑛𝑖)) = ((coe1𝐿)‘(𝑛𝑖))
7270, 71eqtrdi 2796 . . . . . . . . 9 (𝑙 = 𝑖 → (𝐶‘(𝑛𝑙)) = ((coe1𝐿)‘(𝑛𝑖)))
7368, 72oveq12d 7466 . . . . . . . 8 (𝑙 = 𝑖 → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))
7473cbvmptv 5279 . . . . . . 7 (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))) = (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))
7574a1i 11 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))) = (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖)))))
7675oveq2d 7464 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))))
7753, 65, 763eqtrrd 2785 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛))
787, 17, 773eqtrd 2784 . . 3 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛))
7978ralrimiva 3152 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∀𝑛 ∈ ℕ0 ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛))
801ply1ring 22270 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
814, 2ringcl 20277 . . . 4 ((𝑃 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝐾 × 𝐿) ∈ 𝐵)
8280, 81syl3an1 1163 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝐾 × 𝐿) ∈ 𝐵)
83 eqid 2740 . . . 4 (0g𝑃) = (0g𝑃)
84 ringcmn 20305 . . . . . 6 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
8580, 84syl 17 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ CMnd)
86853ad2ant1 1133 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑃 ∈ CMnd)
87 nn0ex 12559 . . . . 5 0 ∈ V
8887a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ℕ0 ∈ V)
891ply1lmod 22274 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
90893ad2ant1 1133 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑃 ∈ LMod)
9190adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ LMod)
9229adantr 480 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ CMnd)
93 fzfid 14024 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
94 simpll1 1212 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
9534adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝐾𝐵)
9695, 36, 38syl2an 595 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝐴𝑙) ∈ (Base‘𝑅))
9740adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝐿𝐵)
9897, 42, 44syl2an 595 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝐶‘(𝑘𝑙)) ∈ (Base‘𝑅))
9994, 96, 98, 46syl3anc 1371 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → ((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
10099ralrimiva 3152 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → ∀𝑙 ∈ (0...𝑘)((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
10125, 92, 93, 100gsummptcl 20009 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘𝑅))
10223adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
1031ply1sca 22275 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
104102, 103syl 17 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 = (Scalar‘𝑃))
105104fveq2d 6924 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
106101, 105eleqtrd 2846 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘(Scalar‘𝑃)))
10720, 4mgpbas 20167 . . . . . . 7 𝐵 = (Base‘𝑀)
10820ringmgp 20266 . . . . . . . . . 10 (𝑃 ∈ Ring → 𝑀 ∈ Mnd)
10980, 108syl 17 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
1101093ad2ant1 1133 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑀 ∈ Mnd)
111110adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ Mnd)
112 simpr 484 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
11318, 1, 4vr1cl 22240 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑋𝐵)
1141133ad2ant1 1133 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑋𝐵)
115114adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑋𝐵)
116107, 19, 111, 112, 115mulgnn0cld 19135 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐵)
117 eqid 2740 . . . . . . 7 (Scalar‘𝑃) = (Scalar‘𝑃)
118 eqid 2740 . . . . . . 7 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
1194, 117, 26, 118lmodvscl 20898 . . . . . 6 ((𝑃 ∈ LMod ∧ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑘 𝑋) ∈ 𝐵) → ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) ∈ 𝐵)
12091, 106, 116, 119syl3anc 1371 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) ∈ 𝐵)
121120fmpttd 7149 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))):ℕ0𝐵)
1221, 4, 37, 43, 18, 2, 26, 3, 20, 19ply1mulgsumlem4 48118 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))) finSupp (0g𝑃))
1234, 83, 86, 88, 121, 122gsumcl 19957 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))) ∈ 𝐵)
124 eqid 2740 . . . 4 (coe1‘(𝐾 × 𝐿)) = (coe1‘(𝐾 × 𝐿))
125 eqid 2740 . . . 4 (coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))))) = (coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))
1261, 4, 124, 125ply1coe1eq 22325 . . 3 ((𝑅 ∈ Ring ∧ (𝐾 × 𝐿) ∈ 𝐵 ∧ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))) ∈ 𝐵) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛) ↔ (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))))))
12723, 82, 123, 126syl3anc 1371 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛) ↔ (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))))))
12879, 127mpbid 232 1 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  csb 3921   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448   finSupp cfsupp 9431  0cc0 11184  cmin 11520  0cn0 12553  ...cfz 13567  Basecbs 17258  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772  .gcmg 19107  CMndccmn 19822  mulGrpcmgp 20161  Ringcrg 20260  LModclmod 20880  var1cv1 22198  Poly1cpl1 22199  coe1cco1 22200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator