| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cycsubmel | Structured version Visualization version GIF version | ||
| Description: Characterization of an element of the set of nonnegative integer powers of an element 𝐴. Although this theorem holds for any class 𝐺, the definition of 𝐹 is only meaningful if 𝐺 is a monoid or at least a unital magma. (Contributed by AV, 28-Dec-2023.) |
| Ref | Expression |
|---|---|
| cycsubm.b | ⊢ 𝐵 = (Base‘𝐺) |
| cycsubm.t | ⊢ · = (.g‘𝐺) |
| cycsubm.f | ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) |
| cycsubm.c | ⊢ 𝐶 = ran 𝐹 |
| Ref | Expression |
|---|---|
| cycsubmel | ⊢ (𝑋 ∈ 𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubm.c | . . 3 ⊢ 𝐶 = ran 𝐹 | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (𝑋 ∈ 𝐶 ↔ 𝑋 ∈ ran 𝐹) |
| 3 | ovex 7379 | . . . 4 ⊢ (𝑥 · 𝐴) ∈ V | |
| 4 | cycsubm.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) | |
| 5 | 3, 4 | fnmpti 6624 | . . 3 ⊢ 𝐹 Fn ℕ0 |
| 6 | fvelrnb 6882 | . . 3 ⊢ (𝐹 Fn ℕ0 → (𝑋 ∈ ran 𝐹 ↔ ∃𝑖 ∈ ℕ0 (𝐹‘𝑖) = 𝑋)) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ (𝑋 ∈ ran 𝐹 ↔ ∃𝑖 ∈ ℕ0 (𝐹‘𝑖) = 𝑋) |
| 8 | oveq1 7353 | . . . . . 6 ⊢ (𝑥 = 𝑖 → (𝑥 · 𝐴) = (𝑖 · 𝐴)) | |
| 9 | ovex 7379 | . . . . . 6 ⊢ (𝑖 · 𝐴) ∈ V | |
| 10 | 8, 4, 9 | fvmpt 6929 | . . . . 5 ⊢ (𝑖 ∈ ℕ0 → (𝐹‘𝑖) = (𝑖 · 𝐴)) |
| 11 | 10 | eqeq1d 2733 | . . . 4 ⊢ (𝑖 ∈ ℕ0 → ((𝐹‘𝑖) = 𝑋 ↔ (𝑖 · 𝐴) = 𝑋)) |
| 12 | eqcom 2738 | . . . 4 ⊢ ((𝑖 · 𝐴) = 𝑋 ↔ 𝑋 = (𝑖 · 𝐴)) | |
| 13 | 11, 12 | bitrdi 287 | . . 3 ⊢ (𝑖 ∈ ℕ0 → ((𝐹‘𝑖) = 𝑋 ↔ 𝑋 = (𝑖 · 𝐴))) |
| 14 | 13 | rexbiia 3077 | . 2 ⊢ (∃𝑖 ∈ ℕ0 (𝐹‘𝑖) = 𝑋 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴)) |
| 15 | 2, 7, 14 | 3bitri 297 | 1 ⊢ (𝑋 ∈ 𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ↦ cmpt 5170 ran crn 5615 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 ℕ0cn0 12381 Basecbs 17120 .gcmg 18980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: cycsubmcl 19113 cycsubm 19114 cycsubmcom 19116 |
| Copyright terms: Public domain | W3C validator |