MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpmhmlem2 Structured version   Visualization version   GIF version

Theorem pm2mpmhmlem2 22735
Description: Lemma 2 for pm2mpmhm 22736. (Contributed by AV, 22-Oct-2019.) (Revised by AV, 6-Dec-2019.)
Hypotheses
Ref Expression
pm2mpmhm.p 𝑃 = (Poly1𝑅)
pm2mpmhm.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpmhm.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpmhm.q 𝑄 = (Poly1𝐴)
pm2mpmhm.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
pm2mpmhm.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
pm2mpmhmlem2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝐵𝑦𝐵 (𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑇𝑥)(.r𝑄)(𝑇𝑦)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑁,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝑄(𝑥,𝑦)   𝑇(𝑥,𝑦)

Proof of Theorem pm2mpmhmlem2
Dummy variables 𝑘 𝑙 𝑛 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑁 ∈ Fin)
2 simplr 768 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ Ring)
3 pm2mpmhm.p . . . . . . . 8 𝑃 = (Poly1𝑅)
4 pm2mpmhm.c . . . . . . . 8 𝐶 = (𝑁 Mat 𝑃)
53, 4pmatring 22608 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
65adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝐶 ∈ Ring)
7 simpl 482 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
87adantl 481 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
9 simpr 484 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
109adantl 481 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
11 pm2mpmhm.b . . . . . . 7 𝐵 = (Base‘𝐶)
12 eqid 2731 . . . . . . 7 (.r𝐶) = (.r𝐶)
1311, 12ringcl 20169 . . . . . 6 ((𝐶 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝐶)𝑦) ∈ 𝐵)
146, 8, 10, 13syl3anc 1373 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐶)𝑦) ∈ 𝐵)
15 eqid 2731 . . . . . 6 ( ·𝑠𝑄) = ( ·𝑠𝑄)
16 eqid 2731 . . . . . 6 (.g‘(mulGrp‘𝑄)) = (.g‘(mulGrp‘𝑄))
17 eqid 2731 . . . . . 6 (var1𝐴) = (var1𝐴)
18 pm2mpmhm.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
19 pm2mpmhm.q . . . . . 6 𝑄 = (Poly1𝐴)
20 pm2mpmhm.t . . . . . 6 𝑇 = (𝑁 pMatToMatPoly 𝑅)
213, 4, 11, 15, 16, 17, 18, 19, 20pm2mpfval 22712 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(.r𝐶)𝑦) ∈ 𝐵) → (𝑇‘(𝑥(.r𝐶)𝑦)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
221, 2, 14, 21syl3anc 1373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(.r𝐶)𝑦)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
233, 4, 11, 18decpmatmul 22688 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑘) = (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))))
2423ad4ant234 1176 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑘) = (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))))
2524oveq1d 7361 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) = ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))
2625mpteq2dva 5184 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) = (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))
2726oveq2d 7362 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
28 eqid 2731 . . . . . . . 8 (Base‘𝑄) = (Base‘𝑄)
2918matring 22359 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
3029ad2antrr 726 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ Ring)
31 eqid 2731 . . . . . . . 8 (Base‘𝐴) = (Base‘𝐴)
32 eqid 2731 . . . . . . . 8 (0g𝐴) = (0g𝐴)
33 ringcmn 20201 . . . . . . . . . . . 12 (𝐴 ∈ Ring → 𝐴 ∈ CMnd)
3429, 33syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ CMnd)
3534ad3antrrr 730 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ CMnd)
36 fzfid 13880 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
3730ad2antrr 726 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝐴 ∈ Ring)
38 simp-5r 785 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
398ad3antrrr 730 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑥𝐵)
40 elfznn0 13520 . . . . . . . . . . . . . 14 (𝑧 ∈ (0...𝑘) → 𝑧 ∈ ℕ0)
4140adantl 481 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑧 ∈ ℕ0)
423, 4, 11, 18, 31decpmatcl 22683 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑧 ∈ ℕ0) → (𝑥 decompPMat 𝑧) ∈ (Base‘𝐴))
4338, 39, 41, 42syl3anc 1373 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑥 decompPMat 𝑧) ∈ (Base‘𝐴))
4410ad3antrrr 730 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑦𝐵)
45 fznn0sub 13456 . . . . . . . . . . . . . 14 (𝑧 ∈ (0...𝑘) → (𝑘𝑧) ∈ ℕ0)
4645adantl 481 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑘𝑧) ∈ ℕ0)
473, 4, 11, 18, 31decpmatcl 22683 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦𝐵 ∧ (𝑘𝑧) ∈ ℕ0) → (𝑦 decompPMat (𝑘𝑧)) ∈ (Base‘𝐴))
4838, 44, 46, 47syl3anc 1373 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑦 decompPMat (𝑘𝑧)) ∈ (Base‘𝐴))
49 eqid 2731 . . . . . . . . . . . . 13 (.r𝐴) = (.r𝐴)
5031, 49ringcl 20169 . . . . . . . . . . . 12 ((𝐴 ∈ Ring ∧ (𝑥 decompPMat 𝑧) ∈ (Base‘𝐴) ∧ (𝑦 decompPMat (𝑘𝑧)) ∈ (Base‘𝐴)) → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
5137, 43, 48, 50syl3anc 1373 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
5251ralrimiva 3124 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ∀𝑧 ∈ (0...𝑘)((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
5331, 35, 36, 52gsummptcl 19880 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘𝐴))
5453ralrimiva 3124 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘𝐴))
553, 4, 11, 18, 49, 32decpmatmulsumfsupp 22689 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))) finSupp (0g𝐴))
5655adantr 480 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))) finSupp (0g𝐴))
57 simpr 484 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
5819, 28, 17, 16, 30, 31, 15, 32, 54, 56, 57gsummoncoe1 22224 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = 𝑛 / 𝑘(𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))))
59 csbov2g 7394 . . . . . . . . 9 (𝑛 ∈ ℕ0𝑛 / 𝑘(𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) = (𝐴 Σg 𝑛 / 𝑘(𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))))
60 id 22 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
61 oveq2 7354 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (0...𝑘) = (0...𝑛))
62 oveq1 7353 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝑘𝑧) = (𝑛𝑧))
6362oveq2d 7362 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝑦 decompPMat (𝑘𝑧)) = (𝑦 decompPMat (𝑛𝑧)))
6463oveq2d 7362 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) = ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))
6561, 64mpteq12dv 5178 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))) = (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))))
6665adantl 481 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑘 = 𝑛) → (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))) = (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))))
6760, 66csbied 3886 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 / 𝑘(𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))) = (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))))
6867oveq2d 7362 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (𝐴 Σg 𝑛 / 𝑘(𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) = (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))))
6959, 68eqtrd 2766 . . . . . . . 8 (𝑛 ∈ ℕ0𝑛 / 𝑘(𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) = (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))))
7069adantl 481 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑛 / 𝑘(𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) = (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))))
71 eqidd 2732 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)))))) = (𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)))))))
72 oveq2 7354 . . . . . . . . . . . 12 (𝑟 = 𝑛 → (0...𝑟) = (0...𝑛))
73 fvoveq1 7369 . . . . . . . . . . . . 13 (𝑟 = 𝑛 → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))
7473oveq2d 7362 . . . . . . . . . . . 12 (𝑟 = 𝑛 → (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))) = (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))
7572, 74mpteq12dv 5178 . . . . . . . . . . 11 (𝑟 = 𝑛 → (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))))
7675oveq2d 7362 . . . . . . . . . 10 (𝑟 = 𝑛 → (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))) = (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))))
7776adantl 481 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑟 = 𝑛) → (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))) = (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))))
78 ovexd 7381 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))) ∈ V)
7971, 77, 57, 78fvmptd 6936 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))))‘𝑛) = (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))))
80 eqid 2731 . . . . . . . . . 10 (0g𝑄) = (0g𝑄)
8119ply1ring 22161 . . . . . . . . . . . . 13 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
8229, 81syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring)
83 ringcmn 20201 . . . . . . . . . . . 12 (𝑄 ∈ Ring → 𝑄 ∈ CMnd)
8482, 83syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ CMnd)
8584ad2antrr 726 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑄 ∈ CMnd)
86 nn0ex 12387 . . . . . . . . . . 11 0 ∈ V
8786a1i 11 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ℕ0 ∈ V)
887anim2i 617 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝐵))
89 df-3an 1088 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝐵))
9088, 89sylibr 234 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵))
9190adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵))
923, 4, 11, 15, 16, 17, 18, 19, 28pm2mpghmlem1 22729 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
9391, 92sylan 580 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
9493fmpttd 7048 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
953, 4, 11, 15, 16, 17, 18, 19pm2mpghmlem2 22728 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
9691, 95syl 17 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
9728, 80, 85, 87, 94, 96gsumcl 19828 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
989anim2i 617 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐵))
99 df-3an 1088 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐵))
10098, 99sylibr 234 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
101100adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
1023, 4, 11, 15, 16, 17, 18, 19, 28pm2mpghmlem1 22729 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
103101, 102sylan 580 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
104103fmpttd 7048 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
1051, 2, 103jca 1128 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
106105adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
1073, 4, 11, 15, 16, 17, 18, 19pm2mpghmlem2 22728 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
108106, 107syl 17 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
10928, 80, 85, 87, 104, 108gsumcl 19828 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
110 eqid 2731 . . . . . . . . . . 11 (.r𝑄) = (.r𝑄)
11119, 110, 49, 28coe1mul 22185 . . . . . . . . . 10 ((𝐴 ∈ Ring ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄) ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄)) → (coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))) = (𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)))))))
112111fveq1d 6824 . . . . . . . . 9 ((𝐴 ∈ Ring ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄) ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄)) → ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛) = ((𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))))‘𝑛))
11330, 97, 109, 112syl3anc 1373 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛) = ((𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))))‘𝑛))
114 oveq2 7354 . . . . . . . . . . . 12 (𝑧 = 𝑙 → (𝑥 decompPMat 𝑧) = (𝑥 decompPMat 𝑙))
115 oveq2 7354 . . . . . . . . . . . . 13 (𝑧 = 𝑙 → (𝑛𝑧) = (𝑛𝑙))
116115oveq2d 7362 . . . . . . . . . . . 12 (𝑧 = 𝑙 → (𝑦 decompPMat (𝑛𝑧)) = (𝑦 decompPMat (𝑛𝑙)))
117114, 116oveq12d 7364 . . . . . . . . . . 11 (𝑧 = 𝑙 → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))) = ((𝑥 decompPMat 𝑙)(.r𝐴)(𝑦 decompPMat (𝑛𝑙))))
118117cbvmptv 5195 . . . . . . . . . 10 (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑙)(.r𝐴)(𝑦 decompPMat (𝑛𝑙))))
11929ad3antrrr 730 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝐴 ∈ Ring)
120 simp-5r 785 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
1218ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → 𝑥𝐵)
122 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
1233, 4, 11, 18, 31decpmatcl 22683 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑘 ∈ ℕ0) → (𝑥 decompPMat 𝑘) ∈ (Base‘𝐴))
124120, 121, 122, 123syl3anc 1373 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → (𝑥 decompPMat 𝑘) ∈ (Base‘𝐴))
125124ralrimiva 3124 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ∀𝑘 ∈ ℕ0 (𝑥 decompPMat 𝑘) ∈ (Base‘𝐴))
1262, 8jca 511 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑅 ∈ Ring ∧ 𝑥𝐵))
127126ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑅 ∈ Ring ∧ 𝑥𝐵))
1283, 4, 11, 18, 32decpmatfsupp 22685 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑥 decompPMat 𝑘)) finSupp (0g𝐴))
129127, 128syl 17 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑘 ∈ ℕ0 ↦ (𝑥 decompPMat 𝑘)) finSupp (0g𝐴))
130 elfznn0 13520 . . . . . . . . . . . . . . 15 (𝑙 ∈ (0...𝑛) → 𝑙 ∈ ℕ0)
131130adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑙 ∈ ℕ0)
13219, 28, 17, 16, 119, 31, 15, 32, 125, 129, 131gsummoncoe1 22224 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙) = 𝑙 / 𝑘(𝑥 decompPMat 𝑘))
133 csbov2g 7394 . . . . . . . . . . . . . . 15 (𝑙 ∈ (0...𝑛) → 𝑙 / 𝑘(𝑥 decompPMat 𝑘) = (𝑥 decompPMat 𝑙 / 𝑘𝑘))
134 csbvarg 4384 . . . . . . . . . . . . . . . 16 (𝑙 ∈ (0...𝑛) → 𝑙 / 𝑘𝑘 = 𝑙)
135134oveq2d 7362 . . . . . . . . . . . . . . 15 (𝑙 ∈ (0...𝑛) → (𝑥 decompPMat 𝑙 / 𝑘𝑘) = (𝑥 decompPMat 𝑙))
136133, 135eqtrd 2766 . . . . . . . . . . . . . 14 (𝑙 ∈ (0...𝑛) → 𝑙 / 𝑘(𝑥 decompPMat 𝑘) = (𝑥 decompPMat 𝑙))
137136adantl 481 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑙 / 𝑘(𝑥 decompPMat 𝑘) = (𝑥 decompPMat 𝑙))
138132, 137eqtr2d 2767 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑥 decompPMat 𝑙) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙))
13910ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → 𝑦𝐵)
1403, 4, 11, 18, 31decpmatcl 22683 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑘 ∈ ℕ0) → (𝑦 decompPMat 𝑘) ∈ (Base‘𝐴))
141120, 139, 122, 140syl3anc 1373 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → (𝑦 decompPMat 𝑘) ∈ (Base‘𝐴))
142141ralrimiva 3124 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ∀𝑘 ∈ ℕ0 (𝑦 decompPMat 𝑘) ∈ (Base‘𝐴))
1432, 10jca 511 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑅 ∈ Ring ∧ 𝑦𝐵))
144143ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑅 ∈ Ring ∧ 𝑦𝐵))
1453, 4, 11, 18, 32decpmatfsupp 22685 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑦 decompPMat 𝑘)) finSupp (0g𝐴))
146144, 145syl 17 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑘 ∈ ℕ0 ↦ (𝑦 decompPMat 𝑘)) finSupp (0g𝐴))
147 fznn0sub 13456 . . . . . . . . . . . . . . 15 (𝑙 ∈ (0...𝑛) → (𝑛𝑙) ∈ ℕ0)
148147adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑛𝑙) ∈ ℕ0)
14919, 28, 17, 16, 119, 31, 15, 32, 142, 146, 148gsummoncoe1 22224 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)) = (𝑛𝑙) / 𝑘(𝑦 decompPMat 𝑘))
150 ovex 7379 . . . . . . . . . . . . . 14 (𝑛𝑙) ∈ V
151 csbov2g 7394 . . . . . . . . . . . . . 14 ((𝑛𝑙) ∈ V → (𝑛𝑙) / 𝑘(𝑦 decompPMat 𝑘) = (𝑦 decompPMat (𝑛𝑙) / 𝑘𝑘))
152150, 151mp1i 13 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑛𝑙) / 𝑘(𝑦 decompPMat 𝑘) = (𝑦 decompPMat (𝑛𝑙) / 𝑘𝑘))
153 csbvarg 4384 . . . . . . . . . . . . . . 15 ((𝑛𝑙) ∈ V → (𝑛𝑙) / 𝑘𝑘 = (𝑛𝑙))
154150, 153mp1i 13 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑛𝑙) / 𝑘𝑘 = (𝑛𝑙))
155154oveq2d 7362 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑦 decompPMat (𝑛𝑙) / 𝑘𝑘) = (𝑦 decompPMat (𝑛𝑙)))
156149, 152, 1553eqtrrd 2771 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑦 decompPMat (𝑛𝑙)) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))
157138, 156oveq12d 7364 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((𝑥 decompPMat 𝑙)(.r𝐴)(𝑦 decompPMat (𝑛𝑙))) = (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))
158157mpteq2dva 5184 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑙 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑙)(.r𝐴)(𝑦 decompPMat (𝑛𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))))
159118, 158eqtrid 2778 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))) = (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))))
160159oveq2d 7362 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))) = (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))))
16179, 113, 1603eqtr4rd 2777 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛))
16258, 70, 1613eqtrd 2770 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛))
163162ralrimiva 3124 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑛 ∈ ℕ0 ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛))
16429adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝐴 ∈ Ring)
16584adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑄 ∈ CMnd)
16686a1i 11 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ℕ0 ∈ V)
16719ply1lmod 22165 . . . . . . . . . . 11 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
16829, 167syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod)
169168ad2antrr 726 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑄 ∈ LMod)
17034ad2antrr 726 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ CMnd)
171 fzfid 13880 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
17229ad3antrrr 730 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝐴 ∈ Ring)
173 simp-4r 783 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
174 simplrl 776 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑥𝐵)
175174adantr 480 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑥𝐵)
17640adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑧 ∈ ℕ0)
177173, 175, 176, 42syl3anc 1373 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑥 decompPMat 𝑧) ∈ (Base‘𝐴))
178 simplrr 777 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑦𝐵)
179178adantr 480 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑦𝐵)
18045adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑘𝑧) ∈ ℕ0)
181173, 179, 180, 47syl3anc 1373 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑦 decompPMat (𝑘𝑧)) ∈ (Base‘𝐴))
182172, 177, 181, 50syl3anc 1373 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
183182ralrimiva 3124 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ∀𝑧 ∈ (0...𝑘)((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
18431, 170, 171, 183gsummptcl 19880 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘𝐴))
18529ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ Ring)
18619ply1sca 22166 . . . . . . . . . . . . 13 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
187185, 186syl 17 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 = (Scalar‘𝑄))
188187eqcomd 2737 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (Scalar‘𝑄) = 𝐴)
189188fveq2d 6826 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (Base‘(Scalar‘𝑄)) = (Base‘𝐴))
190184, 189eleqtrrd 2834 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘(Scalar‘𝑄)))
191 eqid 2731 . . . . . . . . . . 11 (mulGrp‘𝑄) = (mulGrp‘𝑄)
19219, 17, 191, 16, 28ply1moncl 22186 . . . . . . . . . 10 ((𝐴 ∈ Ring ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)) ∈ (Base‘𝑄))
193185, 192sylancom 588 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)) ∈ (Base‘𝑄))
194 eqid 2731 . . . . . . . . . 10 (Scalar‘𝑄) = (Scalar‘𝑄)
195 eqid 2731 . . . . . . . . . 10 (Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄))
19628, 194, 15, 195lmodvscl 20812 . . . . . . . . 9 ((𝑄 ∈ LMod ∧ (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)) ∈ (Base‘𝑄)) → ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
197169, 190, 193, 196syl3anc 1373 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
198197fmpttd 7048 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
1993, 4, 11, 15, 16, 17, 18, 19, 28, 20pm2mpmhmlem1 22734 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
20028, 80, 165, 166, 198, 199gsumcl 19828 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
20182adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑄 ∈ Ring)
20290, 92sylan 580 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
203202fmpttd 7048 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
20490, 95syl 17 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
20528, 80, 165, 166, 203, 204gsumcl 19828 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
206100, 102sylan 580 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
207206fmpttd 7048 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
2081, 2, 10, 107syl3anc 1373 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
20928, 80, 165, 166, 207, 208gsumcl 19828 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
21028, 110ringcl 20169 . . . . . . 7 ((𝑄 ∈ Ring ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄) ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄)) → ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))) ∈ (Base‘𝑄))
211201, 205, 209, 210syl3anc 1373 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))) ∈ (Base‘𝑄))
212 eqid 2731 . . . . . . 7 (coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))) = (coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
213 eqid 2731 . . . . . . 7 (coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))) = (coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))
21419, 28, 212, 213ply1coe1eq 22216 . . . . . 6 ((𝐴 ∈ Ring ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄) ∧ ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))) ∈ (Base‘𝑄)) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛) ↔ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))))
215164, 200, 211, 214syl3anc 1373 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛) ↔ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))))
216163, 215mpbid 232 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))
21722, 27, 2163eqtrd 2770 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))
2183, 4, 11, 15, 16, 17, 18, 19, 20pm2mpfval 22712 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑇𝑥) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
2191, 2, 8, 218syl3anc 1373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑥) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
2203, 4, 11, 15, 16, 17, 18, 19, 20pm2mpfval 22712 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑇𝑦) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
2211, 2, 10, 220syl3anc 1373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑦) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
222219, 221oveq12d 7364 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑇𝑥)(.r𝑄)(𝑇𝑦)) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))
223217, 222eqtr4d 2769 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑇𝑥)(.r𝑄)(𝑇𝑦)))
224223ralrimivva 3175 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝐵𝑦𝐵 (𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑇𝑥)(.r𝑄)(𝑇𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  csb 3850   class class class wbr 5091  cmpt 5172  cfv 6481  (class class class)co 7346  Fincfn 8869   finSupp cfsupp 9245  0cc0 11006  cmin 11344  0cn0 12381  ...cfz 13407  Basecbs 17120  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343   Σg cgsu 17344  .gcmg 18980  CMndccmn 19693  mulGrpcmgp 20059  Ringcrg 20152  LModclmod 20794  var1cv1 22089  Poly1cpl1 22090  coe1cco1 22091   Mat cmat 22323   decompPMat cdecpmat 22678   pMatToMatPoly cpm2mp 22708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19126  df-cntz 19230  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-srg 20106  df-ring 20154  df-subrng 20462  df-subrg 20486  df-lmod 20796  df-lss 20866  df-sra 21108  df-rgmod 21109  df-dsmm 21670  df-frlm 21685  df-psr 21847  df-mvr 21848  df-mpl 21849  df-opsr 21851  df-psr1 22093  df-vr1 22094  df-ply1 22095  df-coe1 22096  df-mamu 22307  df-mat 22324  df-decpmat 22679  df-pm2mp 22709
This theorem is referenced by:  pm2mpmhm  22736
  Copyright terms: Public domain W3C validator