| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upgrimcycls | Structured version Visualization version GIF version | ||
| Description: Graph isomorphisms between simple pseudographs map cycles onto cycles. (Contributed by AV, 31-Oct-2025.) |
| Ref | Expression |
|---|---|
| upgrimwlk.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| upgrimwlk.j | ⊢ 𝐽 = (iEdg‘𝐻) |
| upgrimwlk.g | ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| upgrimwlk.h | ⊢ (𝜑 → 𝐻 ∈ USPGraph) |
| upgrimwlk.n | ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) |
| upgrimwlk.e | ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) |
| upgrimcycls.c | ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) |
| Ref | Expression |
|---|---|
| upgrimcycls | ⊢ (𝜑 → 𝐸(Cycles‘𝐻)(𝑁 ∘ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | upgrimwlk.j | . . 3 ⊢ 𝐽 = (iEdg‘𝐻) | |
| 3 | upgrimwlk.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ USPGraph) | |
| 4 | upgrimwlk.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ USPGraph) | |
| 5 | upgrimwlk.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) | |
| 6 | upgrimwlk.e | . . 3 ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) | |
| 7 | upgrimcycls.c | . . . 4 ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) | |
| 8 | cyclispth 29725 | . . . 4 ⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | upgrimpths 47870 | . 2 ⊢ (𝜑 → 𝐸(Paths‘𝐻)(𝑁 ∘ 𝑃)) |
| 11 | iscycl 29719 | . . . . . 6 ⊢ (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
| 12 | 11 | simprbi 496 | . . . . 5 ⊢ (𝐹(Cycles‘𝐺)𝑃 → (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
| 13 | 7, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
| 14 | 13 | fveq2d 6879 | . . 3 ⊢ (𝜑 → (𝑁‘(𝑃‘0)) = (𝑁‘(𝑃‘(♯‘𝐹)))) |
| 15 | cycliswlk 29726 | . . . . 5 ⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 16 | eqid 2735 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 17 | 16 | wlkp 29542 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 18 | 7, 15, 17 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 19 | wlkcl 29541 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
| 20 | 7, 15, 19 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (♯‘𝐹) ∈ ℕ0) |
| 21 | 0elfz 13639 | . . . . 5 ⊢ ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹))) | |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝜑 → 0 ∈ (0...(♯‘𝐹))) |
| 23 | 18, 22 | fvco3d 6978 | . . 3 ⊢ (𝜑 → ((𝑁 ∘ 𝑃)‘0) = (𝑁‘(𝑃‘0))) |
| 24 | 1 | wlkf 29540 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
| 25 | 7, 15, 24 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
| 26 | 1, 2, 3, 4, 5, 6, 25 | upgrimwlklem1 47858 | . . . . 5 ⊢ (𝜑 → (♯‘𝐸) = (♯‘𝐹)) |
| 27 | 26 | fveq2d 6879 | . . . 4 ⊢ (𝜑 → ((𝑁 ∘ 𝑃)‘(♯‘𝐸)) = ((𝑁 ∘ 𝑃)‘(♯‘𝐹))) |
| 28 | nn0fz0 13640 | . . . . . 6 ⊢ ((♯‘𝐹) ∈ ℕ0 ↔ (♯‘𝐹) ∈ (0...(♯‘𝐹))) | |
| 29 | 20, 28 | sylib 218 | . . . . 5 ⊢ (𝜑 → (♯‘𝐹) ∈ (0...(♯‘𝐹))) |
| 30 | 18, 29 | fvco3d 6978 | . . . 4 ⊢ (𝜑 → ((𝑁 ∘ 𝑃)‘(♯‘𝐹)) = (𝑁‘(𝑃‘(♯‘𝐹)))) |
| 31 | 27, 30 | eqtrd 2770 | . . 3 ⊢ (𝜑 → ((𝑁 ∘ 𝑃)‘(♯‘𝐸)) = (𝑁‘(𝑃‘(♯‘𝐹)))) |
| 32 | 14, 23, 31 | 3eqtr4d 2780 | . 2 ⊢ (𝜑 → ((𝑁 ∘ 𝑃)‘0) = ((𝑁 ∘ 𝑃)‘(♯‘𝐸))) |
| 33 | iscycl 29719 | . 2 ⊢ (𝐸(Cycles‘𝐻)(𝑁 ∘ 𝑃) ↔ (𝐸(Paths‘𝐻)(𝑁 ∘ 𝑃) ∧ ((𝑁 ∘ 𝑃)‘0) = ((𝑁 ∘ 𝑃)‘(♯‘𝐸)))) | |
| 34 | 10, 32, 33 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐸(Cycles‘𝐻)(𝑁 ∘ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ↦ cmpt 5201 ◡ccnv 5653 dom cdm 5654 “ cima 5657 ∘ ccom 5658 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 0cc0 11127 ℕ0cn0 12499 ...cfz 13522 ♯chash 14346 Word cword 14529 Vtxcvtx 28921 iEdgciedg 28922 USPGraphcuspgr 29073 Walkscwlks 29522 Pathscpths 29638 Cyclesccycls 29713 GraphIso cgrim 47836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-oadd 8482 df-er 8717 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9913 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-n0 12500 df-xnn0 12573 df-z 12587 df-uz 12851 df-fz 13523 df-fzo 13670 df-hash 14347 df-word 14530 df-edg 28973 df-uhgr 28983 df-upgr 29007 df-uspgr 29075 df-wlks 29525 df-trls 29618 df-pths 29642 df-cycls 29715 df-grim 47839 |
| This theorem is referenced by: cycldlenngric 47889 |
| Copyright terms: Public domain | W3C validator |