| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upgrimcycls | Structured version Visualization version GIF version | ||
| Description: Graph isomorphisms between simple pseudographs map cycles onto cycles. (Contributed by AV, 31-Oct-2025.) |
| Ref | Expression |
|---|---|
| upgrimwlk.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| upgrimwlk.j | ⊢ 𝐽 = (iEdg‘𝐻) |
| upgrimwlk.g | ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| upgrimwlk.h | ⊢ (𝜑 → 𝐻 ∈ USPGraph) |
| upgrimwlk.n | ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) |
| upgrimwlk.e | ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) |
| upgrimcycls.c | ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) |
| Ref | Expression |
|---|---|
| upgrimcycls | ⊢ (𝜑 → 𝐸(Cycles‘𝐻)(𝑁 ∘ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | upgrimwlk.j | . . 3 ⊢ 𝐽 = (iEdg‘𝐻) | |
| 3 | upgrimwlk.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ USPGraph) | |
| 4 | upgrimwlk.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ USPGraph) | |
| 5 | upgrimwlk.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) | |
| 6 | upgrimwlk.e | . . 3 ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) | |
| 7 | upgrimcycls.c | . . . 4 ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) | |
| 8 | cyclispth 29775 | . . . 4 ⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | upgrimpths 48008 | . 2 ⊢ (𝜑 → 𝐸(Paths‘𝐻)(𝑁 ∘ 𝑃)) |
| 11 | iscycl 29769 | . . . . . 6 ⊢ (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
| 12 | 11 | simprbi 496 | . . . . 5 ⊢ (𝐹(Cycles‘𝐺)𝑃 → (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
| 13 | 7, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
| 14 | 13 | fveq2d 6826 | . . 3 ⊢ (𝜑 → (𝑁‘(𝑃‘0)) = (𝑁‘(𝑃‘(♯‘𝐹)))) |
| 15 | cycliswlk 29776 | . . . . 5 ⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 16 | eqid 2731 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 17 | 16 | wlkp 29595 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 18 | 7, 15, 17 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 19 | wlkcl 29594 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
| 20 | 7, 15, 19 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (♯‘𝐹) ∈ ℕ0) |
| 21 | 0elfz 13524 | . . . . 5 ⊢ ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹))) | |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝜑 → 0 ∈ (0...(♯‘𝐹))) |
| 23 | 18, 22 | fvco3d 6922 | . . 3 ⊢ (𝜑 → ((𝑁 ∘ 𝑃)‘0) = (𝑁‘(𝑃‘0))) |
| 24 | 1 | wlkf 29593 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
| 25 | 7, 15, 24 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
| 26 | 1, 2, 3, 4, 5, 6, 25 | upgrimwlklem1 47996 | . . . . 5 ⊢ (𝜑 → (♯‘𝐸) = (♯‘𝐹)) |
| 27 | 26 | fveq2d 6826 | . . . 4 ⊢ (𝜑 → ((𝑁 ∘ 𝑃)‘(♯‘𝐸)) = ((𝑁 ∘ 𝑃)‘(♯‘𝐹))) |
| 28 | nn0fz0 13525 | . . . . . 6 ⊢ ((♯‘𝐹) ∈ ℕ0 ↔ (♯‘𝐹) ∈ (0...(♯‘𝐹))) | |
| 29 | 20, 28 | sylib 218 | . . . . 5 ⊢ (𝜑 → (♯‘𝐹) ∈ (0...(♯‘𝐹))) |
| 30 | 18, 29 | fvco3d 6922 | . . . 4 ⊢ (𝜑 → ((𝑁 ∘ 𝑃)‘(♯‘𝐹)) = (𝑁‘(𝑃‘(♯‘𝐹)))) |
| 31 | 27, 30 | eqtrd 2766 | . . 3 ⊢ (𝜑 → ((𝑁 ∘ 𝑃)‘(♯‘𝐸)) = (𝑁‘(𝑃‘(♯‘𝐹)))) |
| 32 | 14, 23, 31 | 3eqtr4d 2776 | . 2 ⊢ (𝜑 → ((𝑁 ∘ 𝑃)‘0) = ((𝑁 ∘ 𝑃)‘(♯‘𝐸))) |
| 33 | iscycl 29769 | . 2 ⊢ (𝐸(Cycles‘𝐻)(𝑁 ∘ 𝑃) ↔ (𝐸(Paths‘𝐻)(𝑁 ∘ 𝑃) ∧ ((𝑁 ∘ 𝑃)‘0) = ((𝑁 ∘ 𝑃)‘(♯‘𝐸)))) | |
| 34 | 10, 32, 33 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐸(Cycles‘𝐻)(𝑁 ∘ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ↦ cmpt 5170 ◡ccnv 5613 dom cdm 5614 “ cima 5617 ∘ ccom 5618 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 0cc0 11006 ℕ0cn0 12381 ...cfz 13407 ♯chash 14237 Word cword 14420 Vtxcvtx 28974 iEdgciedg 28975 USPGraphcuspgr 29126 Walkscwlks 29575 Pathscpths 29688 Cyclesccycls 29763 GraphIso cgrim 47974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-edg 29026 df-uhgr 29036 df-upgr 29060 df-uspgr 29128 df-wlks 29578 df-trls 29669 df-pths 29692 df-cycls 29765 df-grim 47977 |
| This theorem is referenced by: cycldlenngric 48027 |
| Copyright terms: Public domain | W3C validator |