MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpmhmlem2 Structured version   Visualization version   GIF version

Theorem pm2mpmhmlem2 22846
Description: Lemma 2 for pm2mpmhm 22847. (Contributed by AV, 22-Oct-2019.) (Revised by AV, 6-Dec-2019.)
Hypotheses
Ref Expression
pm2mpmhm.p 𝑃 = (Poly1𝑅)
pm2mpmhm.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpmhm.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpmhm.q 𝑄 = (Poly1𝐴)
pm2mpmhm.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
pm2mpmhm.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
pm2mpmhmlem2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝐵𝑦𝐵 (𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑇𝑥)(.r𝑄)(𝑇𝑦)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑁,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝑄(𝑥,𝑦)   𝑇(𝑥,𝑦)

Proof of Theorem pm2mpmhmlem2
Dummy variables 𝑘 𝑙 𝑛 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑁 ∈ Fin)
2 simplr 768 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ Ring)
3 pm2mpmhm.p . . . . . . . 8 𝑃 = (Poly1𝑅)
4 pm2mpmhm.c . . . . . . . 8 𝐶 = (𝑁 Mat 𝑃)
53, 4pmatring 22719 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
65adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝐶 ∈ Ring)
7 simpl 482 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
87adantl 481 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
9 simpr 484 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
109adantl 481 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
11 pm2mpmhm.b . . . . . . 7 𝐵 = (Base‘𝐶)
12 eqid 2740 . . . . . . 7 (.r𝐶) = (.r𝐶)
1311, 12ringcl 20277 . . . . . 6 ((𝐶 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝐶)𝑦) ∈ 𝐵)
146, 8, 10, 13syl3anc 1371 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐶)𝑦) ∈ 𝐵)
15 eqid 2740 . . . . . 6 ( ·𝑠𝑄) = ( ·𝑠𝑄)
16 eqid 2740 . . . . . 6 (.g‘(mulGrp‘𝑄)) = (.g‘(mulGrp‘𝑄))
17 eqid 2740 . . . . . 6 (var1𝐴) = (var1𝐴)
18 pm2mpmhm.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
19 pm2mpmhm.q . . . . . 6 𝑄 = (Poly1𝐴)
20 pm2mpmhm.t . . . . . 6 𝑇 = (𝑁 pMatToMatPoly 𝑅)
213, 4, 11, 15, 16, 17, 18, 19, 20pm2mpfval 22823 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(.r𝐶)𝑦) ∈ 𝐵) → (𝑇‘(𝑥(.r𝐶)𝑦)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
221, 2, 14, 21syl3anc 1371 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(.r𝐶)𝑦)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
233, 4, 11, 18decpmatmul 22799 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑘) = (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))))
2423ad4ant234 1175 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑘) = (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))))
2524oveq1d 7463 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) = ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))
2625mpteq2dva 5266 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) = (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))
2726oveq2d 7464 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
28 eqid 2740 . . . . . . . 8 (Base‘𝑄) = (Base‘𝑄)
2918matring 22470 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
3029ad2antrr 725 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ Ring)
31 eqid 2740 . . . . . . . 8 (Base‘𝐴) = (Base‘𝐴)
32 eqid 2740 . . . . . . . 8 (0g𝐴) = (0g𝐴)
33 ringcmn 20305 . . . . . . . . . . . 12 (𝐴 ∈ Ring → 𝐴 ∈ CMnd)
3429, 33syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ CMnd)
3534ad3antrrr 729 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ CMnd)
36 fzfid 14024 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
3730ad2antrr 725 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝐴 ∈ Ring)
38 simp-5r 785 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
398ad3antrrr 729 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑥𝐵)
40 elfznn0 13677 . . . . . . . . . . . . . 14 (𝑧 ∈ (0...𝑘) → 𝑧 ∈ ℕ0)
4140adantl 481 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑧 ∈ ℕ0)
423, 4, 11, 18, 31decpmatcl 22794 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑧 ∈ ℕ0) → (𝑥 decompPMat 𝑧) ∈ (Base‘𝐴))
4338, 39, 41, 42syl3anc 1371 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑥 decompPMat 𝑧) ∈ (Base‘𝐴))
4410ad3antrrr 729 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑦𝐵)
45 fznn0sub 13616 . . . . . . . . . . . . . 14 (𝑧 ∈ (0...𝑘) → (𝑘𝑧) ∈ ℕ0)
4645adantl 481 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑘𝑧) ∈ ℕ0)
473, 4, 11, 18, 31decpmatcl 22794 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦𝐵 ∧ (𝑘𝑧) ∈ ℕ0) → (𝑦 decompPMat (𝑘𝑧)) ∈ (Base‘𝐴))
4838, 44, 46, 47syl3anc 1371 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑦 decompPMat (𝑘𝑧)) ∈ (Base‘𝐴))
49 eqid 2740 . . . . . . . . . . . . 13 (.r𝐴) = (.r𝐴)
5031, 49ringcl 20277 . . . . . . . . . . . 12 ((𝐴 ∈ Ring ∧ (𝑥 decompPMat 𝑧) ∈ (Base‘𝐴) ∧ (𝑦 decompPMat (𝑘𝑧)) ∈ (Base‘𝐴)) → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
5137, 43, 48, 50syl3anc 1371 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
5251ralrimiva 3152 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ∀𝑧 ∈ (0...𝑘)((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
5331, 35, 36, 52gsummptcl 20009 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘𝐴))
5453ralrimiva 3152 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘𝐴))
553, 4, 11, 18, 49, 32decpmatmulsumfsupp 22800 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))) finSupp (0g𝐴))
5655adantr 480 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))) finSupp (0g𝐴))
57 simpr 484 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
5819, 28, 17, 16, 30, 31, 15, 32, 54, 56, 57gsummoncoe1 22333 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = 𝑛 / 𝑘(𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))))
59 csbov2g 7496 . . . . . . . . 9 (𝑛 ∈ ℕ0𝑛 / 𝑘(𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) = (𝐴 Σg 𝑛 / 𝑘(𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))))
60 id 22 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
61 oveq2 7456 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (0...𝑘) = (0...𝑛))
62 oveq1 7455 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝑘𝑧) = (𝑛𝑧))
6362oveq2d 7464 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝑦 decompPMat (𝑘𝑧)) = (𝑦 decompPMat (𝑛𝑧)))
6463oveq2d 7464 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) = ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))
6561, 64mpteq12dv 5257 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))) = (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))))
6665adantl 481 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑘 = 𝑛) → (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))) = (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))))
6760, 66csbied 3959 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 / 𝑘(𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))) = (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))))
6867oveq2d 7464 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (𝐴 Σg 𝑛 / 𝑘(𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) = (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))))
6959, 68eqtrd 2780 . . . . . . . 8 (𝑛 ∈ ℕ0𝑛 / 𝑘(𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) = (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))))
7069adantl 481 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑛 / 𝑘(𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) = (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))))
71 eqidd 2741 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)))))) = (𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)))))))
72 oveq2 7456 . . . . . . . . . . . 12 (𝑟 = 𝑛 → (0...𝑟) = (0...𝑛))
73 fvoveq1 7471 . . . . . . . . . . . . 13 (𝑟 = 𝑛 → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))
7473oveq2d 7464 . . . . . . . . . . . 12 (𝑟 = 𝑛 → (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))) = (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))
7572, 74mpteq12dv 5257 . . . . . . . . . . 11 (𝑟 = 𝑛 → (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))))
7675oveq2d 7464 . . . . . . . . . 10 (𝑟 = 𝑛 → (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))) = (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))))
7776adantl 481 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑟 = 𝑛) → (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))) = (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))))
78 ovexd 7483 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))) ∈ V)
7971, 77, 57, 78fvmptd 7036 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))))‘𝑛) = (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))))
80 eqid 2740 . . . . . . . . . 10 (0g𝑄) = (0g𝑄)
8119ply1ring 22270 . . . . . . . . . . . . 13 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
8229, 81syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring)
83 ringcmn 20305 . . . . . . . . . . . 12 (𝑄 ∈ Ring → 𝑄 ∈ CMnd)
8482, 83syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ CMnd)
8584ad2antrr 725 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑄 ∈ CMnd)
86 nn0ex 12559 . . . . . . . . . . 11 0 ∈ V
8786a1i 11 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ℕ0 ∈ V)
887anim2i 616 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝐵))
89 df-3an 1089 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝐵))
9088, 89sylibr 234 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵))
9190adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵))
923, 4, 11, 15, 16, 17, 18, 19, 28pm2mpghmlem1 22840 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
9391, 92sylan 579 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
9493fmpttd 7149 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
953, 4, 11, 15, 16, 17, 18, 19pm2mpghmlem2 22839 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
9691, 95syl 17 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
9728, 80, 85, 87, 94, 96gsumcl 19957 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
989anim2i 616 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐵))
99 df-3an 1089 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐵))
10098, 99sylibr 234 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
101100adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
1023, 4, 11, 15, 16, 17, 18, 19, 28pm2mpghmlem1 22840 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
103101, 102sylan 579 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
104103fmpttd 7149 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
1051, 2, 103jca 1128 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
106105adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
1073, 4, 11, 15, 16, 17, 18, 19pm2mpghmlem2 22839 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
108106, 107syl 17 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
10928, 80, 85, 87, 104, 108gsumcl 19957 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
110 eqid 2740 . . . . . . . . . . 11 (.r𝑄) = (.r𝑄)
11119, 110, 49, 28coe1mul 22294 . . . . . . . . . 10 ((𝐴 ∈ Ring ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄) ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄)) → (coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))) = (𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)))))))
112111fveq1d 6922 . . . . . . . . 9 ((𝐴 ∈ Ring ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄) ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄)) → ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛) = ((𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))))‘𝑛))
11330, 97, 109, 112syl3anc 1371 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛) = ((𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))))‘𝑛))
114 oveq2 7456 . . . . . . . . . . . 12 (𝑧 = 𝑙 → (𝑥 decompPMat 𝑧) = (𝑥 decompPMat 𝑙))
115 oveq2 7456 . . . . . . . . . . . . 13 (𝑧 = 𝑙 → (𝑛𝑧) = (𝑛𝑙))
116115oveq2d 7464 . . . . . . . . . . . 12 (𝑧 = 𝑙 → (𝑦 decompPMat (𝑛𝑧)) = (𝑦 decompPMat (𝑛𝑙)))
117114, 116oveq12d 7466 . . . . . . . . . . 11 (𝑧 = 𝑙 → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))) = ((𝑥 decompPMat 𝑙)(.r𝐴)(𝑦 decompPMat (𝑛𝑙))))
118117cbvmptv 5279 . . . . . . . . . 10 (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑙)(.r𝐴)(𝑦 decompPMat (𝑛𝑙))))
11929ad3antrrr 729 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝐴 ∈ Ring)
120 simp-5r 785 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
1218ad3antrrr 729 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → 𝑥𝐵)
122 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
1233, 4, 11, 18, 31decpmatcl 22794 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑘 ∈ ℕ0) → (𝑥 decompPMat 𝑘) ∈ (Base‘𝐴))
124120, 121, 122, 123syl3anc 1371 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → (𝑥 decompPMat 𝑘) ∈ (Base‘𝐴))
125124ralrimiva 3152 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ∀𝑘 ∈ ℕ0 (𝑥 decompPMat 𝑘) ∈ (Base‘𝐴))
1262, 8jca 511 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑅 ∈ Ring ∧ 𝑥𝐵))
127126ad2antrr 725 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑅 ∈ Ring ∧ 𝑥𝐵))
1283, 4, 11, 18, 32decpmatfsupp 22796 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑥 decompPMat 𝑘)) finSupp (0g𝐴))
129127, 128syl 17 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑘 ∈ ℕ0 ↦ (𝑥 decompPMat 𝑘)) finSupp (0g𝐴))
130 elfznn0 13677 . . . . . . . . . . . . . . 15 (𝑙 ∈ (0...𝑛) → 𝑙 ∈ ℕ0)
131130adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑙 ∈ ℕ0)
13219, 28, 17, 16, 119, 31, 15, 32, 125, 129, 131gsummoncoe1 22333 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙) = 𝑙 / 𝑘(𝑥 decompPMat 𝑘))
133 csbov2g 7496 . . . . . . . . . . . . . . 15 (𝑙 ∈ (0...𝑛) → 𝑙 / 𝑘(𝑥 decompPMat 𝑘) = (𝑥 decompPMat 𝑙 / 𝑘𝑘))
134 csbvarg 4457 . . . . . . . . . . . . . . . 16 (𝑙 ∈ (0...𝑛) → 𝑙 / 𝑘𝑘 = 𝑙)
135134oveq2d 7464 . . . . . . . . . . . . . . 15 (𝑙 ∈ (0...𝑛) → (𝑥 decompPMat 𝑙 / 𝑘𝑘) = (𝑥 decompPMat 𝑙))
136133, 135eqtrd 2780 . . . . . . . . . . . . . 14 (𝑙 ∈ (0...𝑛) → 𝑙 / 𝑘(𝑥 decompPMat 𝑘) = (𝑥 decompPMat 𝑙))
137136adantl 481 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑙 / 𝑘(𝑥 decompPMat 𝑘) = (𝑥 decompPMat 𝑙))
138132, 137eqtr2d 2781 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑥 decompPMat 𝑙) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙))
13910ad3antrrr 729 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → 𝑦𝐵)
1403, 4, 11, 18, 31decpmatcl 22794 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑘 ∈ ℕ0) → (𝑦 decompPMat 𝑘) ∈ (Base‘𝐴))
141120, 139, 122, 140syl3anc 1371 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → (𝑦 decompPMat 𝑘) ∈ (Base‘𝐴))
142141ralrimiva 3152 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ∀𝑘 ∈ ℕ0 (𝑦 decompPMat 𝑘) ∈ (Base‘𝐴))
1432, 10jca 511 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑅 ∈ Ring ∧ 𝑦𝐵))
144143ad2antrr 725 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑅 ∈ Ring ∧ 𝑦𝐵))
1453, 4, 11, 18, 32decpmatfsupp 22796 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑦 decompPMat 𝑘)) finSupp (0g𝐴))
146144, 145syl 17 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑘 ∈ ℕ0 ↦ (𝑦 decompPMat 𝑘)) finSupp (0g𝐴))
147 fznn0sub 13616 . . . . . . . . . . . . . . 15 (𝑙 ∈ (0...𝑛) → (𝑛𝑙) ∈ ℕ0)
148147adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑛𝑙) ∈ ℕ0)
14919, 28, 17, 16, 119, 31, 15, 32, 142, 146, 148gsummoncoe1 22333 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)) = (𝑛𝑙) / 𝑘(𝑦 decompPMat 𝑘))
150 ovex 7481 . . . . . . . . . . . . . 14 (𝑛𝑙) ∈ V
151 csbov2g 7496 . . . . . . . . . . . . . 14 ((𝑛𝑙) ∈ V → (𝑛𝑙) / 𝑘(𝑦 decompPMat 𝑘) = (𝑦 decompPMat (𝑛𝑙) / 𝑘𝑘))
152150, 151mp1i 13 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑛𝑙) / 𝑘(𝑦 decompPMat 𝑘) = (𝑦 decompPMat (𝑛𝑙) / 𝑘𝑘))
153 csbvarg 4457 . . . . . . . . . . . . . . 15 ((𝑛𝑙) ∈ V → (𝑛𝑙) / 𝑘𝑘 = (𝑛𝑙))
154150, 153mp1i 13 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑛𝑙) / 𝑘𝑘 = (𝑛𝑙))
155154oveq2d 7464 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑦 decompPMat (𝑛𝑙) / 𝑘𝑘) = (𝑦 decompPMat (𝑛𝑙)))
156149, 152, 1553eqtrrd 2785 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑦 decompPMat (𝑛𝑙)) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))
157138, 156oveq12d 7466 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((𝑥 decompPMat 𝑙)(.r𝐴)(𝑦 decompPMat (𝑛𝑙))) = (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))
158157mpteq2dva 5266 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑙 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑙)(.r𝐴)(𝑦 decompPMat (𝑛𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))))
159118, 158eqtrid 2792 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))) = (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))))
160159oveq2d 7464 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))) = (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))))
16179, 113, 1603eqtr4rd 2791 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛))
16258, 70, 1613eqtrd 2784 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛))
163162ralrimiva 3152 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑛 ∈ ℕ0 ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛))
16429adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝐴 ∈ Ring)
16584adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑄 ∈ CMnd)
16686a1i 11 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ℕ0 ∈ V)
16719ply1lmod 22274 . . . . . . . . . . 11 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
16829, 167syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod)
169168ad2antrr 725 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑄 ∈ LMod)
17034ad2antrr 725 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ CMnd)
171 fzfid 14024 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
17229ad3antrrr 729 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝐴 ∈ Ring)
173 simp-4r 783 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
174 simplrl 776 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑥𝐵)
175174adantr 480 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑥𝐵)
17640adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑧 ∈ ℕ0)
177173, 175, 176, 42syl3anc 1371 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑥 decompPMat 𝑧) ∈ (Base‘𝐴))
178 simplrr 777 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑦𝐵)
179178adantr 480 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑦𝐵)
18045adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑘𝑧) ∈ ℕ0)
181173, 179, 180, 47syl3anc 1371 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑦 decompPMat (𝑘𝑧)) ∈ (Base‘𝐴))
182172, 177, 181, 50syl3anc 1371 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
183182ralrimiva 3152 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ∀𝑧 ∈ (0...𝑘)((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
18431, 170, 171, 183gsummptcl 20009 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘𝐴))
18529ad2antrr 725 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ Ring)
18619ply1sca 22275 . . . . . . . . . . . . 13 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
187185, 186syl 17 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 = (Scalar‘𝑄))
188187eqcomd 2746 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (Scalar‘𝑄) = 𝐴)
189188fveq2d 6924 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (Base‘(Scalar‘𝑄)) = (Base‘𝐴))
190184, 189eleqtrrd 2847 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘(Scalar‘𝑄)))
191 eqid 2740 . . . . . . . . . . 11 (mulGrp‘𝑄) = (mulGrp‘𝑄)
19219, 17, 191, 16, 28ply1moncl 22295 . . . . . . . . . 10 ((𝐴 ∈ Ring ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)) ∈ (Base‘𝑄))
193185, 192sylancom 587 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)) ∈ (Base‘𝑄))
194 eqid 2740 . . . . . . . . . 10 (Scalar‘𝑄) = (Scalar‘𝑄)
195 eqid 2740 . . . . . . . . . 10 (Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄))
19628, 194, 15, 195lmodvscl 20898 . . . . . . . . 9 ((𝑄 ∈ LMod ∧ (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)) ∈ (Base‘𝑄)) → ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
197169, 190, 193, 196syl3anc 1371 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
198197fmpttd 7149 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
1993, 4, 11, 15, 16, 17, 18, 19, 28, 20pm2mpmhmlem1 22845 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
20028, 80, 165, 166, 198, 199gsumcl 19957 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
20182adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑄 ∈ Ring)
20290, 92sylan 579 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
203202fmpttd 7149 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
20490, 95syl 17 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
20528, 80, 165, 166, 203, 204gsumcl 19957 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
206100, 102sylan 579 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
207206fmpttd 7149 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
2081, 2, 10, 107syl3anc 1371 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
20928, 80, 165, 166, 207, 208gsumcl 19957 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
21028, 110ringcl 20277 . . . . . . 7 ((𝑄 ∈ Ring ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄) ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄)) → ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))) ∈ (Base‘𝑄))
211201, 205, 209, 210syl3anc 1371 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))) ∈ (Base‘𝑄))
212 eqid 2740 . . . . . . 7 (coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))) = (coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
213 eqid 2740 . . . . . . 7 (coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))) = (coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))
21419, 28, 212, 213ply1coe1eq 22325 . . . . . 6 ((𝐴 ∈ Ring ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄) ∧ ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))) ∈ (Base‘𝑄)) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛) ↔ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))))
215164, 200, 211, 214syl3anc 1371 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛) ↔ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))))
216163, 215mpbid 232 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))
21722, 27, 2163eqtrd 2784 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))
2183, 4, 11, 15, 16, 17, 18, 19, 20pm2mpfval 22823 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑇𝑥) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
2191, 2, 8, 218syl3anc 1371 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑥) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
2203, 4, 11, 15, 16, 17, 18, 19, 20pm2mpfval 22823 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑇𝑦) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
2211, 2, 10, 220syl3anc 1371 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑦) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
222219, 221oveq12d 7466 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑇𝑥)(.r𝑄)(𝑇𝑦)) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))
223217, 222eqtr4d 2783 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑇𝑥)(.r𝑄)(𝑇𝑦)))
224223ralrimivva 3208 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝐵𝑦𝐵 (𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑇𝑥)(.r𝑄)(𝑇𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  csb 3921   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  Fincfn 9003   finSupp cfsupp 9431  0cc0 11184  cmin 11520  0cn0 12553  ...cfz 13567  Basecbs 17258  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499   Σg cgsu 17500  .gcmg 19107  CMndccmn 19822  mulGrpcmgp 20161  Ringcrg 20260  LModclmod 20880  var1cv1 22198  Poly1cpl1 22199  coe1cco1 22200   Mat cmat 22432   decompPMat cdecpmat 22789   pMatToMatPoly cpm2mp 22819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-mamu 22416  df-mat 22433  df-decpmat 22790  df-pm2mp 22820
This theorem is referenced by:  pm2mpmhm  22847
  Copyright terms: Public domain W3C validator