MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpmhmlem2 Structured version   Visualization version   GIF version

Theorem pm2mpmhmlem2 22706
Description: Lemma 2 for pm2mpmhm 22707. (Contributed by AV, 22-Oct-2019.) (Revised by AV, 6-Dec-2019.)
Hypotheses
Ref Expression
pm2mpmhm.p 𝑃 = (Poly1𝑅)
pm2mpmhm.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpmhm.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpmhm.q 𝑄 = (Poly1𝐴)
pm2mpmhm.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
pm2mpmhm.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
pm2mpmhmlem2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝐵𝑦𝐵 (𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑇𝑥)(.r𝑄)(𝑇𝑦)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑁,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝑄(𝑥,𝑦)   𝑇(𝑥,𝑦)

Proof of Theorem pm2mpmhmlem2
Dummy variables 𝑘 𝑙 𝑛 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑁 ∈ Fin)
2 simplr 768 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ Ring)
3 pm2mpmhm.p . . . . . . . 8 𝑃 = (Poly1𝑅)
4 pm2mpmhm.c . . . . . . . 8 𝐶 = (𝑁 Mat 𝑃)
53, 4pmatring 22579 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
65adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝐶 ∈ Ring)
7 simpl 482 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
87adantl 481 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
9 simpr 484 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
109adantl 481 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
11 pm2mpmhm.b . . . . . . 7 𝐵 = (Base‘𝐶)
12 eqid 2729 . . . . . . 7 (.r𝐶) = (.r𝐶)
1311, 12ringcl 20159 . . . . . 6 ((𝐶 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝐶)𝑦) ∈ 𝐵)
146, 8, 10, 13syl3anc 1373 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐶)𝑦) ∈ 𝐵)
15 eqid 2729 . . . . . 6 ( ·𝑠𝑄) = ( ·𝑠𝑄)
16 eqid 2729 . . . . . 6 (.g‘(mulGrp‘𝑄)) = (.g‘(mulGrp‘𝑄))
17 eqid 2729 . . . . . 6 (var1𝐴) = (var1𝐴)
18 pm2mpmhm.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
19 pm2mpmhm.q . . . . . 6 𝑄 = (Poly1𝐴)
20 pm2mpmhm.t . . . . . 6 𝑇 = (𝑁 pMatToMatPoly 𝑅)
213, 4, 11, 15, 16, 17, 18, 19, 20pm2mpfval 22683 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(.r𝐶)𝑦) ∈ 𝐵) → (𝑇‘(𝑥(.r𝐶)𝑦)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
221, 2, 14, 21syl3anc 1373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(.r𝐶)𝑦)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
233, 4, 11, 18decpmatmul 22659 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑘) = (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))))
2423ad4ant234 1176 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑘) = (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))))
2524oveq1d 7402 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) = ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))
2625mpteq2dva 5200 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) = (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))
2726oveq2d 7403 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
28 eqid 2729 . . . . . . . 8 (Base‘𝑄) = (Base‘𝑄)
2918matring 22330 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
3029ad2antrr 726 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ Ring)
31 eqid 2729 . . . . . . . 8 (Base‘𝐴) = (Base‘𝐴)
32 eqid 2729 . . . . . . . 8 (0g𝐴) = (0g𝐴)
33 ringcmn 20191 . . . . . . . . . . . 12 (𝐴 ∈ Ring → 𝐴 ∈ CMnd)
3429, 33syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ CMnd)
3534ad3antrrr 730 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ CMnd)
36 fzfid 13938 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
3730ad2antrr 726 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝐴 ∈ Ring)
38 simp-5r 785 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
398ad3antrrr 730 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑥𝐵)
40 elfznn0 13581 . . . . . . . . . . . . . 14 (𝑧 ∈ (0...𝑘) → 𝑧 ∈ ℕ0)
4140adantl 481 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑧 ∈ ℕ0)
423, 4, 11, 18, 31decpmatcl 22654 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑧 ∈ ℕ0) → (𝑥 decompPMat 𝑧) ∈ (Base‘𝐴))
4338, 39, 41, 42syl3anc 1373 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑥 decompPMat 𝑧) ∈ (Base‘𝐴))
4410ad3antrrr 730 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑦𝐵)
45 fznn0sub 13517 . . . . . . . . . . . . . 14 (𝑧 ∈ (0...𝑘) → (𝑘𝑧) ∈ ℕ0)
4645adantl 481 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑘𝑧) ∈ ℕ0)
473, 4, 11, 18, 31decpmatcl 22654 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦𝐵 ∧ (𝑘𝑧) ∈ ℕ0) → (𝑦 decompPMat (𝑘𝑧)) ∈ (Base‘𝐴))
4838, 44, 46, 47syl3anc 1373 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑦 decompPMat (𝑘𝑧)) ∈ (Base‘𝐴))
49 eqid 2729 . . . . . . . . . . . . 13 (.r𝐴) = (.r𝐴)
5031, 49ringcl 20159 . . . . . . . . . . . 12 ((𝐴 ∈ Ring ∧ (𝑥 decompPMat 𝑧) ∈ (Base‘𝐴) ∧ (𝑦 decompPMat (𝑘𝑧)) ∈ (Base‘𝐴)) → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
5137, 43, 48, 50syl3anc 1373 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
5251ralrimiva 3125 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ∀𝑧 ∈ (0...𝑘)((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
5331, 35, 36, 52gsummptcl 19897 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘𝐴))
5453ralrimiva 3125 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘𝐴))
553, 4, 11, 18, 49, 32decpmatmulsumfsupp 22660 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))) finSupp (0g𝐴))
5655adantr 480 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))) finSupp (0g𝐴))
57 simpr 484 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
5819, 28, 17, 16, 30, 31, 15, 32, 54, 56, 57gsummoncoe1 22195 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = 𝑛 / 𝑘(𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))))
59 csbov2g 7435 . . . . . . . . 9 (𝑛 ∈ ℕ0𝑛 / 𝑘(𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) = (𝐴 Σg 𝑛 / 𝑘(𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))))
60 id 22 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
61 oveq2 7395 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (0...𝑘) = (0...𝑛))
62 oveq1 7394 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝑘𝑧) = (𝑛𝑧))
6362oveq2d 7403 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝑦 decompPMat (𝑘𝑧)) = (𝑦 decompPMat (𝑛𝑧)))
6463oveq2d 7403 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) = ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))
6561, 64mpteq12dv 5194 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))) = (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))))
6665adantl 481 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑘 = 𝑛) → (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))) = (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))))
6760, 66csbied 3898 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 / 𝑘(𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))) = (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))))
6867oveq2d 7403 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (𝐴 Σg 𝑛 / 𝑘(𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) = (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))))
6959, 68eqtrd 2764 . . . . . . . 8 (𝑛 ∈ ℕ0𝑛 / 𝑘(𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) = (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))))
7069adantl 481 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑛 / 𝑘(𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) = (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))))
71 eqidd 2730 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)))))) = (𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)))))))
72 oveq2 7395 . . . . . . . . . . . 12 (𝑟 = 𝑛 → (0...𝑟) = (0...𝑛))
73 fvoveq1 7410 . . . . . . . . . . . . 13 (𝑟 = 𝑛 → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))
7473oveq2d 7403 . . . . . . . . . . . 12 (𝑟 = 𝑛 → (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))) = (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))
7572, 74mpteq12dv 5194 . . . . . . . . . . 11 (𝑟 = 𝑛 → (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))))
7675oveq2d 7403 . . . . . . . . . 10 (𝑟 = 𝑛 → (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))) = (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))))
7776adantl 481 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑟 = 𝑛) → (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))) = (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))))
78 ovexd 7422 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))) ∈ V)
7971, 77, 57, 78fvmptd 6975 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))))‘𝑛) = (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))))
80 eqid 2729 . . . . . . . . . 10 (0g𝑄) = (0g𝑄)
8119ply1ring 22132 . . . . . . . . . . . . 13 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
8229, 81syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring)
83 ringcmn 20191 . . . . . . . . . . . 12 (𝑄 ∈ Ring → 𝑄 ∈ CMnd)
8482, 83syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ CMnd)
8584ad2antrr 726 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑄 ∈ CMnd)
86 nn0ex 12448 . . . . . . . . . . 11 0 ∈ V
8786a1i 11 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ℕ0 ∈ V)
887anim2i 617 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝐵))
89 df-3an 1088 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝐵))
9088, 89sylibr 234 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵))
9190adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵))
923, 4, 11, 15, 16, 17, 18, 19, 28pm2mpghmlem1 22700 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
9391, 92sylan 580 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
9493fmpttd 7087 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
953, 4, 11, 15, 16, 17, 18, 19pm2mpghmlem2 22699 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
9691, 95syl 17 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
9728, 80, 85, 87, 94, 96gsumcl 19845 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
989anim2i 617 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐵))
99 df-3an 1088 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐵))
10098, 99sylibr 234 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
101100adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
1023, 4, 11, 15, 16, 17, 18, 19, 28pm2mpghmlem1 22700 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
103101, 102sylan 580 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
104103fmpttd 7087 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
1051, 2, 103jca 1128 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
106105adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
1073, 4, 11, 15, 16, 17, 18, 19pm2mpghmlem2 22699 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
108106, 107syl 17 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
10928, 80, 85, 87, 104, 108gsumcl 19845 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
110 eqid 2729 . . . . . . . . . . 11 (.r𝑄) = (.r𝑄)
11119, 110, 49, 28coe1mul 22156 . . . . . . . . . 10 ((𝐴 ∈ Ring ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄) ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄)) → (coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))) = (𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)))))))
112111fveq1d 6860 . . . . . . . . 9 ((𝐴 ∈ Ring ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄) ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄)) → ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛) = ((𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))))‘𝑛))
11330, 97, 109, 112syl3anc 1373 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛) = ((𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))))‘𝑛))
114 oveq2 7395 . . . . . . . . . . . 12 (𝑧 = 𝑙 → (𝑥 decompPMat 𝑧) = (𝑥 decompPMat 𝑙))
115 oveq2 7395 . . . . . . . . . . . . 13 (𝑧 = 𝑙 → (𝑛𝑧) = (𝑛𝑙))
116115oveq2d 7403 . . . . . . . . . . . 12 (𝑧 = 𝑙 → (𝑦 decompPMat (𝑛𝑧)) = (𝑦 decompPMat (𝑛𝑙)))
117114, 116oveq12d 7405 . . . . . . . . . . 11 (𝑧 = 𝑙 → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))) = ((𝑥 decompPMat 𝑙)(.r𝐴)(𝑦 decompPMat (𝑛𝑙))))
118117cbvmptv 5211 . . . . . . . . . 10 (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑙)(.r𝐴)(𝑦 decompPMat (𝑛𝑙))))
11929ad3antrrr 730 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝐴 ∈ Ring)
120 simp-5r 785 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
1218ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → 𝑥𝐵)
122 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
1233, 4, 11, 18, 31decpmatcl 22654 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑘 ∈ ℕ0) → (𝑥 decompPMat 𝑘) ∈ (Base‘𝐴))
124120, 121, 122, 123syl3anc 1373 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → (𝑥 decompPMat 𝑘) ∈ (Base‘𝐴))
125124ralrimiva 3125 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ∀𝑘 ∈ ℕ0 (𝑥 decompPMat 𝑘) ∈ (Base‘𝐴))
1262, 8jca 511 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑅 ∈ Ring ∧ 𝑥𝐵))
127126ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑅 ∈ Ring ∧ 𝑥𝐵))
1283, 4, 11, 18, 32decpmatfsupp 22656 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑥 decompPMat 𝑘)) finSupp (0g𝐴))
129127, 128syl 17 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑘 ∈ ℕ0 ↦ (𝑥 decompPMat 𝑘)) finSupp (0g𝐴))
130 elfznn0 13581 . . . . . . . . . . . . . . 15 (𝑙 ∈ (0...𝑛) → 𝑙 ∈ ℕ0)
131130adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑙 ∈ ℕ0)
13219, 28, 17, 16, 119, 31, 15, 32, 125, 129, 131gsummoncoe1 22195 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙) = 𝑙 / 𝑘(𝑥 decompPMat 𝑘))
133 csbov2g 7435 . . . . . . . . . . . . . . 15 (𝑙 ∈ (0...𝑛) → 𝑙 / 𝑘(𝑥 decompPMat 𝑘) = (𝑥 decompPMat 𝑙 / 𝑘𝑘))
134 csbvarg 4397 . . . . . . . . . . . . . . . 16 (𝑙 ∈ (0...𝑛) → 𝑙 / 𝑘𝑘 = 𝑙)
135134oveq2d 7403 . . . . . . . . . . . . . . 15 (𝑙 ∈ (0...𝑛) → (𝑥 decompPMat 𝑙 / 𝑘𝑘) = (𝑥 decompPMat 𝑙))
136133, 135eqtrd 2764 . . . . . . . . . . . . . 14 (𝑙 ∈ (0...𝑛) → 𝑙 / 𝑘(𝑥 decompPMat 𝑘) = (𝑥 decompPMat 𝑙))
137136adantl 481 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑙 / 𝑘(𝑥 decompPMat 𝑘) = (𝑥 decompPMat 𝑙))
138132, 137eqtr2d 2765 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑥 decompPMat 𝑙) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙))
13910ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → 𝑦𝐵)
1403, 4, 11, 18, 31decpmatcl 22654 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑘 ∈ ℕ0) → (𝑦 decompPMat 𝑘) ∈ (Base‘𝐴))
141120, 139, 122, 140syl3anc 1373 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → (𝑦 decompPMat 𝑘) ∈ (Base‘𝐴))
142141ralrimiva 3125 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ∀𝑘 ∈ ℕ0 (𝑦 decompPMat 𝑘) ∈ (Base‘𝐴))
1432, 10jca 511 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑅 ∈ Ring ∧ 𝑦𝐵))
144143ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑅 ∈ Ring ∧ 𝑦𝐵))
1453, 4, 11, 18, 32decpmatfsupp 22656 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑦 decompPMat 𝑘)) finSupp (0g𝐴))
146144, 145syl 17 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑘 ∈ ℕ0 ↦ (𝑦 decompPMat 𝑘)) finSupp (0g𝐴))
147 fznn0sub 13517 . . . . . . . . . . . . . . 15 (𝑙 ∈ (0...𝑛) → (𝑛𝑙) ∈ ℕ0)
148147adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑛𝑙) ∈ ℕ0)
14919, 28, 17, 16, 119, 31, 15, 32, 142, 146, 148gsummoncoe1 22195 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)) = (𝑛𝑙) / 𝑘(𝑦 decompPMat 𝑘))
150 ovex 7420 . . . . . . . . . . . . . 14 (𝑛𝑙) ∈ V
151 csbov2g 7435 . . . . . . . . . . . . . 14 ((𝑛𝑙) ∈ V → (𝑛𝑙) / 𝑘(𝑦 decompPMat 𝑘) = (𝑦 decompPMat (𝑛𝑙) / 𝑘𝑘))
152150, 151mp1i 13 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑛𝑙) / 𝑘(𝑦 decompPMat 𝑘) = (𝑦 decompPMat (𝑛𝑙) / 𝑘𝑘))
153 csbvarg 4397 . . . . . . . . . . . . . . 15 ((𝑛𝑙) ∈ V → (𝑛𝑙) / 𝑘𝑘 = (𝑛𝑙))
154150, 153mp1i 13 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑛𝑙) / 𝑘𝑘 = (𝑛𝑙))
155154oveq2d 7403 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑦 decompPMat (𝑛𝑙) / 𝑘𝑘) = (𝑦 decompPMat (𝑛𝑙)))
156149, 152, 1553eqtrrd 2769 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑦 decompPMat (𝑛𝑙)) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))
157138, 156oveq12d 7405 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((𝑥 decompPMat 𝑙)(.r𝐴)(𝑦 decompPMat (𝑛𝑙))) = (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))
158157mpteq2dva 5200 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑙 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑙)(.r𝐴)(𝑦 decompPMat (𝑛𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))))
159118, 158eqtrid 2776 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))) = (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))))
160159oveq2d 7403 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))) = (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))))
16179, 113, 1603eqtr4rd 2775 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛))
16258, 70, 1613eqtrd 2768 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛))
163162ralrimiva 3125 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑛 ∈ ℕ0 ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛))
16429adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝐴 ∈ Ring)
16584adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑄 ∈ CMnd)
16686a1i 11 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ℕ0 ∈ V)
16719ply1lmod 22136 . . . . . . . . . . 11 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
16829, 167syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod)
169168ad2antrr 726 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑄 ∈ LMod)
17034ad2antrr 726 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ CMnd)
171 fzfid 13938 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
17229ad3antrrr 730 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝐴 ∈ Ring)
173 simp-4r 783 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
174 simplrl 776 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑥𝐵)
175174adantr 480 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑥𝐵)
17640adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑧 ∈ ℕ0)
177173, 175, 176, 42syl3anc 1373 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑥 decompPMat 𝑧) ∈ (Base‘𝐴))
178 simplrr 777 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑦𝐵)
179178adantr 480 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑦𝐵)
18045adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑘𝑧) ∈ ℕ0)
181173, 179, 180, 47syl3anc 1373 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑦 decompPMat (𝑘𝑧)) ∈ (Base‘𝐴))
182172, 177, 181, 50syl3anc 1373 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
183182ralrimiva 3125 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ∀𝑧 ∈ (0...𝑘)((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
18431, 170, 171, 183gsummptcl 19897 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘𝐴))
18529ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ Ring)
18619ply1sca 22137 . . . . . . . . . . . . 13 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
187185, 186syl 17 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 = (Scalar‘𝑄))
188187eqcomd 2735 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (Scalar‘𝑄) = 𝐴)
189188fveq2d 6862 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (Base‘(Scalar‘𝑄)) = (Base‘𝐴))
190184, 189eleqtrrd 2831 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘(Scalar‘𝑄)))
191 eqid 2729 . . . . . . . . . . 11 (mulGrp‘𝑄) = (mulGrp‘𝑄)
19219, 17, 191, 16, 28ply1moncl 22157 . . . . . . . . . 10 ((𝐴 ∈ Ring ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)) ∈ (Base‘𝑄))
193185, 192sylancom 588 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)) ∈ (Base‘𝑄))
194 eqid 2729 . . . . . . . . . 10 (Scalar‘𝑄) = (Scalar‘𝑄)
195 eqid 2729 . . . . . . . . . 10 (Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄))
19628, 194, 15, 195lmodvscl 20784 . . . . . . . . 9 ((𝑄 ∈ LMod ∧ (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)) ∈ (Base‘𝑄)) → ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
197169, 190, 193, 196syl3anc 1373 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
198197fmpttd 7087 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
1993, 4, 11, 15, 16, 17, 18, 19, 28, 20pm2mpmhmlem1 22705 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
20028, 80, 165, 166, 198, 199gsumcl 19845 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
20182adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑄 ∈ Ring)
20290, 92sylan 580 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
203202fmpttd 7087 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
20490, 95syl 17 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
20528, 80, 165, 166, 203, 204gsumcl 19845 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
206100, 102sylan 580 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
207206fmpttd 7087 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
2081, 2, 10, 107syl3anc 1373 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
20928, 80, 165, 166, 207, 208gsumcl 19845 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
21028, 110ringcl 20159 . . . . . . 7 ((𝑄 ∈ Ring ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄) ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄)) → ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))) ∈ (Base‘𝑄))
211201, 205, 209, 210syl3anc 1373 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))) ∈ (Base‘𝑄))
212 eqid 2729 . . . . . . 7 (coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))) = (coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
213 eqid 2729 . . . . . . 7 (coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))) = (coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))
21419, 28, 212, 213ply1coe1eq 22187 . . . . . 6 ((𝐴 ∈ Ring ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄) ∧ ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))) ∈ (Base‘𝑄)) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛) ↔ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))))
215164, 200, 211, 214syl3anc 1373 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛) ↔ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))))
216163, 215mpbid 232 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))
21722, 27, 2163eqtrd 2768 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))
2183, 4, 11, 15, 16, 17, 18, 19, 20pm2mpfval 22683 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑇𝑥) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
2191, 2, 8, 218syl3anc 1373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑥) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
2203, 4, 11, 15, 16, 17, 18, 19, 20pm2mpfval 22683 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑇𝑦) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
2211, 2, 10, 220syl3anc 1373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑦) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
222219, 221oveq12d 7405 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑇𝑥)(.r𝑄)(𝑇𝑦)) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))
223217, 222eqtr4d 2767 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑇𝑥)(.r𝑄)(𝑇𝑦)))
224223ralrimivva 3180 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝐵𝑦𝐵 (𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑇𝑥)(.r𝑄)(𝑇𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  csb 3862   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  Fincfn 8918   finSupp cfsupp 9312  0cc0 11068  cmin 11405  0cn0 12442  ...cfz 13468  Basecbs 17179  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402   Σg cgsu 17403  .gcmg 18999  CMndccmn 19710  mulGrpcmgp 20049  Ringcrg 20142  LModclmod 20766  var1cv1 22060  Poly1cpl1 22061  coe1cco1 22062   Mat cmat 22294   decompPMat cdecpmat 22649   pMatToMatPoly cpm2mp 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-mamu 22278  df-mat 22295  df-decpmat 22650  df-pm2mp 22680
This theorem is referenced by:  pm2mpmhm  22707
  Copyright terms: Public domain W3C validator