Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cycsubmel | Structured version Visualization version GIF version |
Description: Characterization of an element of the set of nonnegative integer powers of an element 𝐴. Although this theorem holds for any class 𝐺, the definition of 𝐹 is only meaningful if 𝐺 is a monoid or at least a unital magma. (Contributed by AV, 28-Dec-2023.) |
Ref | Expression |
---|---|
cycsubm.b | ⊢ 𝐵 = (Base‘𝐺) |
cycsubm.t | ⊢ · = (.g‘𝐺) |
cycsubm.f | ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) |
cycsubm.c | ⊢ 𝐶 = ran 𝐹 |
Ref | Expression |
---|---|
cycsubmel | ⊢ (𝑋 ∈ 𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycsubm.c | . . 3 ⊢ 𝐶 = ran 𝐹 | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝑋 ∈ 𝐶 ↔ 𝑋 ∈ ran 𝐹) |
3 | ovex 7288 | . . . 4 ⊢ (𝑥 · 𝐴) ∈ V | |
4 | cycsubm.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) | |
5 | 3, 4 | fnmpti 6560 | . . 3 ⊢ 𝐹 Fn ℕ0 |
6 | fvelrnb 6812 | . . 3 ⊢ (𝐹 Fn ℕ0 → (𝑋 ∈ ran 𝐹 ↔ ∃𝑖 ∈ ℕ0 (𝐹‘𝑖) = 𝑋)) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (𝑋 ∈ ran 𝐹 ↔ ∃𝑖 ∈ ℕ0 (𝐹‘𝑖) = 𝑋) |
8 | oveq1 7262 | . . . . . 6 ⊢ (𝑥 = 𝑖 → (𝑥 · 𝐴) = (𝑖 · 𝐴)) | |
9 | ovex 7288 | . . . . . 6 ⊢ (𝑖 · 𝐴) ∈ V | |
10 | 8, 4, 9 | fvmpt 6857 | . . . . 5 ⊢ (𝑖 ∈ ℕ0 → (𝐹‘𝑖) = (𝑖 · 𝐴)) |
11 | 10 | eqeq1d 2740 | . . . 4 ⊢ (𝑖 ∈ ℕ0 → ((𝐹‘𝑖) = 𝑋 ↔ (𝑖 · 𝐴) = 𝑋)) |
12 | eqcom 2745 | . . . 4 ⊢ ((𝑖 · 𝐴) = 𝑋 ↔ 𝑋 = (𝑖 · 𝐴)) | |
13 | 11, 12 | bitrdi 286 | . . 3 ⊢ (𝑖 ∈ ℕ0 → ((𝐹‘𝑖) = 𝑋 ↔ 𝑋 = (𝑖 · 𝐴))) |
14 | 13 | rexbiia 3176 | . 2 ⊢ (∃𝑖 ∈ ℕ0 (𝐹‘𝑖) = 𝑋 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴)) |
15 | 2, 7, 14 | 3bitri 296 | 1 ⊢ (𝑋 ∈ 𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ↦ cmpt 5153 ran crn 5581 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 ℕ0cn0 12163 Basecbs 16840 .gcmg 18615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-ov 7258 |
This theorem is referenced by: cycsubmcl 18735 cycsubm 18736 cycsubmcom 18738 |
Copyright terms: Public domain | W3C validator |