Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1mulgsum Structured version   Visualization version   GIF version

Theorem ply1mulgsum 47644
Description: The product of two polynomials expressed as group sum of scaled monomials. (Contributed by AV, 20-Oct-2019.)
Hypotheses
Ref Expression
ply1mulgsum.p 𝑃 = (Poly1𝑅)
ply1mulgsum.b 𝐵 = (Base‘𝑃)
ply1mulgsum.a 𝐴 = (coe1𝐾)
ply1mulgsum.c 𝐶 = (coe1𝐿)
ply1mulgsum.x 𝑋 = (var1𝑅)
ply1mulgsum.pm × = (.r𝑃)
ply1mulgsum.sm · = ( ·𝑠𝑃)
ply1mulgsum.rm = (.r𝑅)
ply1mulgsum.m 𝑀 = (mulGrp‘𝑃)
ply1mulgsum.e = (.g𝑀)
Assertion
Ref Expression
ply1mulgsum ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))
Distinct variable groups:   𝐴,𝑙   𝐵,𝑙   𝐶,𝑙   𝐾,𝑙   𝐿,𝑙   𝑅,𝑙   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝑘,𝐾   𝑘,𝐿   𝑅,𝑘   ,𝑘,𝑙   𝑘,𝑋   ,𝑘   · ,𝑘   𝑃,𝑘   ,𝑙
Allowed substitution hints:   𝑃(𝑙)   · (𝑙)   × (𝑘,𝑙)   (𝑙)   𝑀(𝑘,𝑙)   𝑋(𝑙)

Proof of Theorem ply1mulgsum
Dummy variables 𝑛 𝑖 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1mulgsum.p . . . . . . 7 𝑃 = (Poly1𝑅)
2 ply1mulgsum.pm . . . . . . 7 × = (.r𝑃)
3 ply1mulgsum.rm . . . . . . 7 = (.r𝑅)
4 ply1mulgsum.b . . . . . . 7 𝐵 = (Base‘𝑃)
51, 2, 3, 4coe1mul 22214 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (coe1‘(𝐾 × 𝐿)) = (𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))))))
65adantr 479 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (coe1‘(𝐾 × 𝐿)) = (𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))))))
76fveq1d 6898 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))))))‘𝑛))
8 eqidd 2726 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))))) = (𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))))))
9 oveq2 7427 . . . . . . . 8 (𝑚 = 𝑛 → (0...𝑚) = (0...𝑛))
10 fvoveq1 7442 . . . . . . . . 9 (𝑚 = 𝑛 → ((coe1𝐿)‘(𝑚𝑖)) = ((coe1𝐿)‘(𝑛𝑖)))
1110oveq2d 7435 . . . . . . . 8 (𝑚 = 𝑛 → (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))) = (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))
129, 11mpteq12dv 5240 . . . . . . 7 (𝑚 = 𝑛 → (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖)))) = (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖)))))
1312oveq2d 7435 . . . . . 6 (𝑚 = 𝑛 → (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))))) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))))
1413adantl 480 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑚 = 𝑛) → (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))))) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))))
15 simpr 483 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
16 ovexd 7454 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))) ∈ V)
178, 14, 15, 16fvmptd 7011 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ (𝑅 Σg (𝑖 ∈ (0...𝑚) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑚𝑖))))))‘𝑛) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))))
18 ply1mulgsum.x . . . . . 6 𝑋 = (var1𝑅)
19 ply1mulgsum.e . . . . . . 7 = (.g𝑀)
20 ply1mulgsum.m . . . . . . . 8 𝑀 = (mulGrp‘𝑃)
2120fveq2i 6899 . . . . . . 7 (.g𝑀) = (.g‘(mulGrp‘𝑃))
2219, 21eqtri 2753 . . . . . 6 = (.g‘(mulGrp‘𝑃))
23 simp1 1133 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑅 ∈ Ring)
2423adantr 479 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
25 eqid 2725 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
26 ply1mulgsum.sm . . . . . 6 · = ( ·𝑠𝑃)
27 eqid 2725 . . . . . 6 (0g𝑅) = (0g𝑅)
28 ringcmn 20230 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
29283ad2ant1 1130 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑅 ∈ CMnd)
3029ad2antrr 724 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ CMnd)
31 fzfid 13974 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
32 simpll1 1209 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
3332adantr 479 . . . . . . . . . 10 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
34 simp2 1134 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝐾𝐵)
3534ad2antrr 724 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐾𝐵)
36 elfznn0 13629 . . . . . . . . . . 11 (𝑙 ∈ (0...𝑘) → 𝑙 ∈ ℕ0)
37 ply1mulgsum.a . . . . . . . . . . . 12 𝐴 = (coe1𝐾)
3837, 4, 1, 25coe1fvalcl 22155 . . . . . . . . . . 11 ((𝐾𝐵𝑙 ∈ ℕ0) → (𝐴𝑙) ∈ (Base‘𝑅))
3935, 36, 38syl2an 594 . . . . . . . . . 10 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝐴𝑙) ∈ (Base‘𝑅))
40 simp3 1135 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝐿𝐵)
4140ad2antrr 724 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐿𝐵)
42 fznn0sub 13568 . . . . . . . . . . 11 (𝑙 ∈ (0...𝑘) → (𝑘𝑙) ∈ ℕ0)
43 ply1mulgsum.c . . . . . . . . . . . 12 𝐶 = (coe1𝐿)
4443, 4, 1, 25coe1fvalcl 22155 . . . . . . . . . . 11 ((𝐿𝐵 ∧ (𝑘𝑙) ∈ ℕ0) → (𝐶‘(𝑘𝑙)) ∈ (Base‘𝑅))
4541, 42, 44syl2an 594 . . . . . . . . . 10 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝐶‘(𝑘𝑙)) ∈ (Base‘𝑅))
4625, 3ringcl 20202 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝐴𝑙) ∈ (Base‘𝑅) ∧ (𝐶‘(𝑘𝑙)) ∈ (Base‘𝑅)) → ((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
4733, 39, 45, 46syl3anc 1368 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → ((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
4847ralrimiva 3135 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ∀𝑙 ∈ (0...𝑘)((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
4925, 30, 31, 48gsummptcl 19934 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘𝑅))
5049ralrimiva 3135 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘𝑅))
511, 4, 37, 43, 18, 2, 26, 3, 20, 19ply1mulgsumlem3 47642 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))))) finSupp (0g𝑅))
5251adantr 479 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))))) finSupp (0g𝑅))
531, 4, 18, 22, 24, 25, 26, 27, 50, 52, 15gsummoncoe1 22252 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛) = 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))))
54 vex 3465 . . . . . 6 𝑛 ∈ V
55 csbov2g 7466 . . . . . . 7 (𝑛 ∈ V → 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))))
56 id 22 . . . . . . . . 9 (𝑛 ∈ V → 𝑛 ∈ V)
57 oveq2 7427 . . . . . . . . . . 11 (𝑘 = 𝑛 → (0...𝑘) = (0...𝑛))
58 fvoveq1 7442 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝐶‘(𝑘𝑙)) = (𝐶‘(𝑛𝑙)))
5958oveq2d 7435 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((𝐴𝑙) (𝐶‘(𝑘𝑙))) = ((𝐴𝑙) (𝐶‘(𝑛𝑙))))
6057, 59mpteq12dv 5240 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
6160adantl 480 . . . . . . . . 9 ((𝑛 ∈ V ∧ 𝑘 = 𝑛) → (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
6256, 61csbied 3927 . . . . . . . 8 (𝑛 ∈ V → 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
6362oveq2d 7435 . . . . . . 7 (𝑛 ∈ V → (𝑅 Σg 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))))
6455, 63eqtrd 2765 . . . . . 6 (𝑛 ∈ V → 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))))
6554, 64mp1i 13 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))))
66 fveq2 6896 . . . . . . . . . 10 (𝑙 = 𝑖 → (𝐴𝑙) = (𝐴𝑖))
6737fveq1i 6897 . . . . . . . . . 10 (𝐴𝑖) = ((coe1𝐾)‘𝑖)
6866, 67eqtrdi 2781 . . . . . . . . 9 (𝑙 = 𝑖 → (𝐴𝑙) = ((coe1𝐾)‘𝑖))
69 oveq2 7427 . . . . . . . . . . 11 (𝑙 = 𝑖 → (𝑛𝑙) = (𝑛𝑖))
7069fveq2d 6900 . . . . . . . . . 10 (𝑙 = 𝑖 → (𝐶‘(𝑛𝑙)) = (𝐶‘(𝑛𝑖)))
7143fveq1i 6897 . . . . . . . . . 10 (𝐶‘(𝑛𝑖)) = ((coe1𝐿)‘(𝑛𝑖))
7270, 71eqtrdi 2781 . . . . . . . . 9 (𝑙 = 𝑖 → (𝐶‘(𝑛𝑙)) = ((coe1𝐿)‘(𝑛𝑖)))
7368, 72oveq12d 7437 . . . . . . . 8 (𝑙 = 𝑖 → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))
7473cbvmptv 5262 . . . . . . 7 (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))) = (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))
7574a1i 11 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))) = (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖)))))
7675oveq2d 7435 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))))
7753, 65, 763eqtrrd 2770 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑅 Σg (𝑖 ∈ (0...𝑛) ↦ (((coe1𝐾)‘𝑖) ((coe1𝐿)‘(𝑛𝑖))))) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛))
787, 17, 773eqtrd 2769 . . 3 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛))
7978ralrimiva 3135 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∀𝑛 ∈ ℕ0 ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛))
801ply1ring 22190 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
814, 2ringcl 20202 . . . 4 ((𝑃 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝐾 × 𝐿) ∈ 𝐵)
8280, 81syl3an1 1160 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝐾 × 𝐿) ∈ 𝐵)
83 eqid 2725 . . . 4 (0g𝑃) = (0g𝑃)
84 ringcmn 20230 . . . . . 6 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
8580, 84syl 17 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ CMnd)
86853ad2ant1 1130 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑃 ∈ CMnd)
87 nn0ex 12511 . . . . 5 0 ∈ V
8887a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ℕ0 ∈ V)
891ply1lmod 22194 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
90893ad2ant1 1130 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑃 ∈ LMod)
9190adantr 479 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ LMod)
9229adantr 479 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ CMnd)
93 fzfid 13974 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
94 simpll1 1209 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
9534adantr 479 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝐾𝐵)
9695, 36, 38syl2an 594 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝐴𝑙) ∈ (Base‘𝑅))
9740adantr 479 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝐿𝐵)
9897, 42, 44syl2an 594 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝐶‘(𝑘𝑙)) ∈ (Base‘𝑅))
9994, 96, 98, 46syl3anc 1368 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → ((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
10099ralrimiva 3135 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → ∀𝑙 ∈ (0...𝑘)((𝐴𝑙) (𝐶‘(𝑘𝑙))) ∈ (Base‘𝑅))
10125, 92, 93, 100gsummptcl 19934 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘𝑅))
10223adantr 479 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
1031ply1sca 22195 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
104102, 103syl 17 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 = (Scalar‘𝑃))
105104fveq2d 6900 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
106101, 105eleqtrd 2827 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘(Scalar‘𝑃)))
10720, 4mgpbas 20092 . . . . . . 7 𝐵 = (Base‘𝑀)
10820ringmgp 20191 . . . . . . . . . 10 (𝑃 ∈ Ring → 𝑀 ∈ Mnd)
10980, 108syl 17 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
1101093ad2ant1 1130 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑀 ∈ Mnd)
111110adantr 479 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ Mnd)
112 simpr 483 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
11318, 1, 4vr1cl 22160 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑋𝐵)
1141133ad2ant1 1130 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑋𝐵)
115114adantr 479 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑋𝐵)
116107, 19, 111, 112, 115mulgnn0cld 19058 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐵)
117 eqid 2725 . . . . . . 7 (Scalar‘𝑃) = (Scalar‘𝑃)
118 eqid 2725 . . . . . . 7 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
1194, 117, 26, 118lmodvscl 20773 . . . . . 6 ((𝑃 ∈ LMod ∧ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑘 𝑋) ∈ 𝐵) → ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) ∈ 𝐵)
12091, 106, 116, 119syl3anc 1368 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) ∈ 𝐵)
121120fmpttd 7124 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))):ℕ0𝐵)
1221, 4, 37, 43, 18, 2, 26, 3, 20, 19ply1mulgsumlem4 47643 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))) finSupp (0g𝑃))
1234, 83, 86, 88, 121, 122gsumcl 19882 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))) ∈ 𝐵)
124 eqid 2725 . . . 4 (coe1‘(𝐾 × 𝐿)) = (coe1‘(𝐾 × 𝐿))
125 eqid 2725 . . . 4 (coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))))) = (coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))
1261, 4, 124, 125ply1coe1eq 22244 . . 3 ((𝑅 ∈ Ring ∧ (𝐾 × 𝐿) ∈ 𝐵 ∧ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))) ∈ 𝐵) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛) ↔ (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))))))
12723, 82, 123, 126syl3anc 1368 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝐾 × 𝐿))‘𝑛) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))‘𝑛) ↔ (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))))))
12879, 127mpbid 231 1 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  Vcvv 3461  csb 3889   class class class wbr 5149  cmpt 5232  cfv 6549  (class class class)co 7419   finSupp cfsupp 9387  0cc0 11140  cmin 11476  0cn0 12505  ...cfz 13519  Basecbs 17183  .rcmulr 17237  Scalarcsca 17239   ·𝑠 cvsca 17240  0gc0g 17424   Σg cgsu 17425  Mndcmnd 18697  .gcmg 19031  CMndccmn 19747  mulGrpcmgp 20086  Ringcrg 20185  LModclmod 20755  var1cv1 22118  Poly1cpl1 22119  coe1cco1 22120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-sup 9467  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-fzo 13663  df-seq 14003  df-hash 14326  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-hom 17260  df-cco 17261  df-0g 17426  df-gsum 17427  df-prds 17432  df-pws 17434  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-mulg 19032  df-subg 19086  df-ghm 19176  df-cntz 19280  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-srg 20139  df-ring 20187  df-subrng 20495  df-subrg 20520  df-lmod 20757  df-lss 20828  df-psr 21859  df-mvr 21860  df-mpl 21861  df-opsr 21863  df-psr1 22122  df-vr1 22123  df-ply1 22124  df-coe1 22125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator