![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cycsubmel | Structured version Visualization version GIF version |
Description: Characterization of an element of the set of nonnegative integer powers of an element 𝐴. Although this theorem holds for any class 𝐺, the definition of 𝐹 is only meaningful if 𝐺 is a monoid or at least a unital magma. (Contributed by AV, 28-Dec-2023.) |
Ref | Expression |
---|---|
cycsubm.b | ⊢ 𝐵 = (Base‘𝐺) |
cycsubm.t | ⊢ · = (.g‘𝐺) |
cycsubm.f | ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) |
cycsubm.c | ⊢ 𝐶 = ran 𝐹 |
Ref | Expression |
---|---|
cycsubmel | ⊢ (𝑋 ∈ 𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycsubm.c | . . 3 ⊢ 𝐶 = ran 𝐹 | |
2 | 1 | eleq2i 2836 | . 2 ⊢ (𝑋 ∈ 𝐶 ↔ 𝑋 ∈ ran 𝐹) |
3 | ovex 7481 | . . . 4 ⊢ (𝑥 · 𝐴) ∈ V | |
4 | cycsubm.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) | |
5 | 3, 4 | fnmpti 6723 | . . 3 ⊢ 𝐹 Fn ℕ0 |
6 | fvelrnb 6982 | . . 3 ⊢ (𝐹 Fn ℕ0 → (𝑋 ∈ ran 𝐹 ↔ ∃𝑖 ∈ ℕ0 (𝐹‘𝑖) = 𝑋)) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (𝑋 ∈ ran 𝐹 ↔ ∃𝑖 ∈ ℕ0 (𝐹‘𝑖) = 𝑋) |
8 | oveq1 7455 | . . . . . 6 ⊢ (𝑥 = 𝑖 → (𝑥 · 𝐴) = (𝑖 · 𝐴)) | |
9 | ovex 7481 | . . . . . 6 ⊢ (𝑖 · 𝐴) ∈ V | |
10 | 8, 4, 9 | fvmpt 7029 | . . . . 5 ⊢ (𝑖 ∈ ℕ0 → (𝐹‘𝑖) = (𝑖 · 𝐴)) |
11 | 10 | eqeq1d 2742 | . . . 4 ⊢ (𝑖 ∈ ℕ0 → ((𝐹‘𝑖) = 𝑋 ↔ (𝑖 · 𝐴) = 𝑋)) |
12 | eqcom 2747 | . . . 4 ⊢ ((𝑖 · 𝐴) = 𝑋 ↔ 𝑋 = (𝑖 · 𝐴)) | |
13 | 11, 12 | bitrdi 287 | . . 3 ⊢ (𝑖 ∈ ℕ0 → ((𝐹‘𝑖) = 𝑋 ↔ 𝑋 = (𝑖 · 𝐴))) |
14 | 13 | rexbiia 3098 | . 2 ⊢ (∃𝑖 ∈ ℕ0 (𝐹‘𝑖) = 𝑋 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴)) |
15 | 2, 7, 14 | 3bitri 297 | 1 ⊢ (𝑋 ∈ 𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ↦ cmpt 5249 ran crn 5701 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 ℕ0cn0 12553 Basecbs 17258 .gcmg 19107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 df-ov 7451 |
This theorem is referenced by: cycsubmcl 19241 cycsubm 19242 cycsubmcom 19244 |
Copyright terms: Public domain | W3C validator |