| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upgrimcycls | Structured version Visualization version GIF version | ||
| Description: Graph isomorphisms between simple pseudographs map cycles onto cycles. (Contributed by AV, 31-Oct-2025.) |
| Ref | Expression |
|---|---|
| upgrimwlk.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| upgrimwlk.j | ⊢ 𝐽 = (iEdg‘𝐻) |
| upgrimwlk.g | ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| upgrimwlk.h | ⊢ (𝜑 → 𝐻 ∈ USPGraph) |
| upgrimwlk.n | ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) |
| upgrimwlk.e | ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) |
| upgrimcycls.c | ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) |
| Ref | Expression |
|---|---|
| upgrimcycls | ⊢ (𝜑 → 𝐸(Cycles‘𝐻)(𝑁 ∘ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | upgrimwlk.j | . . 3 ⊢ 𝐽 = (iEdg‘𝐻) | |
| 3 | upgrimwlk.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ USPGraph) | |
| 4 | upgrimwlk.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ USPGraph) | |
| 5 | upgrimwlk.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) | |
| 6 | upgrimwlk.e | . . 3 ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) | |
| 7 | upgrimcycls.c | . . . 4 ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) | |
| 8 | cyclispth 29734 | . . . 4 ⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | upgrimpths 47913 | . 2 ⊢ (𝜑 → 𝐸(Paths‘𝐻)(𝑁 ∘ 𝑃)) |
| 11 | iscycl 29728 | . . . . . 6 ⊢ (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
| 12 | 11 | simprbi 496 | . . . . 5 ⊢ (𝐹(Cycles‘𝐺)𝑃 → (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
| 13 | 7, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
| 14 | 13 | fveq2d 6865 | . . 3 ⊢ (𝜑 → (𝑁‘(𝑃‘0)) = (𝑁‘(𝑃‘(♯‘𝐹)))) |
| 15 | cycliswlk 29735 | . . . . 5 ⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 16 | eqid 2730 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 17 | 16 | wlkp 29551 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 18 | 7, 15, 17 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 19 | wlkcl 29550 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
| 20 | 7, 15, 19 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (♯‘𝐹) ∈ ℕ0) |
| 21 | 0elfz 13592 | . . . . 5 ⊢ ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹))) | |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝜑 → 0 ∈ (0...(♯‘𝐹))) |
| 23 | 18, 22 | fvco3d 6964 | . . 3 ⊢ (𝜑 → ((𝑁 ∘ 𝑃)‘0) = (𝑁‘(𝑃‘0))) |
| 24 | 1 | wlkf 29549 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
| 25 | 7, 15, 24 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
| 26 | 1, 2, 3, 4, 5, 6, 25 | upgrimwlklem1 47901 | . . . . 5 ⊢ (𝜑 → (♯‘𝐸) = (♯‘𝐹)) |
| 27 | 26 | fveq2d 6865 | . . . 4 ⊢ (𝜑 → ((𝑁 ∘ 𝑃)‘(♯‘𝐸)) = ((𝑁 ∘ 𝑃)‘(♯‘𝐹))) |
| 28 | nn0fz0 13593 | . . . . . 6 ⊢ ((♯‘𝐹) ∈ ℕ0 ↔ (♯‘𝐹) ∈ (0...(♯‘𝐹))) | |
| 29 | 20, 28 | sylib 218 | . . . . 5 ⊢ (𝜑 → (♯‘𝐹) ∈ (0...(♯‘𝐹))) |
| 30 | 18, 29 | fvco3d 6964 | . . . 4 ⊢ (𝜑 → ((𝑁 ∘ 𝑃)‘(♯‘𝐹)) = (𝑁‘(𝑃‘(♯‘𝐹)))) |
| 31 | 27, 30 | eqtrd 2765 | . . 3 ⊢ (𝜑 → ((𝑁 ∘ 𝑃)‘(♯‘𝐸)) = (𝑁‘(𝑃‘(♯‘𝐹)))) |
| 32 | 14, 23, 31 | 3eqtr4d 2775 | . 2 ⊢ (𝜑 → ((𝑁 ∘ 𝑃)‘0) = ((𝑁 ∘ 𝑃)‘(♯‘𝐸))) |
| 33 | iscycl 29728 | . 2 ⊢ (𝐸(Cycles‘𝐻)(𝑁 ∘ 𝑃) ↔ (𝐸(Paths‘𝐻)(𝑁 ∘ 𝑃) ∧ ((𝑁 ∘ 𝑃)‘0) = ((𝑁 ∘ 𝑃)‘(♯‘𝐸)))) | |
| 34 | 10, 32, 33 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐸(Cycles‘𝐻)(𝑁 ∘ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ↦ cmpt 5191 ◡ccnv 5640 dom cdm 5641 “ cima 5644 ∘ ccom 5645 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 0cc0 11075 ℕ0cn0 12449 ...cfz 13475 ♯chash 14302 Word cword 14485 Vtxcvtx 28930 iEdgciedg 28931 USPGraphcuspgr 29082 Walkscwlks 29531 Pathscpths 29647 Cyclesccycls 29722 GraphIso cgrim 47879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-edg 28982 df-uhgr 28992 df-upgr 29016 df-uspgr 29084 df-wlks 29534 df-trls 29627 df-pths 29651 df-cycls 29724 df-grim 47882 |
| This theorem is referenced by: cycldlenngric 47932 |
| Copyright terms: Public domain | W3C validator |