Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnnat Structured version   Visualization version   GIF version

Theorem lnnat 36550
 Description: A line (the join of two distinct atoms) is not an atom. (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
lnnat.j = (join‘𝐾)
lnnat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
lnnat ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 ↔ ¬ (𝑃 𝑄) ∈ 𝐴))

Proof of Theorem lnnat
StepHypRef Expression
1 simpl1 1185 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐾 ∈ HL)
2 simpl2 1186 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃𝐴)
3 eqid 2819 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
4 eqid 2819 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
5 lnnat.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
63, 4, 5atcvr0 36411 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃)
71, 2, 6syl2anc 586 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃)
8 lnnat.j . . . . . . 7 = (join‘𝐾)
98, 4, 5atcvr1 36540 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄𝑃( ⋖ ‘𝐾)(𝑃 𝑄)))
109biimpa 479 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃( ⋖ ‘𝐾)(𝑃 𝑄))
11 hlop 36485 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
12 eqid 2819 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
1312, 3op0cl 36307 . . . . . . 7 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
141, 11, 133syl 18 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (0.‘𝐾) ∈ (Base‘𝐾))
1512, 5atbase 36412 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
162, 15syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃 ∈ (Base‘𝐾))
171hllatd 36487 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐾 ∈ Lat)
18 simpl3 1187 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑄𝐴)
1912, 5atbase 36412 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2018, 19syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑄 ∈ (Base‘𝐾))
2112, 8latjcl 17653 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
2217, 16, 20, 21syl3anc 1365 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (Base‘𝐾))
2312, 4cvrntr 36548 . . . . . 6 ((𝐾 ∈ HL ∧ ((0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → (((0.‘𝐾)( ⋖ ‘𝐾)𝑃𝑃( ⋖ ‘𝐾)(𝑃 𝑄)) → ¬ (0.‘𝐾)( ⋖ ‘𝐾)(𝑃 𝑄)))
241, 14, 16, 22, 23syl13anc 1366 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (((0.‘𝐾)( ⋖ ‘𝐾)𝑃𝑃( ⋖ ‘𝐾)(𝑃 𝑄)) → ¬ (0.‘𝐾)( ⋖ ‘𝐾)(𝑃 𝑄)))
257, 10, 24mp2and 697 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ¬ (0.‘𝐾)( ⋖ ‘𝐾)(𝑃 𝑄))
26 simpll1 1206 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑄) ∈ 𝐴) → 𝐾 ∈ HL)
273, 4, 5atcvr0 36411 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)(𝑃 𝑄))
2826, 27sylancom 590 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑄) ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)(𝑃 𝑄))
2925, 28mtand 814 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ¬ (𝑃 𝑄) ∈ 𝐴)
3029ex 415 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 → ¬ (𝑃 𝑄) ∈ 𝐴))
318, 5hlatjidm 36492 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑃 𝑃) = 𝑃)
32313adant3 1126 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑃) = 𝑃)
33 simp2 1131 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃𝐴)
3432, 33eqeltrd 2911 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑃) ∈ 𝐴)
35 oveq2 7156 . . . . 5 (𝑃 = 𝑄 → (𝑃 𝑃) = (𝑃 𝑄))
3635eleq1d 2895 . . . 4 (𝑃 = 𝑄 → ((𝑃 𝑃) ∈ 𝐴 ↔ (𝑃 𝑄) ∈ 𝐴))
3734, 36syl5ibcom 247 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 = 𝑄 → (𝑃 𝑄) ∈ 𝐴))
3837necon3bd 3028 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (¬ (𝑃 𝑄) ∈ 𝐴𝑃𝑄))
3930, 38impbid 214 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 ↔ ¬ (𝑃 𝑄) ∈ 𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107   ≠ wne 3014   class class class wbr 5057  ‘cfv 6348  (class class class)co 7148  Basecbs 16475  joincjn 17546  0.cp0 17639  Latclat 17647  OPcops 36295   ⋖ ccvr 36385  Atomscatm 36386  HLchlt 36473 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-clat 17710  df-oposet 36299  df-ol 36301  df-oml 36302  df-covers 36389  df-ats 36390  df-atl 36421  df-cvlat 36445  df-hlat 36474 This theorem is referenced by:  2atjlej  36602  cdleme11h  37389
 Copyright terms: Public domain W3C validator