MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubmel Structured version   Visualization version   GIF version

Theorem cycsubmel 19132
Description: Characterization of an element of the set of nonnegative integer powers of an element 𝐴. Although this theorem holds for any class 𝐺, the definition of 𝐹 is only meaningful if 𝐺 is a monoid or at least a unital magma. (Contributed by AV, 28-Dec-2023.)
Hypotheses
Ref Expression
cycsubm.b 𝐵 = (Base‘𝐺)
cycsubm.t · = (.g𝐺)
cycsubm.f 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
cycsubm.c 𝐶 = ran 𝐹
Assertion
Ref Expression
cycsubmel (𝑋𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑖,𝐹   𝑖,𝑋   𝑥,𝑖   𝑥, ·
Allowed substitution hints:   𝐴(𝑖)   𝐵(𝑥,𝑖)   𝐶(𝑥,𝑖)   · (𝑖)   𝐹(𝑥)   𝐺(𝑥,𝑖)   𝑋(𝑥)

Proof of Theorem cycsubmel
StepHypRef Expression
1 cycsubm.c . . 3 𝐶 = ran 𝐹
21eleq2i 2820 . 2 (𝑋𝐶𝑋 ∈ ran 𝐹)
3 ovex 7420 . . . 4 (𝑥 · 𝐴) ∈ V
4 cycsubm.f . . . 4 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
53, 4fnmpti 6661 . . 3 𝐹 Fn ℕ0
6 fvelrnb 6921 . . 3 (𝐹 Fn ℕ0 → (𝑋 ∈ ran 𝐹 ↔ ∃𝑖 ∈ ℕ0 (𝐹𝑖) = 𝑋))
75, 6ax-mp 5 . 2 (𝑋 ∈ ran 𝐹 ↔ ∃𝑖 ∈ ℕ0 (𝐹𝑖) = 𝑋)
8 oveq1 7394 . . . . . 6 (𝑥 = 𝑖 → (𝑥 · 𝐴) = (𝑖 · 𝐴))
9 ovex 7420 . . . . . 6 (𝑖 · 𝐴) ∈ V
108, 4, 9fvmpt 6968 . . . . 5 (𝑖 ∈ ℕ0 → (𝐹𝑖) = (𝑖 · 𝐴))
1110eqeq1d 2731 . . . 4 (𝑖 ∈ ℕ0 → ((𝐹𝑖) = 𝑋 ↔ (𝑖 · 𝐴) = 𝑋))
12 eqcom 2736 . . . 4 ((𝑖 · 𝐴) = 𝑋𝑋 = (𝑖 · 𝐴))
1311, 12bitrdi 287 . . 3 (𝑖 ∈ ℕ0 → ((𝐹𝑖) = 𝑋𝑋 = (𝑖 · 𝐴)))
1413rexbiia 3074 . 2 (∃𝑖 ∈ ℕ0 (𝐹𝑖) = 𝑋 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴))
152, 7, 143bitri 297 1 (𝑋𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wrex 3053  cmpt 5188  ran crn 5639   Fn wfn 6506  cfv 6511  (class class class)co 7387  0cn0 12442  Basecbs 17179  .gcmg 18999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-ov 7390
This theorem is referenced by:  cycsubmcl  19133  cycsubm  19134  cycsubmcom  19136
  Copyright terms: Public domain W3C validator