MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpmhmlem2 Structured version   Visualization version   GIF version

Theorem pm2mpmhmlem2 21427
Description: Lemma 2 for pm2mpmhm 21428. (Contributed by AV, 22-Oct-2019.) (Revised by AV, 6-Dec-2019.)
Hypotheses
Ref Expression
pm2mpmhm.p 𝑃 = (Poly1𝑅)
pm2mpmhm.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpmhm.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpmhm.q 𝑄 = (Poly1𝐴)
pm2mpmhm.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
pm2mpmhm.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
pm2mpmhmlem2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝐵𝑦𝐵 (𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑇𝑥)(.r𝑄)(𝑇𝑦)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑁,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝑄(𝑥,𝑦)   𝑇(𝑥,𝑦)

Proof of Theorem pm2mpmhmlem2
Dummy variables 𝑘 𝑙 𝑛 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑁 ∈ Fin)
2 simplr 767 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ Ring)
3 pm2mpmhm.p . . . . . . . 8 𝑃 = (Poly1𝑅)
4 pm2mpmhm.c . . . . . . . 8 𝐶 = (𝑁 Mat 𝑃)
53, 4pmatring 21301 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
65adantr 483 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝐶 ∈ Ring)
7 simpl 485 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
87adantl 484 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
9 simpr 487 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
109adantl 484 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
11 pm2mpmhm.b . . . . . . 7 𝐵 = (Base‘𝐶)
12 eqid 2821 . . . . . . 7 (.r𝐶) = (.r𝐶)
1311, 12ringcl 19311 . . . . . 6 ((𝐶 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝐶)𝑦) ∈ 𝐵)
146, 8, 10, 13syl3anc 1367 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐶)𝑦) ∈ 𝐵)
15 eqid 2821 . . . . . 6 ( ·𝑠𝑄) = ( ·𝑠𝑄)
16 eqid 2821 . . . . . 6 (.g‘(mulGrp‘𝑄)) = (.g‘(mulGrp‘𝑄))
17 eqid 2821 . . . . . 6 (var1𝐴) = (var1𝐴)
18 pm2mpmhm.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
19 pm2mpmhm.q . . . . . 6 𝑄 = (Poly1𝐴)
20 pm2mpmhm.t . . . . . 6 𝑇 = (𝑁 pMatToMatPoly 𝑅)
213, 4, 11, 15, 16, 17, 18, 19, 20pm2mpfval 21404 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(.r𝐶)𝑦) ∈ 𝐵) → (𝑇‘(𝑥(.r𝐶)𝑦)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
221, 2, 14, 21syl3anc 1367 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(.r𝐶)𝑦)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
233, 4, 11, 18decpmatmul 21380 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑘) = (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))))
2423ad4ant234 1171 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑘) = (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))))
2524oveq1d 7171 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) = ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))
2625mpteq2dva 5161 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) = (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))
2726oveq2d 7172 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑥(.r𝐶)𝑦) decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
28 eqid 2821 . . . . . . . 8 (Base‘𝑄) = (Base‘𝑄)
2918matring 21052 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
3029ad2antrr 724 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ Ring)
31 eqid 2821 . . . . . . . 8 (Base‘𝐴) = (Base‘𝐴)
32 eqid 2821 . . . . . . . 8 (0g𝐴) = (0g𝐴)
33 ringcmn 19331 . . . . . . . . . . . 12 (𝐴 ∈ Ring → 𝐴 ∈ CMnd)
3429, 33syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ CMnd)
3534ad3antrrr 728 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ CMnd)
36 fzfid 13342 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
3730ad2antrr 724 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝐴 ∈ Ring)
38 simp-5r 784 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
398ad3antrrr 728 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑥𝐵)
40 elfznn0 13001 . . . . . . . . . . . . . 14 (𝑧 ∈ (0...𝑘) → 𝑧 ∈ ℕ0)
4140adantl 484 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑧 ∈ ℕ0)
423, 4, 11, 18, 31decpmatcl 21375 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑧 ∈ ℕ0) → (𝑥 decompPMat 𝑧) ∈ (Base‘𝐴))
4338, 39, 41, 42syl3anc 1367 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑥 decompPMat 𝑧) ∈ (Base‘𝐴))
4410ad3antrrr 728 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑦𝐵)
45 fznn0sub 12940 . . . . . . . . . . . . . 14 (𝑧 ∈ (0...𝑘) → (𝑘𝑧) ∈ ℕ0)
4645adantl 484 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑘𝑧) ∈ ℕ0)
473, 4, 11, 18, 31decpmatcl 21375 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦𝐵 ∧ (𝑘𝑧) ∈ ℕ0) → (𝑦 decompPMat (𝑘𝑧)) ∈ (Base‘𝐴))
4838, 44, 46, 47syl3anc 1367 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑦 decompPMat (𝑘𝑧)) ∈ (Base‘𝐴))
49 eqid 2821 . . . . . . . . . . . . 13 (.r𝐴) = (.r𝐴)
5031, 49ringcl 19311 . . . . . . . . . . . 12 ((𝐴 ∈ Ring ∧ (𝑥 decompPMat 𝑧) ∈ (Base‘𝐴) ∧ (𝑦 decompPMat (𝑘𝑧)) ∈ (Base‘𝐴)) → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
5137, 43, 48, 50syl3anc 1367 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
5251ralrimiva 3182 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ∀𝑧 ∈ (0...𝑘)((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
5331, 35, 36, 52gsummptcl 19087 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘𝐴))
5453ralrimiva 3182 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘𝐴))
553, 4, 11, 18, 49, 32decpmatmulsumfsupp 21381 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))) finSupp (0g𝐴))
5655adantr 483 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))) finSupp (0g𝐴))
57 simpr 487 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
5819, 28, 17, 16, 30, 31, 15, 32, 54, 56, 57gsummoncoe1 20472 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = 𝑛 / 𝑘(𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))))
59 csbov2g 7202 . . . . . . . . 9 (𝑛 ∈ ℕ0𝑛 / 𝑘(𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) = (𝐴 Σg 𝑛 / 𝑘(𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))))
60 id 22 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
61 oveq2 7164 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (0...𝑘) = (0...𝑛))
62 oveq1 7163 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝑘𝑧) = (𝑛𝑧))
6362oveq2d 7172 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝑦 decompPMat (𝑘𝑧)) = (𝑦 decompPMat (𝑛𝑧)))
6463oveq2d 7172 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) = ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))
6561, 64mpteq12dv 5151 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))) = (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))))
6665adantl 484 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑘 = 𝑛) → (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))) = (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))))
6760, 66csbied 3919 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 / 𝑘(𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))) = (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))))
6867oveq2d 7172 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (𝐴 Σg 𝑛 / 𝑘(𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) = (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))))
6959, 68eqtrd 2856 . . . . . . . 8 (𝑛 ∈ ℕ0𝑛 / 𝑘(𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) = (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))))
7069adantl 484 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑛 / 𝑘(𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) = (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))))
71 eqidd 2822 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)))))) = (𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)))))))
72 oveq2 7164 . . . . . . . . . . . 12 (𝑟 = 𝑛 → (0...𝑟) = (0...𝑛))
73 fvoveq1 7179 . . . . . . . . . . . . 13 (𝑟 = 𝑛 → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))
7473oveq2d 7172 . . . . . . . . . . . 12 (𝑟 = 𝑛 → (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))) = (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))
7572, 74mpteq12dv 5151 . . . . . . . . . . 11 (𝑟 = 𝑛 → (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))))
7675oveq2d 7172 . . . . . . . . . 10 (𝑟 = 𝑛 → (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))) = (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))))
7776adantl 484 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑟 = 𝑛) → (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))) = (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))))
78 ovexd 7191 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))) ∈ V)
7971, 77, 57, 78fvmptd 6775 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))))‘𝑛) = (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))))
80 eqid 2821 . . . . . . . . . 10 (0g𝑄) = (0g𝑄)
8119ply1ring 20416 . . . . . . . . . . . . 13 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
8229, 81syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring)
83 ringcmn 19331 . . . . . . . . . . . 12 (𝑄 ∈ Ring → 𝑄 ∈ CMnd)
8482, 83syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ CMnd)
8584ad2antrr 724 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑄 ∈ CMnd)
86 nn0ex 11904 . . . . . . . . . . 11 0 ∈ V
8786a1i 11 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ℕ0 ∈ V)
887anim2i 618 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝐵))
89 df-3an 1085 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝐵))
9088, 89sylibr 236 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵))
9190adantr 483 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵))
923, 4, 11, 15, 16, 17, 18, 19, 28pm2mpghmlem1 21421 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
9391, 92sylan 582 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
9493fmpttd 6879 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
953, 4, 11, 15, 16, 17, 18, 19pm2mpghmlem2 21420 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
9691, 95syl 17 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
9728, 80, 85, 87, 94, 96gsumcl 19035 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
989anim2i 618 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐵))
99 df-3an 1085 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐵))
10098, 99sylibr 236 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
101100adantr 483 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
1023, 4, 11, 15, 16, 17, 18, 19, 28pm2mpghmlem1 21421 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
103101, 102sylan 582 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
104103fmpttd 6879 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
1051, 2, 103jca 1124 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
106105adantr 483 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
1073, 4, 11, 15, 16, 17, 18, 19pm2mpghmlem2 21420 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
108106, 107syl 17 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
10928, 80, 85, 87, 104, 108gsumcl 19035 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
110 eqid 2821 . . . . . . . . . . 11 (.r𝑄) = (.r𝑄)
11119, 110, 49, 28coe1mul 20438 . . . . . . . . . 10 ((𝐴 ∈ Ring ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄) ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄)) → (coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))) = (𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙)))))))
112111fveq1d 6672 . . . . . . . . 9 ((𝐴 ∈ Ring ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄) ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄)) → ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛) = ((𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))))‘𝑛))
11330, 97, 109, 112syl3anc 1367 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛) = ((𝑟 ∈ ℕ0 ↦ (𝐴 Σg (𝑙 ∈ (0...𝑟) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑟𝑙))))))‘𝑛))
114 oveq2 7164 . . . . . . . . . . . 12 (𝑧 = 𝑙 → (𝑥 decompPMat 𝑧) = (𝑥 decompPMat 𝑙))
115 oveq2 7164 . . . . . . . . . . . . 13 (𝑧 = 𝑙 → (𝑛𝑧) = (𝑛𝑙))
116115oveq2d 7172 . . . . . . . . . . . 12 (𝑧 = 𝑙 → (𝑦 decompPMat (𝑛𝑧)) = (𝑦 decompPMat (𝑛𝑙)))
117114, 116oveq12d 7174 . . . . . . . . . . 11 (𝑧 = 𝑙 → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))) = ((𝑥 decompPMat 𝑙)(.r𝐴)(𝑦 decompPMat (𝑛𝑙))))
118117cbvmptv 5169 . . . . . . . . . 10 (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑙)(.r𝐴)(𝑦 decompPMat (𝑛𝑙))))
11929ad3antrrr 728 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝐴 ∈ Ring)
120 simp-5r 784 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
1218ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → 𝑥𝐵)
122 simpr 487 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
1233, 4, 11, 18, 31decpmatcl 21375 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑘 ∈ ℕ0) → (𝑥 decompPMat 𝑘) ∈ (Base‘𝐴))
124120, 121, 122, 123syl3anc 1367 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → (𝑥 decompPMat 𝑘) ∈ (Base‘𝐴))
125124ralrimiva 3182 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ∀𝑘 ∈ ℕ0 (𝑥 decompPMat 𝑘) ∈ (Base‘𝐴))
1262, 8jca 514 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑅 ∈ Ring ∧ 𝑥𝐵))
127126ad2antrr 724 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑅 ∈ Ring ∧ 𝑥𝐵))
1283, 4, 11, 18, 32decpmatfsupp 21377 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑥 decompPMat 𝑘)) finSupp (0g𝐴))
129127, 128syl 17 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑘 ∈ ℕ0 ↦ (𝑥 decompPMat 𝑘)) finSupp (0g𝐴))
130 elfznn0 13001 . . . . . . . . . . . . . . 15 (𝑙 ∈ (0...𝑛) → 𝑙 ∈ ℕ0)
131130adantl 484 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑙 ∈ ℕ0)
13219, 28, 17, 16, 119, 31, 15, 32, 125, 129, 131gsummoncoe1 20472 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙) = 𝑙 / 𝑘(𝑥 decompPMat 𝑘))
133 csbov2g 7202 . . . . . . . . . . . . . . 15 (𝑙 ∈ (0...𝑛) → 𝑙 / 𝑘(𝑥 decompPMat 𝑘) = (𝑥 decompPMat 𝑙 / 𝑘𝑘))
134 csbvarg 4383 . . . . . . . . . . . . . . . 16 (𝑙 ∈ (0...𝑛) → 𝑙 / 𝑘𝑘 = 𝑙)
135134oveq2d 7172 . . . . . . . . . . . . . . 15 (𝑙 ∈ (0...𝑛) → (𝑥 decompPMat 𝑙 / 𝑘𝑘) = (𝑥 decompPMat 𝑙))
136133, 135eqtrd 2856 . . . . . . . . . . . . . 14 (𝑙 ∈ (0...𝑛) → 𝑙 / 𝑘(𝑥 decompPMat 𝑘) = (𝑥 decompPMat 𝑙))
137136adantl 484 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑙 / 𝑘(𝑥 decompPMat 𝑘) = (𝑥 decompPMat 𝑙))
138132, 137eqtr2d 2857 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑥 decompPMat 𝑙) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙))
13910ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → 𝑦𝐵)
1403, 4, 11, 18, 31decpmatcl 21375 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑘 ∈ ℕ0) → (𝑦 decompPMat 𝑘) ∈ (Base‘𝐴))
141120, 139, 122, 140syl3anc 1367 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ 𝑘 ∈ ℕ0) → (𝑦 decompPMat 𝑘) ∈ (Base‘𝐴))
142141ralrimiva 3182 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ∀𝑘 ∈ ℕ0 (𝑦 decompPMat 𝑘) ∈ (Base‘𝐴))
1432, 10jca 514 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑅 ∈ Ring ∧ 𝑦𝐵))
144143ad2antrr 724 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑅 ∈ Ring ∧ 𝑦𝐵))
1453, 4, 11, 18, 32decpmatfsupp 21377 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑦 decompPMat 𝑘)) finSupp (0g𝐴))
146144, 145syl 17 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑘 ∈ ℕ0 ↦ (𝑦 decompPMat 𝑘)) finSupp (0g𝐴))
147 fznn0sub 12940 . . . . . . . . . . . . . . 15 (𝑙 ∈ (0...𝑛) → (𝑛𝑙) ∈ ℕ0)
148147adantl 484 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑛𝑙) ∈ ℕ0)
14919, 28, 17, 16, 119, 31, 15, 32, 142, 146, 148gsummoncoe1 20472 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)) = (𝑛𝑙) / 𝑘(𝑦 decompPMat 𝑘))
150 ovex 7189 . . . . . . . . . . . . . 14 (𝑛𝑙) ∈ V
151 csbov2g 7202 . . . . . . . . . . . . . 14 ((𝑛𝑙) ∈ V → (𝑛𝑙) / 𝑘(𝑦 decompPMat 𝑘) = (𝑦 decompPMat (𝑛𝑙) / 𝑘𝑘))
152150, 151mp1i 13 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑛𝑙) / 𝑘(𝑦 decompPMat 𝑘) = (𝑦 decompPMat (𝑛𝑙) / 𝑘𝑘))
153 csbvarg 4383 . . . . . . . . . . . . . . 15 ((𝑛𝑙) ∈ V → (𝑛𝑙) / 𝑘𝑘 = (𝑛𝑙))
154150, 153mp1i 13 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑛𝑙) / 𝑘𝑘 = (𝑛𝑙))
155154oveq2d 7172 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑦 decompPMat (𝑛𝑙) / 𝑘𝑘) = (𝑦 decompPMat (𝑛𝑙)))
156149, 152, 1553eqtrrd 2861 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑦 decompPMat (𝑛𝑙)) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))
157138, 156oveq12d 7174 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((𝑥 decompPMat 𝑙)(.r𝐴)(𝑦 decompPMat (𝑛𝑙))) = (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))
158157mpteq2dva 5161 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑙 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑙)(.r𝐴)(𝑦 decompPMat (𝑛𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))))
159118, 158syl5eq 2868 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧)))) = (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙)))))
160159oveq2d 7172 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))) = (𝐴 Σg (𝑙 ∈ (0...𝑛) ↦ (((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙)(.r𝐴)((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘(𝑛𝑙))))))
16179, 113, 1603eqtr4rd 2867 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑛𝑧))))) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛))
16258, 70, 1613eqtrd 2860 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛))
163162ralrimiva 3182 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑛 ∈ ℕ0 ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛))
16429adantr 483 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝐴 ∈ Ring)
16584adantr 483 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑄 ∈ CMnd)
16686a1i 11 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ℕ0 ∈ V)
16719ply1lmod 20420 . . . . . . . . . . 11 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
16829, 167syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod)
169168ad2antrr 724 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑄 ∈ LMod)
17034ad2antrr 724 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ CMnd)
171 fzfid 13342 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
17229ad3antrrr 728 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝐴 ∈ Ring)
173 simp-4r 782 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
174 simplrl 775 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑥𝐵)
175174adantr 483 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑥𝐵)
17640adantl 484 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑧 ∈ ℕ0)
177173, 175, 176, 42syl3anc 1367 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑥 decompPMat 𝑧) ∈ (Base‘𝐴))
178 simplrr 776 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑦𝐵)
179178adantr 483 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → 𝑦𝐵)
18045adantl 484 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑘𝑧) ∈ ℕ0)
181173, 179, 180, 47syl3anc 1367 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → (𝑦 decompPMat (𝑘𝑧)) ∈ (Base‘𝐴))
182172, 177, 181, 50syl3anc 1367 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ (0...𝑘)) → ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
183182ralrimiva 3182 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ∀𝑧 ∈ (0...𝑘)((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))) ∈ (Base‘𝐴))
18431, 170, 171, 183gsummptcl 19087 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘𝐴))
18529ad2antrr 724 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ Ring)
18619ply1sca 20421 . . . . . . . . . . . . 13 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
187185, 186syl 17 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 = (Scalar‘𝑄))
188187eqcomd 2827 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (Scalar‘𝑄) = 𝐴)
189188fveq2d 6674 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (Base‘(Scalar‘𝑄)) = (Base‘𝐴))
190184, 189eleqtrrd 2916 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘(Scalar‘𝑄)))
191 eqid 2821 . . . . . . . . . . 11 (mulGrp‘𝑄) = (mulGrp‘𝑄)
19219, 17, 191, 16, 28ply1moncl 20439 . . . . . . . . . 10 ((𝐴 ∈ Ring ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)) ∈ (Base‘𝑄))
193185, 192sylancom 590 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)) ∈ (Base‘𝑄))
194 eqid 2821 . . . . . . . . . 10 (Scalar‘𝑄) = (Scalar‘𝑄)
195 eqid 2821 . . . . . . . . . 10 (Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄))
19628, 194, 15, 195lmodvscl 19651 . . . . . . . . 9 ((𝑄 ∈ LMod ∧ (𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧))))) ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)) ∈ (Base‘𝑄)) → ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
197169, 190, 193, 196syl3anc 1367 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
198197fmpttd 6879 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
1993, 4, 11, 15, 16, 17, 18, 19, 28, 20pm2mpmhmlem1 21426 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
20028, 80, 165, 166, 198, 199gsumcl 19035 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
20182adantr 483 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑄 ∈ Ring)
20290, 92sylan 582 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
203202fmpttd 6879 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
20490, 95syl 17 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
20528, 80, 165, 166, 203, 204gsumcl 19035 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
206100, 102sylan 582 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ (Base‘𝑄))
207206fmpttd 6879 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0⟶(Base‘𝑄))
2081, 2, 10, 107syl3anc 1367 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
20928, 80, 165, 166, 207, 208gsumcl 19035 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄))
21028, 110ringcl 19311 . . . . . . 7 ((𝑄 ∈ Ring ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄) ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄)) → ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))) ∈ (Base‘𝑄))
211201, 205, 209, 210syl3anc 1367 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))) ∈ (Base‘𝑄))
212 eqid 2821 . . . . . . 7 (coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))) = (coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
213 eqid 2821 . . . . . . 7 (coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))) = (coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))
21419, 28, 212, 213ply1coe1eq 20466 . . . . . 6 ((𝐴 ∈ Ring ∧ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ (Base‘𝑄) ∧ ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))) ∈ (Base‘𝑄)) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛) ↔ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))))
215164, 200, 211, 214syl3anc 1367 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑛) = ((coe1‘((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))‘𝑛) ↔ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))))
216163, 215mpbid 234 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴 Σg (𝑧 ∈ (0...𝑘) ↦ ((𝑥 decompPMat 𝑧)(.r𝐴)(𝑦 decompPMat (𝑘𝑧)))))( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))
21722, 27, 2163eqtrd 2860 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))
2183, 4, 11, 15, 16, 17, 18, 19, 20pm2mpfval 21404 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑇𝑥) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
2191, 2, 8, 218syl3anc 1367 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑥) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
2203, 4, 11, 15, 16, 17, 18, 19, 20pm2mpfval 21404 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑇𝑦) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
2211, 2, 10, 220syl3anc 1367 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑦) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴))))))
222219, 221oveq12d 7174 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑇𝑥)(.r𝑄)(𝑇𝑦)) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑥 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))(.r𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑦 decompPMat 𝑘)( ·𝑠𝑄)(𝑘(.g‘(mulGrp‘𝑄))(var1𝐴)))))))
223217, 222eqtr4d 2859 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑇𝑥)(.r𝑄)(𝑇𝑦)))
224223ralrimivva 3191 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝐵𝑦𝐵 (𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑇𝑥)(.r𝑄)(𝑇𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  csb 3883   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156  Fincfn 8509   finSupp cfsupp 8833  0cc0 10537  cmin 10870  0cn0 11898  ...cfz 12893  Basecbs 16483  .rcmulr 16566  Scalarcsca 16568   ·𝑠 cvsca 16569  0gc0g 16713   Σg cgsu 16714  .gcmg 18224  CMndccmn 18906  mulGrpcmgp 19239  Ringcrg 19297  LModclmod 19634  var1cv1 20344  Poly1cpl1 20345  coe1cco1 20346   Mat cmat 21016   decompPMat cdecpmat 21370   pMatToMatPoly cpm2mp 21400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-ot 4576  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-srg 19256  df-ring 19299  df-subrg 19533  df-lmod 19636  df-lss 19704  df-sra 19944  df-rgmod 19945  df-psr 20136  df-mvr 20137  df-mpl 20138  df-opsr 20140  df-psr1 20348  df-vr1 20349  df-ply1 20350  df-coe1 20351  df-dsmm 20876  df-frlm 20891  df-mamu 20995  df-mat 21017  df-decpmat 21371  df-pm2mp 21401
This theorem is referenced by:  pm2mpmhm  21428
  Copyright terms: Public domain W3C validator