MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpmhmlem2 Structured version   Visualization version   GIF version

Theorem pm2mpmhmlem2 22713
Description: Lemma 2 for pm2mpmhm 22714. (Contributed by AV, 22-Oct-2019.) (Revised by AV, 6-Dec-2019.)
Hypotheses
Ref Expression
pm2mpmhm.p 𝑃 = (Poly1𝑅)
pm2mpmhm.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpmhm.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpmhm.q 𝑄 = (Poly1𝐴)
pm2mpmhm.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
pm2mpmhm.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
pm2mpmhmlem2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝐵𝑦𝐵 (𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑇𝑥)(.r𝑄)(𝑇𝑦)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑁,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝑄(𝑥,𝑦)   𝑇(𝑥,𝑦)

Proof of Theorem pm2mpmhmlem2
Dummy variables 𝑘 𝑙 𝑛 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑁 ∈ Fin)
2 simplr 768 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ Ring)
3 pm2mpmhm.p . . . . . . . 8 𝑃 = (Poly1𝑅)
4 pm2mpmhm.c . . . . . . . 8 𝐶 = (𝑁 Mat 𝑃)
53, 4pmatring 22586 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
65adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝐶 ∈ Ring)
7 simpl 482 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
87adantl 481 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
9 simpr 484 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
109adantl 481 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
11 pm2mpmhm.b . . . . . . 7 𝐵 = (Base‘𝐶)
12 eqid 2730 . . . . . . 7 (.r𝐶) = (.r𝐶)
1311, 12ringcl 20166 . . . . . 6 ((𝐶 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝐶)𝑦) ∈ 𝐵)
146, 8, 10, 13syl3anc 1373 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐶)𝑦) ∈ 𝐵)
15 eqid 2730 . . . . . 6 ( ·𝑠𝑄) = ( ·𝑠𝑄)
16 eqid 2730 . . . . . 6 (.g‘(mulGrp‘𝑄)) = (.g‘(mulGrp‘𝑄))
17 eqid 2730 . . . . . 6 (var1𝐴) = (var1𝐴)
18 pm2mpmhm.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
19 pm2mpmhm.q . . . . . 6 𝑄 = (Poly1𝐴)
20 pm2mpmhm.t . . . . . 6 𝑇 = (𝑁 pMatToMatPoly 𝑅)
213, 4, 11, 15, 16, 17, 18, 19, 20pm2mpfval 22690 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(.r𝐶)𝑦) ∈ 𝐵) → (𝑇‘(𝑥(.r𝐶)𝑦)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
221, 2, 14, 21syl3anc 1373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(.r𝐶)𝑦)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
233, 4, 11, 18decpmatmul 22666 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑘) = (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))))
2423ad4ant234 1176 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑘) = (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))))
2524oveq1d 7405 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) = ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))
2625mpteq2dva 5203 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) = (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))
2726oveq2d 7406 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
28 eqid 2730 . . . . . . . 8 (Base‘𝑄) = (Base‘𝑄)
2918matring 22337 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
3029ad2antrr 726 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ Ring)
31 eqid 2730 . . . . . . . 8 (Base‘𝐴) = (Base‘𝐴)
32 eqid 2730 . . . . . . . 8 (0g𝐴) = (0g𝐴)
33 ringcmn 20198 . . . . . . . . . . . 12 (𝐴 ∈ Ring → 𝐴 ∈ CMnd)
3429, 33syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ CMnd)
3534ad3antrrr 730 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ CMnd)
36 fzfid 13945 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
3730ad2antrr 726 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝐴 ∈ Ring)
38 simp-5r 785 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
398ad3antrrr 730 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑥𝐵)
40 elfznn0 13588 . . . . . . . . . . . . . 14 (𝑧 ∈ (0...𝑘) → 𝑧 ∈ ℕ0)
4140adantl 481 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑧 ∈ ℕ0)
423, 4, 11, 18, 31decpmatcl 22661 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑧 ∈ ℕ0) → (𝑥 decompPMat 𝑧) ∈ (Base‘𝐴))
4338, 39, 41, 42syl3anc 1373 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑥 decompPMat 𝑧) ∈ (Base‘𝐴))
4410ad3antrrr 730 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑦𝐵)
45 fznn0sub 13524 . . . . . . . . . . . . . 14 (𝑧 ∈ (0...𝑘) → (𝑘𝑧) ∈ ℕ0)
4645adantl 481 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑘𝑧) ∈ ℕ0)
473, 4, 11, 18, 31decpmatcl 22661 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦𝐵 ∧ (𝑘𝑧) ∈ ℕ0) → (𝑦 decompPMat (𝑘𝑧)) ∈ (Base‘𝐴))
4838, 44, 46, 47syl3anc 1373 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑦 decompPMat (𝑘𝑧)) ∈ (Base‘𝐴))
49 eqid 2730 . . . . . . . . . . . . 13 (.r𝐴) = (.r𝐴)
5031, 49ringcl 20166 . . . . . . . . . . . 12 ((𝐴 ∈ Ring ∧ (𝑥 decompPMat 𝑧) ∈ (Base‘𝐴) ∧ (𝑦 decompPMat (𝑘𝑧)) ∈ (Base‘𝐴)) → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
5137, 43, 48, 50syl3anc 1373 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
5251ralrimiva 3126 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ∀𝑧 ∈ (0...𝑘)((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
5331, 35, 36, 52gsummptcl 19904 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘𝐴))
5453ralrimiva 3126 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘𝐴))
553, 4, 11, 18, 49, 32decpmatmulsumfsupp 22667 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))) finSupp (0g𝐴))
5655adantr 480 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))) finSupp (0g𝐴))
57 simpr 484 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
5819, 28, 17, 16, 30, 31, 15, 32, 54, 56, 57gsummoncoe1 22202 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = 𝑛 / 𝑘(𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))))
59 csbov2g 7438 . . . . . . . . 9 (𝑛 ∈ ℕ0𝑛 / 𝑘(𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) = (𝐴 Σg 𝑛 / 𝑘(𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))))
60 id 22 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
61 oveq2 7398 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (0...𝑘) = (0...𝑛))
62 oveq1 7397 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝑘𝑧) = (𝑛𝑧))
6362oveq2d 7406 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝑦 decompPMat (𝑘𝑧)) = (𝑦 decompPMat (𝑛𝑧)))
6463oveq2d 7406 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) = ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))
6561, 64mpteq12dv 5197 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))) = (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))))
6665adantl 481 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑘 = 𝑛) → (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))) = (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))))
6760, 66csbied 3901 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 / 𝑘(𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))) = (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))))
6867oveq2d 7406 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (𝐴 Σg 𝑛 / 𝑘(𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) = (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))))
6959, 68eqtrd 2765 . . . . . . . 8 (𝑛 ∈ ℕ0𝑛 / 𝑘(𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) = (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))))
7069adantl 481 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑛 / 𝑘(𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) = (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))))
71 eqidd 2731 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)))))) = (𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)))))))
72 oveq2 7398 . . . . . . . . . . . 12 (𝑟 = 𝑛 → (0...𝑟) = (0...𝑛))
73 fvoveq1 7413 . . . . . . . . . . . . 13 (𝑟 = 𝑛 → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))
7473oveq2d 7406 . . . . . . . . . . . 12 (𝑟 = 𝑛 → (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))) = (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))
7572, 74mpteq12dv 5197 . . . . . . . . . . 11 (𝑟 = 𝑛 → (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))))
7675oveq2d 7406 . . . . . . . . . 10 (𝑟 = 𝑛 → (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))) = (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))))
7776adantl 481 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑟 = 𝑛) → (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))) = (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))))
78 ovexd 7425 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))) ∈ V)
7971, 77, 57, 78fvmptd 6978 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))))‘𝑛) = (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))))
80 eqid 2730 . . . . . . . . . 10 (0g𝑄) = (0g𝑄)
8119ply1ring 22139 . . . . . . . . . . . . 13 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
8229, 81syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring)
83 ringcmn 20198 . . . . . . . . . . . 12 (𝑄 ∈ Ring → 𝑄 ∈ CMnd)
8482, 83syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ CMnd)
8584ad2antrr 726 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑄 ∈ CMnd)
86 nn0ex 12455 . . . . . . . . . . 11 0 ∈ V
8786a1i 11 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ℕ0 ∈ V)
887anim2i 617 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝐵))
89 df-3an 1088 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝐵))
9088, 89sylibr 234 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵))
9190adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵))
923, 4, 11, 15, 16, 17, 18, 19, 28pm2mpghmlem1 22707 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
9391, 92sylan 580 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
9493fmpttd 7090 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
953, 4, 11, 15, 16, 17, 18, 19pm2mpghmlem2 22706 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
9691, 95syl 17 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
9728, 80, 85, 87, 94, 96gsumcl 19852 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
989anim2i 617 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐵))
99 df-3an 1088 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐵))
10098, 99sylibr 234 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
101100adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
1023, 4, 11, 15, 16, 17, 18, 19, 28pm2mpghmlem1 22707 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
103101, 102sylan 580 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
104103fmpttd 7090 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
1051, 2, 103jca 1128 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
106105adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
1073, 4, 11, 15, 16, 17, 18, 19pm2mpghmlem2 22706 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
108106, 107syl 17 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
10928, 80, 85, 87, 104, 108gsumcl 19852 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
110 eqid 2730 . . . . . . . . . . 11 (.r𝑄) = (.r𝑄)
11119, 110, 49, 28coe1mul 22163 . . . . . . . . . 10 ((𝐴 ∈ Ring ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄) ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄)) → (coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))) = (𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)))))))
112111fveq1d 6863 . . . . . . . . 9 ((𝐴 ∈ Ring ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄) ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄)) → ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛) = ((𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))))‘𝑛))
11330, 97, 109, 112syl3anc 1373 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛) = ((𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))))‘𝑛))
114 oveq2 7398 . . . . . . . . . . . 12 (𝑧 = 𝑙 → (𝑥 decompPMat 𝑧) = (𝑥 decompPMat 𝑙))
115 oveq2 7398 . . . . . . . . . . . . 13 (𝑧 = 𝑙 → (𝑛𝑧) = (𝑛𝑙))
116115oveq2d 7406 . . . . . . . . . . . 12 (𝑧 = 𝑙 → (𝑦 decompPMat (𝑛𝑧)) = (𝑦 decompPMat (𝑛𝑙)))
117114, 116oveq12d 7408 . . . . . . . . . . 11 (𝑧 = 𝑙 → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))) = ((𝑥 decompPMat 𝑙)(.r𝐴)(𝑦 decompPMat (𝑛𝑙))))
118117cbvmptv 5214 . . . . . . . . . 10 (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑙)(.r𝐴)(𝑦 decompPMat (𝑛𝑙))))
11929ad3antrrr 730 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝐴 ∈ Ring)
120 simp-5r 785 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
1218ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → 𝑥𝐵)
122 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
1233, 4, 11, 18, 31decpmatcl 22661 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑘 ∈ ℕ0) → (𝑥 decompPMat 𝑘) ∈ (Base‘𝐴))
124120, 121, 122, 123syl3anc 1373 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → (𝑥 decompPMat 𝑘) ∈ (Base‘𝐴))
125124ralrimiva 3126 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ∀𝑘 ∈ ℕ0 (𝑥 decompPMat 𝑘) ∈ (Base‘𝐴))
1262, 8jca 511 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑅 ∈ Ring ∧ 𝑥𝐵))
127126ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑅 ∈ Ring ∧ 𝑥𝐵))
1283, 4, 11, 18, 32decpmatfsupp 22663 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑥 decompPMat 𝑘)) finSupp (0g𝐴))
129127, 128syl 17 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑘 ∈ ℕ0 ↦ (𝑥 decompPMat 𝑘)) finSupp (0g𝐴))
130 elfznn0 13588 . . . . . . . . . . . . . . 15 (𝑙 ∈ (0...𝑛) → 𝑙 ∈ ℕ0)
131130adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑙 ∈ ℕ0)
13219, 28, 17, 16, 119, 31, 15, 32, 125, 129, 131gsummoncoe1 22202 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙) = 𝑙 / 𝑘(𝑥 decompPMat 𝑘))
133 csbov2g 7438 . . . . . . . . . . . . . . 15 (𝑙 ∈ (0...𝑛) → 𝑙 / 𝑘(𝑥 decompPMat 𝑘) = (𝑥 decompPMat 𝑙 / 𝑘𝑘))
134 csbvarg 4400 . . . . . . . . . . . . . . . 16 (𝑙 ∈ (0...𝑛) → 𝑙 / 𝑘𝑘 = 𝑙)
135134oveq2d 7406 . . . . . . . . . . . . . . 15 (𝑙 ∈ (0...𝑛) → (𝑥 decompPMat 𝑙 / 𝑘𝑘) = (𝑥 decompPMat 𝑙))
136133, 135eqtrd 2765 . . . . . . . . . . . . . 14 (𝑙 ∈ (0...𝑛) → 𝑙 / 𝑘(𝑥 decompPMat 𝑘) = (𝑥 decompPMat 𝑙))
137136adantl 481 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑙 / 𝑘(𝑥 decompPMat 𝑘) = (𝑥 decompPMat 𝑙))
138132, 137eqtr2d 2766 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑥 decompPMat 𝑙) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙))
13910ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → 𝑦𝐵)
1403, 4, 11, 18, 31decpmatcl 22661 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑘 ∈ ℕ0) → (𝑦 decompPMat 𝑘) ∈ (Base‘𝐴))
141120, 139, 122, 140syl3anc 1373 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → (𝑦 decompPMat 𝑘) ∈ (Base‘𝐴))
142141ralrimiva 3126 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ∀𝑘 ∈ ℕ0 (𝑦 decompPMat 𝑘) ∈ (Base‘𝐴))
1432, 10jca 511 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑅 ∈ Ring ∧ 𝑦𝐵))
144143ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑅 ∈ Ring ∧ 𝑦𝐵))
1453, 4, 11, 18, 32decpmatfsupp 22663 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑦 decompPMat 𝑘)) finSupp (0g𝐴))
146144, 145syl 17 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑘 ∈ ℕ0 ↦ (𝑦 decompPMat 𝑘)) finSupp (0g𝐴))
147 fznn0sub 13524 . . . . . . . . . . . . . . 15 (𝑙 ∈ (0...𝑛) → (𝑛𝑙) ∈ ℕ0)
148147adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑛𝑙) ∈ ℕ0)
14919, 28, 17, 16, 119, 31, 15, 32, 142, 146, 148gsummoncoe1 22202 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)) = (𝑛𝑙) / 𝑘(𝑦 decompPMat 𝑘))
150 ovex 7423 . . . . . . . . . . . . . 14 (𝑛𝑙) ∈ V
151 csbov2g 7438 . . . . . . . . . . . . . 14 ((𝑛𝑙) ∈ V → (𝑛𝑙) / 𝑘(𝑦 decompPMat 𝑘) = (𝑦 decompPMat (𝑛𝑙) / 𝑘𝑘))
152150, 151mp1i 13 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑛𝑙) / 𝑘(𝑦 decompPMat 𝑘) = (𝑦 decompPMat (𝑛𝑙) / 𝑘𝑘))
153 csbvarg 4400 . . . . . . . . . . . . . . 15 ((𝑛𝑙) ∈ V → (𝑛𝑙) / 𝑘𝑘 = (𝑛𝑙))
154150, 153mp1i 13 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑛𝑙) / 𝑘𝑘 = (𝑛𝑙))
155154oveq2d 7406 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑦 decompPMat (𝑛𝑙) / 𝑘𝑘) = (𝑦 decompPMat (𝑛𝑙)))
156149, 152, 1553eqtrrd 2770 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑦 decompPMat (𝑛𝑙)) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))
157138, 156oveq12d 7408 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((𝑥 decompPMat 𝑙)(.r𝐴)(𝑦 decompPMat (𝑛𝑙))) = (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))
158157mpteq2dva 5203 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑙 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑙)(.r𝐴)(𝑦 decompPMat (𝑛𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))))
159118, 158eqtrid 2777 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))) = (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))))
160159oveq2d 7406 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))) = (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))))
16179, 113, 1603eqtr4rd 2776 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛))
16258, 70, 1613eqtrd 2769 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛))
163162ralrimiva 3126 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑛 ∈ ℕ0 ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛))
16429adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝐴 ∈ Ring)
16584adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑄 ∈ CMnd)
16686a1i 11 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ℕ0 ∈ V)
16719ply1lmod 22143 . . . . . . . . . . 11 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
16829, 167syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod)
169168ad2antrr 726 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑄 ∈ LMod)
17034ad2antrr 726 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ CMnd)
171 fzfid 13945 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
17229ad3antrrr 730 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝐴 ∈ Ring)
173 simp-4r 783 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
174 simplrl 776 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑥𝐵)
175174adantr 480 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑥𝐵)
17640adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑧 ∈ ℕ0)
177173, 175, 176, 42syl3anc 1373 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑥 decompPMat 𝑧) ∈ (Base‘𝐴))
178 simplrr 777 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑦𝐵)
179178adantr 480 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑦𝐵)
18045adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑘𝑧) ∈ ℕ0)
181173, 179, 180, 47syl3anc 1373 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑦 decompPMat (𝑘𝑧)) ∈ (Base‘𝐴))
182172, 177, 181, 50syl3anc 1373 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
183182ralrimiva 3126 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ∀𝑧 ∈ (0...𝑘)((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
18431, 170, 171, 183gsummptcl 19904 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘𝐴))
18529ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ Ring)
18619ply1sca 22144 . . . . . . . . . . . . 13 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
187185, 186syl 17 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 = (Scalar‘𝑄))
188187eqcomd 2736 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (Scalar‘𝑄) = 𝐴)
189188fveq2d 6865 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (Base‘(Scalar‘𝑄)) = (Base‘𝐴))
190184, 189eleqtrrd 2832 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘(Scalar‘𝑄)))
191 eqid 2730 . . . . . . . . . . 11 (mulGrp‘𝑄) = (mulGrp‘𝑄)
19219, 17, 191, 16, 28ply1moncl 22164 . . . . . . . . . 10 ((𝐴 ∈ Ring ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)) ∈ (Base‘𝑄))
193185, 192sylancom 588 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)) ∈ (Base‘𝑄))
194 eqid 2730 . . . . . . . . . 10 (Scalar‘𝑄) = (Scalar‘𝑄)
195 eqid 2730 . . . . . . . . . 10 (Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄))
19628, 194, 15, 195lmodvscl 20791 . . . . . . . . 9 ((𝑄 ∈ LMod ∧ (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)) ∈ (Base‘𝑄)) → ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
197169, 190, 193, 196syl3anc 1373 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
198197fmpttd 7090 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
1993, 4, 11, 15, 16, 17, 18, 19, 28, 20pm2mpmhmlem1 22712 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
20028, 80, 165, 166, 198, 199gsumcl 19852 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
20182adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑄 ∈ Ring)
20290, 92sylan 580 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
203202fmpttd 7090 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
20490, 95syl 17 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
20528, 80, 165, 166, 203, 204gsumcl 19852 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
206100, 102sylan 580 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
207206fmpttd 7090 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
2081, 2, 10, 107syl3anc 1373 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
20928, 80, 165, 166, 207, 208gsumcl 19852 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
21028, 110ringcl 20166 . . . . . . 7 ((𝑄 ∈ Ring ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄) ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄)) → ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))) ∈ (Base‘𝑄))
211201, 205, 209, 210syl3anc 1373 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))) ∈ (Base‘𝑄))
212 eqid 2730 . . . . . . 7 (coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))) = (coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
213 eqid 2730 . . . . . . 7 (coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))) = (coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))
21419, 28, 212, 213ply1coe1eq 22194 . . . . . 6 ((𝐴 ∈ Ring ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄) ∧ ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))) ∈ (Base‘𝑄)) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛) ↔ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))))
215164, 200, 211, 214syl3anc 1373 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛) ↔ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))))
216163, 215mpbid 232 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))
21722, 27, 2163eqtrd 2769 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))
2183, 4, 11, 15, 16, 17, 18, 19, 20pm2mpfval 22690 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑇𝑥) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
2191, 2, 8, 218syl3anc 1373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑥) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
2203, 4, 11, 15, 16, 17, 18, 19, 20pm2mpfval 22690 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑇𝑦) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
2211, 2, 10, 220syl3anc 1373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑦) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
222219, 221oveq12d 7408 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑇𝑥)(.r𝑄)(𝑇𝑦)) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))
223217, 222eqtr4d 2768 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑇𝑥)(.r𝑄)(𝑇𝑦)))
224223ralrimivva 3181 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝐵𝑦𝐵 (𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑇𝑥)(.r𝑄)(𝑇𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  csb 3865   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  Fincfn 8921   finSupp cfsupp 9319  0cc0 11075  cmin 11412  0cn0 12449  ...cfz 13475  Basecbs 17186  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409   Σg cgsu 17410  .gcmg 19006  CMndccmn 19717  mulGrpcmgp 20056  Ringcrg 20149  LModclmod 20773  var1cv1 22067  Poly1cpl1 22068  coe1cco1 22069   Mat cmat 22301   decompPMat cdecpmat 22656   pMatToMatPoly cpm2mp 22686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-dsmm 21648  df-frlm 21663  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-mamu 22285  df-mat 22302  df-decpmat 22657  df-pm2mp 22687
This theorem is referenced by:  pm2mpmhm  22714
  Copyright terms: Public domain W3C validator