| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cycsubmel | Structured version Visualization version GIF version | ||
| Description: Characterization of an element of the set of nonnegative integer powers of an element 𝐴. Although this theorem holds for any class 𝐺, the definition of 𝐹 is only meaningful if 𝐺 is a monoid or at least a unital magma. (Contributed by AV, 28-Dec-2023.) |
| Ref | Expression |
|---|---|
| cycsubm.b | ⊢ 𝐵 = (Base‘𝐺) |
| cycsubm.t | ⊢ · = (.g‘𝐺) |
| cycsubm.f | ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) |
| cycsubm.c | ⊢ 𝐶 = ran 𝐹 |
| Ref | Expression |
|---|---|
| cycsubmel | ⊢ (𝑋 ∈ 𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubm.c | . . 3 ⊢ 𝐶 = ran 𝐹 | |
| 2 | 1 | eleq2i 2827 | . 2 ⊢ (𝑋 ∈ 𝐶 ↔ 𝑋 ∈ ran 𝐹) |
| 3 | ovex 7443 | . . . 4 ⊢ (𝑥 · 𝐴) ∈ V | |
| 4 | cycsubm.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) | |
| 5 | 3, 4 | fnmpti 6686 | . . 3 ⊢ 𝐹 Fn ℕ0 |
| 6 | fvelrnb 6944 | . . 3 ⊢ (𝐹 Fn ℕ0 → (𝑋 ∈ ran 𝐹 ↔ ∃𝑖 ∈ ℕ0 (𝐹‘𝑖) = 𝑋)) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ (𝑋 ∈ ran 𝐹 ↔ ∃𝑖 ∈ ℕ0 (𝐹‘𝑖) = 𝑋) |
| 8 | oveq1 7417 | . . . . . 6 ⊢ (𝑥 = 𝑖 → (𝑥 · 𝐴) = (𝑖 · 𝐴)) | |
| 9 | ovex 7443 | . . . . . 6 ⊢ (𝑖 · 𝐴) ∈ V | |
| 10 | 8, 4, 9 | fvmpt 6991 | . . . . 5 ⊢ (𝑖 ∈ ℕ0 → (𝐹‘𝑖) = (𝑖 · 𝐴)) |
| 11 | 10 | eqeq1d 2738 | . . . 4 ⊢ (𝑖 ∈ ℕ0 → ((𝐹‘𝑖) = 𝑋 ↔ (𝑖 · 𝐴) = 𝑋)) |
| 12 | eqcom 2743 | . . . 4 ⊢ ((𝑖 · 𝐴) = 𝑋 ↔ 𝑋 = (𝑖 · 𝐴)) | |
| 13 | 11, 12 | bitrdi 287 | . . 3 ⊢ (𝑖 ∈ ℕ0 → ((𝐹‘𝑖) = 𝑋 ↔ 𝑋 = (𝑖 · 𝐴))) |
| 14 | 13 | rexbiia 3082 | . 2 ⊢ (∃𝑖 ∈ ℕ0 (𝐹‘𝑖) = 𝑋 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴)) |
| 15 | 2, 7, 14 | 3bitri 297 | 1 ⊢ (𝑋 ∈ 𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ↦ cmpt 5206 ran crn 5660 Fn wfn 6531 ‘cfv 6536 (class class class)co 7410 ℕ0cn0 12506 Basecbs 17233 .gcmg 19055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 df-ov 7413 |
| This theorem is referenced by: cycsubmcl 19189 cycsubm 19190 cycsubmcom 19192 |
| Copyright terms: Public domain | W3C validator |