Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnnat Structured version   Visualization version   GIF version

Theorem lnnat 37053
Description: A line (the join of two distinct atoms) is not an atom. (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
lnnat.j = (join‘𝐾)
lnnat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
lnnat ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 ↔ ¬ (𝑃 𝑄) ∈ 𝐴))

Proof of Theorem lnnat
StepHypRef Expression
1 simpl1 1192 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐾 ∈ HL)
2 simpl2 1193 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃𝐴)
3 eqid 2738 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
4 eqid 2738 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
5 lnnat.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
63, 4, 5atcvr0 36914 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃)
71, 2, 6syl2anc 587 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃)
8 lnnat.j . . . . . . 7 = (join‘𝐾)
98, 4, 5atcvr1 37043 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄𝑃( ⋖ ‘𝐾)(𝑃 𝑄)))
109biimpa 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃( ⋖ ‘𝐾)(𝑃 𝑄))
11 hlop 36988 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
12 eqid 2738 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
1312, 3op0cl 36810 . . . . . . 7 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
141, 11, 133syl 18 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (0.‘𝐾) ∈ (Base‘𝐾))
1512, 5atbase 36915 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
162, 15syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃 ∈ (Base‘𝐾))
171hllatd 36990 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐾 ∈ Lat)
18 simpl3 1194 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑄𝐴)
1912, 5atbase 36915 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2018, 19syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑄 ∈ (Base‘𝐾))
2112, 8latjcl 17770 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
2217, 16, 20, 21syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (Base‘𝐾))
2312, 4cvrntr 37051 . . . . . 6 ((𝐾 ∈ HL ∧ ((0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → (((0.‘𝐾)( ⋖ ‘𝐾)𝑃𝑃( ⋖ ‘𝐾)(𝑃 𝑄)) → ¬ (0.‘𝐾)( ⋖ ‘𝐾)(𝑃 𝑄)))
241, 14, 16, 22, 23syl13anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (((0.‘𝐾)( ⋖ ‘𝐾)𝑃𝑃( ⋖ ‘𝐾)(𝑃 𝑄)) → ¬ (0.‘𝐾)( ⋖ ‘𝐾)(𝑃 𝑄)))
257, 10, 24mp2and 699 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ¬ (0.‘𝐾)( ⋖ ‘𝐾)(𝑃 𝑄))
26 simpll1 1213 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑄) ∈ 𝐴) → 𝐾 ∈ HL)
273, 4, 5atcvr0 36914 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)(𝑃 𝑄))
2826, 27sylancom 591 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑄) ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)(𝑃 𝑄))
2925, 28mtand 816 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ¬ (𝑃 𝑄) ∈ 𝐴)
3029ex 416 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 → ¬ (𝑃 𝑄) ∈ 𝐴))
318, 5hlatjidm 36995 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑃 𝑃) = 𝑃)
32313adant3 1133 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑃) = 𝑃)
33 simp2 1138 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃𝐴)
3432, 33eqeltrd 2833 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑃) ∈ 𝐴)
35 oveq2 7172 . . . . 5 (𝑃 = 𝑄 → (𝑃 𝑃) = (𝑃 𝑄))
3635eleq1d 2817 . . . 4 (𝑃 = 𝑄 → ((𝑃 𝑃) ∈ 𝐴 ↔ (𝑃 𝑄) ∈ 𝐴))
3734, 36syl5ibcom 248 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 = 𝑄 → (𝑃 𝑄) ∈ 𝐴))
3837necon3bd 2948 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (¬ (𝑃 𝑄) ∈ 𝐴𝑃𝑄))
3930, 38impbid 215 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 ↔ ¬ (𝑃 𝑄) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2113  wne 2934   class class class wbr 5027  cfv 6333  (class class class)co 7164  Basecbs 16579  joincjn 17663  0.cp0 17756  Latclat 17764  OPcops 36798  ccvr 36888  Atomscatm 36889  HLchlt 36976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-proset 17647  df-poset 17665  df-plt 17677  df-lub 17693  df-glb 17694  df-join 17695  df-meet 17696  df-p0 17758  df-lat 17765  df-clat 17827  df-oposet 36802  df-ol 36804  df-oml 36805  df-covers 36892  df-ats 36893  df-atl 36924  df-cvlat 36948  df-hlat 36977
This theorem is referenced by:  2atjlej  37105  cdleme11h  37892
  Copyright terms: Public domain W3C validator