MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubmel Structured version   Visualization version   GIF version

Theorem cycsubmel 19148
Description: Characterization of an element of the set of nonnegative integer powers of an element 𝐴. Although this theorem holds for any class 𝐺, the definition of 𝐹 is only meaningful if 𝐺 is a monoid or at least a unital magma. (Contributed by AV, 28-Dec-2023.)
Hypotheses
Ref Expression
cycsubm.b 𝐵 = (Base‘𝐺)
cycsubm.t · = (.g𝐺)
cycsubm.f 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
cycsubm.c 𝐶 = ran 𝐹
Assertion
Ref Expression
cycsubmel (𝑋𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑖,𝐹   𝑖,𝑋   𝑥,𝑖   𝑥, ·
Allowed substitution hints:   𝐴(𝑖)   𝐵(𝑥,𝑖)   𝐶(𝑥,𝑖)   · (𝑖)   𝐹(𝑥)   𝐺(𝑥,𝑖)   𝑋(𝑥)

Proof of Theorem cycsubmel
StepHypRef Expression
1 cycsubm.c . . 3 𝐶 = ran 𝐹
21eleq2i 2821 . 2 (𝑋𝐶𝑋 ∈ ran 𝐹)
3 ovex 7447 . . . 4 (𝑥 · 𝐴) ∈ V
4 cycsubm.f . . . 4 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
53, 4fnmpti 6692 . . 3 𝐹 Fn ℕ0
6 fvelrnb 6953 . . 3 (𝐹 Fn ℕ0 → (𝑋 ∈ ran 𝐹 ↔ ∃𝑖 ∈ ℕ0 (𝐹𝑖) = 𝑋))
75, 6ax-mp 5 . 2 (𝑋 ∈ ran 𝐹 ↔ ∃𝑖 ∈ ℕ0 (𝐹𝑖) = 𝑋)
8 oveq1 7421 . . . . . 6 (𝑥 = 𝑖 → (𝑥 · 𝐴) = (𝑖 · 𝐴))
9 ovex 7447 . . . . . 6 (𝑖 · 𝐴) ∈ V
108, 4, 9fvmpt 6999 . . . . 5 (𝑖 ∈ ℕ0 → (𝐹𝑖) = (𝑖 · 𝐴))
1110eqeq1d 2730 . . . 4 (𝑖 ∈ ℕ0 → ((𝐹𝑖) = 𝑋 ↔ (𝑖 · 𝐴) = 𝑋))
12 eqcom 2735 . . . 4 ((𝑖 · 𝐴) = 𝑋𝑋 = (𝑖 · 𝐴))
1311, 12bitrdi 287 . . 3 (𝑖 ∈ ℕ0 → ((𝐹𝑖) = 𝑋𝑋 = (𝑖 · 𝐴)))
1413rexbiia 3088 . 2 (∃𝑖 ∈ ℕ0 (𝐹𝑖) = 𝑋 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴))
152, 7, 143bitri 297 1 (𝑋𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1534  wcel 2099  wrex 3066  cmpt 5225  ran crn 5673   Fn wfn 6537  cfv 6542  (class class class)co 7414  0cn0 12496  Basecbs 17173  .gcmg 19016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6494  df-fun 6544  df-fn 6545  df-fv 6550  df-ov 7417
This theorem is referenced by:  cycsubmcl  19149  cycsubm  19150  cycsubmcom  19152
  Copyright terms: Public domain W3C validator