Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1mulgsum Structured version   Visualization version   GIF version

Theorem ply1mulgsum 46461
Description: The product of two polynomials expressed as group sum of scaled monomials. (Contributed by AV, 20-Oct-2019.)
Hypotheses
Ref Expression
ply1mulgsum.p 𝑃 = (Poly1𝑅)
ply1mulgsum.b 𝐵 = (Base‘𝑃)
ply1mulgsum.a 𝐴 = (coe1𝐾)
ply1mulgsum.c 𝐶 = (coe1𝐿)
ply1mulgsum.x 𝑋 = (var1𝑅)
ply1mulgsum.pm × = (.r𝑃)
ply1mulgsum.sm · = ( ·𝑠𝑃)
ply1mulgsum.rm = (.r𝑅)
ply1mulgsum.m 𝑀 = (mulGrp‘𝑃)
ply1mulgsum.e = (.g𝑀)
Assertion
Ref Expression
ply1mulgsum ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))
Distinct variable groups:   𝐴,𝑙   𝐵,𝑙   𝐶,𝑙   𝐾,𝑙   𝐿,𝑙   𝑅,𝑙   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝑘,𝐾   𝑘,𝐿   𝑅,𝑘   ,𝑘,𝑙   𝑘,𝑋   ,𝑘   · ,𝑘   𝑃,𝑘   ,𝑙
Allowed substitution hints:   𝑃(𝑙)   · (𝑙)   × (𝑘,𝑙)   (𝑙)   𝑀(𝑘,𝑙)   𝑋(𝑙)

Proof of Theorem ply1mulgsum
Dummy variables 𝑛 𝑖 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1mulgsum.p . . . . . . 7 𝑃 = (Poly1𝑅)
2 ply1mulgsum.pm . . . . . . 7 × = (.r𝑃)
3 ply1mulgsum.rm . . . . . . 7 = (.r𝑅)
4 ply1mulgsum.b . . . . . . 7 𝐵 = (Base‘𝑃)
51, 2, 3, 4coe1mul 21641 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (coe1‘(𝐾 × 𝐿)) = (𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))))))
65adantr 481 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (coe1‘(𝐾 × 𝐿)) = (𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))))))
76fveq1d 6844 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))))))‘𝑛))
8 eqidd 2737 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))))) = (𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))))))
9 oveq2 7365 . . . . . . . 8 (𝑚 = 𝑛 → (0...𝑚) = (0...𝑛))
10 fvoveq1 7380 . . . . . . . . 9 (𝑚 = 𝑛 → ((coe1𝐿)‘(𝑚𝑖)) = ((coe1𝐿)‘(𝑛𝑖)))
1110oveq2d 7373 . . . . . . . 8 (𝑚 = 𝑛 → (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))) = (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))
129, 11mpteq12dv 5196 . . . . . . 7 (𝑚 = 𝑛 → (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))) = (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖)))))
1312oveq2d 7373 . . . . . 6 (𝑚 = 𝑛 → (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))))) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))))
1413adantl 482 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑚 = 𝑛) → (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))))) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))))
15 simpr 485 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
16 ovexd 7392 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))) ∈ V)
178, 14, 15, 16fvmptd 6955 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))))))‘𝑛) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))))
18 ply1mulgsum.x . . . . . 6 𝑋 = (var1𝑅)
19 ply1mulgsum.e . . . . . . 7 = (.g𝑀)
20 ply1mulgsum.m . . . . . . . 8 𝑀 = (mulGrp‘𝑃)
2120fveq2i 6845 . . . . . . 7 (.g𝑀) = (.g‘(mulGrp‘𝑃))
2219, 21eqtri 2764 . . . . . 6 = (.g‘(mulGrp‘𝑃))
23 simp1 1136 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑅 ∈ Ring)
2423adantr 481 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
25 eqid 2736 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
26 ply1mulgsum.sm . . . . . 6 · = ( ·𝑠𝑃)
27 eqid 2736 . . . . . 6 (0g𝑅) = (0g𝑅)
28 ringcmn 20003 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
29283ad2ant1 1133 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑅 ∈ CMnd)
3029ad2antrr 724 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ CMnd)
31 fzfid 13878 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
32 simpll1 1212 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
3332adantr 481 . . . . . . . . . 10 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
34 simp2 1137 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝐾𝐵)
3534ad2antrr 724 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐾𝐵)
36 elfznn0 13534 . . . . . . . . . . 11 (𝑙 ∈ (0...𝑘) → 𝑙 ∈ ℕ0)
37 ply1mulgsum.a . . . . . . . . . . . 12 𝐴 = (coe1𝐾)
3837, 4, 1, 25coe1fvalcl 21583 . . . . . . . . . . 11 ((𝐾𝐵𝑙 ∈ ℕ0) → (𝐴𝑙) ∈ (Base‘𝑅))
3935, 36, 38syl2an 596 . . . . . . . . . 10 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝐴𝑙) ∈ (Base‘𝑅))
40 simp3 1138 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝐿𝐵)
4140ad2antrr 724 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐿𝐵)
42 fznn0sub 13473 . . . . . . . . . . 11 (𝑙 ∈ (0...𝑘) → (𝑘𝑙) ∈ ℕ0)
43 ply1mulgsum.c . . . . . . . . . . . 12 𝐶 = (coe1𝐿)
4443, 4, 1, 25coe1fvalcl 21583 . . . . . . . . . . 11 ((𝐿𝐵 ∧ (𝑘𝑙) ∈ ℕ0) → (𝐶‘(𝑘𝑙)) ∈ (Base‘𝑅))
4541, 42, 44syl2an 596 . . . . . . . . . 10 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝐶‘(𝑘𝑙)) ∈ (Base‘𝑅))
4625, 3ringcl 19981 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝐴𝑙) ∈ (Base‘𝑅) ∧ (𝐶‘(𝑘𝑙)) ∈ (Base‘𝑅)) → ((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
4733, 39, 45, 46syl3anc 1371 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → ((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
4847ralrimiva 3143 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ∀𝑙 ∈ (0...𝑘)((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
4925, 30, 31, 48gsummptcl 19744 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘𝑅))
5049ralrimiva 3143 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘𝑅))
511, 4, 37, 43, 18, 2, 26, 3, 20, 19ply1mulgsumlem3 46459 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))))) finSupp (0g𝑅))
5251adantr 481 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))))) finSupp (0g𝑅))
531, 4, 18, 22, 24, 25, 26, 27, 50, 52, 15gsummoncoe1 21675 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛) = 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))))
54 vex 3449 . . . . . 6 𝑛 ∈ V
55 csbov2g 7403 . . . . . . 7 (𝑛 ∈ V → 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))))
56 id 22 . . . . . . . . 9 (𝑛 ∈ V → 𝑛 ∈ V)
57 oveq2 7365 . . . . . . . . . . 11 (𝑘 = 𝑛 → (0...𝑘) = (0...𝑛))
58 fvoveq1 7380 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝐶‘(𝑘𝑙)) = (𝐶‘(𝑛𝑙)))
5958oveq2d 7373 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((𝐴𝑙) (𝐶‘(𝑘𝑙))) = ((𝐴𝑙) (𝐶‘(𝑛𝑙))))
6057, 59mpteq12dv 5196 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
6160adantl 482 . . . . . . . . 9 ((𝑛 ∈ V ∧ 𝑘 = 𝑛) → (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
6256, 61csbied 3893 . . . . . . . 8 (𝑛 ∈ V → 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
6362oveq2d 7373 . . . . . . 7 (𝑛 ∈ V → (𝑅 Σg 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))))
6455, 63eqtrd 2776 . . . . . 6 (𝑛 ∈ V → 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))))
6554, 64mp1i 13 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))))
66 fveq2 6842 . . . . . . . . . 10 (𝑙 = 𝑖 → (𝐴𝑙) = (𝐴𝑖))
6737fveq1i 6843 . . . . . . . . . 10 (𝐴𝑖) = ((coe1𝐾)‘𝑖)
6866, 67eqtrdi 2792 . . . . . . . . 9 (𝑙 = 𝑖 → (𝐴𝑙) = ((coe1𝐾)‘𝑖))
69 oveq2 7365 . . . . . . . . . . 11 (𝑙 = 𝑖 → (𝑛𝑙) = (𝑛𝑖))
7069fveq2d 6846 . . . . . . . . . 10 (𝑙 = 𝑖 → (𝐶‘(𝑛𝑙)) = (𝐶‘(𝑛𝑖)))
7143fveq1i 6843 . . . . . . . . . 10 (𝐶‘(𝑛𝑖)) = ((coe1𝐿)‘(𝑛𝑖))
7270, 71eqtrdi 2792 . . . . . . . . 9 (𝑙 = 𝑖 → (𝐶‘(𝑛𝑙)) = ((coe1𝐿)‘(𝑛𝑖)))
7368, 72oveq12d 7375 . . . . . . . 8 (𝑙 = 𝑖 → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))
7473cbvmptv 5218 . . . . . . 7 (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))) = (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))
7574a1i 11 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))) = (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖)))))
7675oveq2d 7373 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))))
7753, 65, 763eqtrrd 2781 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛))
787, 17, 773eqtrd 2780 . . 3 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛))
7978ralrimiva 3143 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∀𝑛 ∈ ℕ0 ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛))
801ply1ring 21619 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
814, 2ringcl 19981 . . . 4 ((𝑃 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝐾 × 𝐿) ∈ 𝐵)
8280, 81syl3an1 1163 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝐾 × 𝐿) ∈ 𝐵)
83 eqid 2736 . . . 4 (0g𝑃) = (0g𝑃)
84 ringcmn 20003 . . . . . 6 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
8580, 84syl 17 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ CMnd)
86853ad2ant1 1133 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑃 ∈ CMnd)
87 nn0ex 12419 . . . . 5 0 ∈ V
8887a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ℕ0 ∈ V)
891ply1lmod 21623 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
90893ad2ant1 1133 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑃 ∈ LMod)
9190adantr 481 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ LMod)
9229adantr 481 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ CMnd)
93 fzfid 13878 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
94 simpll1 1212 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
9534adantr 481 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝐾𝐵)
9695, 36, 38syl2an 596 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝐴𝑙) ∈ (Base‘𝑅))
9740adantr 481 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝐿𝐵)
9897, 42, 44syl2an 596 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝐶‘(𝑘𝑙)) ∈ (Base‘𝑅))
9994, 96, 98, 46syl3anc 1371 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → ((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
10099ralrimiva 3143 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → ∀𝑙 ∈ (0...𝑘)((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
10125, 92, 93, 100gsummptcl 19744 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘𝑅))
10223adantr 481 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
1031ply1sca 21624 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
104102, 103syl 17 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 = (Scalar‘𝑃))
105104fveq2d 6846 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
106101, 105eleqtrd 2840 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘(Scalar‘𝑃)))
10720, 4mgpbas 19902 . . . . . . 7 𝐵 = (Base‘𝑀)
10820ringmgp 19970 . . . . . . . . . 10 (𝑃 ∈ Ring → 𝑀 ∈ Mnd)
10980, 108syl 17 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
1101093ad2ant1 1133 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑀 ∈ Mnd)
111110adantr 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ Mnd)
112 simpr 485 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
11318, 1, 4vr1cl 21588 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑋𝐵)
1141133ad2ant1 1133 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑋𝐵)
115114adantr 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑋𝐵)
116107, 19, 111, 112, 115mulgnn0cld 18897 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐵)
117 eqid 2736 . . . . . . 7 (Scalar‘𝑃) = (Scalar‘𝑃)
118 eqid 2736 . . . . . . 7 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
1194, 117, 26, 118lmodvscl 20339 . . . . . 6 ((𝑃 ∈ LMod ∧ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑘 𝑋) ∈ 𝐵) → ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) ∈ 𝐵)
12091, 106, 116, 119syl3anc 1371 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) ∈ 𝐵)
121120fmpttd 7063 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))):ℕ0𝐵)
1221, 4, 37, 43, 18, 2, 26, 3, 20, 19ply1mulgsumlem4 46460 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))) finSupp (0g𝑃))
1234, 83, 86, 88, 121, 122gsumcl 19692 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))) ∈ 𝐵)
124 eqid 2736 . . . 4 (coe1‘(𝐾 × 𝐿)) = (coe1‘(𝐾 × 𝐿))
125 eqid 2736 . . . 4 (coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))))) = (coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))
1261, 4, 124, 125ply1coe1eq 21669 . . 3 ((𝑅 ∈ Ring ∧ (𝐾 × 𝐿) ∈ 𝐵 ∧ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))) ∈ 𝐵) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛) ↔ (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))))))
12723, 82, 123, 126syl3anc 1371 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛) ↔ (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))))))
12879, 127mpbid 231 1 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  csb 3855   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357   finSupp cfsupp 9305  0cc0 11051  cmin 11385  0cn0 12413  ...cfz 13424  Basecbs 17083  .rcmulr 17134  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321   Σg cgsu 17322  Mndcmnd 18556  .gcmg 18872  CMndccmn 19562  mulGrpcmgp 19896  Ringcrg 19964  LModclmod 20322  var1cv1 21547  Poly1cpl1 21548  coe1cco1 21549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-srg 19918  df-ring 19966  df-subrg 20220  df-lmod 20324  df-lss 20393  df-psr 21311  df-mvr 21312  df-mpl 21313  df-opsr 21315  df-psr1 21551  df-vr1 21552  df-ply1 21553  df-coe1 21554
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator