Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnnat Structured version   Visualization version   GIF version

Theorem lnnat 39536
Description: A line (the join of two distinct atoms) is not an atom. (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
lnnat.j = (join‘𝐾)
lnnat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
lnnat ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 ↔ ¬ (𝑃 𝑄) ∈ 𝐴))

Proof of Theorem lnnat
StepHypRef Expression
1 simpl1 1192 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐾 ∈ HL)
2 simpl2 1193 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃𝐴)
3 eqid 2731 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
4 eqid 2731 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
5 lnnat.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
63, 4, 5atcvr0 39397 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃)
71, 2, 6syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃)
8 lnnat.j . . . . . . 7 = (join‘𝐾)
98, 4, 5atcvr1 39526 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄𝑃( ⋖ ‘𝐾)(𝑃 𝑄)))
109biimpa 476 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃( ⋖ ‘𝐾)(𝑃 𝑄))
11 hlop 39471 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
12 eqid 2731 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
1312, 3op0cl 39293 . . . . . . 7 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
141, 11, 133syl 18 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (0.‘𝐾) ∈ (Base‘𝐾))
1512, 5atbase 39398 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
162, 15syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃 ∈ (Base‘𝐾))
171hllatd 39473 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐾 ∈ Lat)
18 simpl3 1194 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑄𝐴)
1912, 5atbase 39398 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2018, 19syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑄 ∈ (Base‘𝐾))
2112, 8latjcl 18345 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
2217, 16, 20, 21syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (Base‘𝐾))
2312, 4cvrntr 39534 . . . . . 6 ((𝐾 ∈ HL ∧ ((0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → (((0.‘𝐾)( ⋖ ‘𝐾)𝑃𝑃( ⋖ ‘𝐾)(𝑃 𝑄)) → ¬ (0.‘𝐾)( ⋖ ‘𝐾)(𝑃 𝑄)))
241, 14, 16, 22, 23syl13anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (((0.‘𝐾)( ⋖ ‘𝐾)𝑃𝑃( ⋖ ‘𝐾)(𝑃 𝑄)) → ¬ (0.‘𝐾)( ⋖ ‘𝐾)(𝑃 𝑄)))
257, 10, 24mp2and 699 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ¬ (0.‘𝐾)( ⋖ ‘𝐾)(𝑃 𝑄))
26 simpll1 1213 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑄) ∈ 𝐴) → 𝐾 ∈ HL)
273, 4, 5atcvr0 39397 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)(𝑃 𝑄))
2826, 27sylancom 588 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑄) ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)(𝑃 𝑄))
2925, 28mtand 815 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ¬ (𝑃 𝑄) ∈ 𝐴)
3029ex 412 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 → ¬ (𝑃 𝑄) ∈ 𝐴))
318, 5hlatjidm 39478 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑃 𝑃) = 𝑃)
32313adant3 1132 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑃) = 𝑃)
33 simp2 1137 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃𝐴)
3432, 33eqeltrd 2831 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑃) ∈ 𝐴)
35 oveq2 7354 . . . . 5 (𝑃 = 𝑄 → (𝑃 𝑃) = (𝑃 𝑄))
3635eleq1d 2816 . . . 4 (𝑃 = 𝑄 → ((𝑃 𝑃) ∈ 𝐴 ↔ (𝑃 𝑄) ∈ 𝐴))
3734, 36syl5ibcom 245 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 = 𝑄 → (𝑃 𝑄) ∈ 𝐴))
3837necon3bd 2942 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (¬ (𝑃 𝑄) ∈ 𝐴𝑃𝑄))
3930, 38impbid 212 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 ↔ ¬ (𝑃 𝑄) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  joincjn 18217  0.cp0 18327  Latclat 18337  OPcops 39281  ccvr 39371  Atomscatm 39372  HLchlt 39459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460
This theorem is referenced by:  2atjlej  39588  cdleme11h  40375
  Copyright terms: Public domain W3C validator