MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubmel Structured version   Visualization version   GIF version

Theorem cycsubmel 19114
Description: Characterization of an element of the set of nonnegative integer powers of an element 𝐴. Although this theorem holds for any class 𝐺, the definition of 𝐹 is only meaningful if 𝐺 is a monoid or at least a unital magma. (Contributed by AV, 28-Dec-2023.)
Hypotheses
Ref Expression
cycsubm.b 𝐵 = (Base‘𝐺)
cycsubm.t · = (.g𝐺)
cycsubm.f 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
cycsubm.c 𝐶 = ran 𝐹
Assertion
Ref Expression
cycsubmel (𝑋𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑖,𝐹   𝑖,𝑋   𝑥,𝑖   𝑥, ·
Allowed substitution hints:   𝐴(𝑖)   𝐵(𝑥,𝑖)   𝐶(𝑥,𝑖)   · (𝑖)   𝐹(𝑥)   𝐺(𝑥,𝑖)   𝑋(𝑥)

Proof of Theorem cycsubmel
StepHypRef Expression
1 cycsubm.c . . 3 𝐶 = ran 𝐹
21eleq2i 2820 . 2 (𝑋𝐶𝑋 ∈ ran 𝐹)
3 ovex 7402 . . . 4 (𝑥 · 𝐴) ∈ V
4 cycsubm.f . . . 4 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
53, 4fnmpti 6643 . . 3 𝐹 Fn ℕ0
6 fvelrnb 6903 . . 3 (𝐹 Fn ℕ0 → (𝑋 ∈ ran 𝐹 ↔ ∃𝑖 ∈ ℕ0 (𝐹𝑖) = 𝑋))
75, 6ax-mp 5 . 2 (𝑋 ∈ ran 𝐹 ↔ ∃𝑖 ∈ ℕ0 (𝐹𝑖) = 𝑋)
8 oveq1 7376 . . . . . 6 (𝑥 = 𝑖 → (𝑥 · 𝐴) = (𝑖 · 𝐴))
9 ovex 7402 . . . . . 6 (𝑖 · 𝐴) ∈ V
108, 4, 9fvmpt 6950 . . . . 5 (𝑖 ∈ ℕ0 → (𝐹𝑖) = (𝑖 · 𝐴))
1110eqeq1d 2731 . . . 4 (𝑖 ∈ ℕ0 → ((𝐹𝑖) = 𝑋 ↔ (𝑖 · 𝐴) = 𝑋))
12 eqcom 2736 . . . 4 ((𝑖 · 𝐴) = 𝑋𝑋 = (𝑖 · 𝐴))
1311, 12bitrdi 287 . . 3 (𝑖 ∈ ℕ0 → ((𝐹𝑖) = 𝑋𝑋 = (𝑖 · 𝐴)))
1413rexbiia 3074 . 2 (∃𝑖 ∈ ℕ0 (𝐹𝑖) = 𝑋 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴))
152, 7, 143bitri 297 1 (𝑋𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wrex 3053  cmpt 5183  ran crn 5632   Fn wfn 6494  cfv 6499  (class class class)co 7369  0cn0 12418  Basecbs 17155  .gcmg 18981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-ov 7372
This theorem is referenced by:  cycsubmcl  19115  cycsubm  19116  cycsubmcom  19118
  Copyright terms: Public domain W3C validator