MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubmel Structured version   Visualization version   GIF version

Theorem cycsubmel 18734
Description: Characterization of an element of the set of nonnegative integer powers of an element 𝐴. Although this theorem holds for any class 𝐺, the definition of 𝐹 is only meaningful if 𝐺 is a monoid or at least a unital magma. (Contributed by AV, 28-Dec-2023.)
Hypotheses
Ref Expression
cycsubm.b 𝐵 = (Base‘𝐺)
cycsubm.t · = (.g𝐺)
cycsubm.f 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
cycsubm.c 𝐶 = ran 𝐹
Assertion
Ref Expression
cycsubmel (𝑋𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑖,𝐹   𝑖,𝑋   𝑥,𝑖   𝑥, ·
Allowed substitution hints:   𝐴(𝑖)   𝐵(𝑥,𝑖)   𝐶(𝑥,𝑖)   · (𝑖)   𝐹(𝑥)   𝐺(𝑥,𝑖)   𝑋(𝑥)

Proof of Theorem cycsubmel
StepHypRef Expression
1 cycsubm.c . . 3 𝐶 = ran 𝐹
21eleq2i 2830 . 2 (𝑋𝐶𝑋 ∈ ran 𝐹)
3 ovex 7288 . . . 4 (𝑥 · 𝐴) ∈ V
4 cycsubm.f . . . 4 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
53, 4fnmpti 6560 . . 3 𝐹 Fn ℕ0
6 fvelrnb 6812 . . 3 (𝐹 Fn ℕ0 → (𝑋 ∈ ran 𝐹 ↔ ∃𝑖 ∈ ℕ0 (𝐹𝑖) = 𝑋))
75, 6ax-mp 5 . 2 (𝑋 ∈ ran 𝐹 ↔ ∃𝑖 ∈ ℕ0 (𝐹𝑖) = 𝑋)
8 oveq1 7262 . . . . . 6 (𝑥 = 𝑖 → (𝑥 · 𝐴) = (𝑖 · 𝐴))
9 ovex 7288 . . . . . 6 (𝑖 · 𝐴) ∈ V
108, 4, 9fvmpt 6857 . . . . 5 (𝑖 ∈ ℕ0 → (𝐹𝑖) = (𝑖 · 𝐴))
1110eqeq1d 2740 . . . 4 (𝑖 ∈ ℕ0 → ((𝐹𝑖) = 𝑋 ↔ (𝑖 · 𝐴) = 𝑋))
12 eqcom 2745 . . . 4 ((𝑖 · 𝐴) = 𝑋𝑋 = (𝑖 · 𝐴))
1311, 12bitrdi 286 . . 3 (𝑖 ∈ ℕ0 → ((𝐹𝑖) = 𝑋𝑋 = (𝑖 · 𝐴)))
1413rexbiia 3176 . 2 (∃𝑖 ∈ ℕ0 (𝐹𝑖) = 𝑋 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴))
152, 7, 143bitri 296 1 (𝑋𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2108  wrex 3064  cmpt 5153  ran crn 5581   Fn wfn 6413  cfv 6418  (class class class)co 7255  0cn0 12163  Basecbs 16840  .gcmg 18615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-ov 7258
This theorem is referenced by:  cycsubmcl  18735  cycsubm  18736  cycsubmcom  18738
  Copyright terms: Public domain W3C validator