| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qus0subgadd | Structured version Visualization version GIF version | ||
| Description: The addition in a quotient of a group by the trivial (zero) subgroup. (Contributed by AV, 26-Feb-2025.) |
| Ref | Expression |
|---|---|
| qus0subg.0 | ⊢ 0 = (0g‘𝐺) |
| qus0subg.s | ⊢ 𝑆 = { 0 } |
| qus0subg.e | ⊢ ∼ = (𝐺 ~QG 𝑆) |
| qus0subg.u | ⊢ 𝑈 = (𝐺 /s ∼ ) |
| qus0subg.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| qus0subgadd | ⊢ (𝐺 ∈ Grp → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ({𝑎} (+g‘𝑈){𝑏}) = {(𝑎(+g‘𝐺)𝑏)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qus0subg.u | . . . . . 6 ⊢ 𝑈 = (𝐺 /s ∼ ) | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (𝐺 ∈ Grp → 𝑈 = (𝐺 /s ∼ )) |
| 3 | qus0subg.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (𝐺 ∈ Grp → 𝐵 = (Base‘𝐺)) |
| 5 | qus0subg.s | . . . . . . 7 ⊢ 𝑆 = { 0 } | |
| 6 | qus0subg.0 | . . . . . . . 8 ⊢ 0 = (0g‘𝐺) | |
| 7 | 6 | 0subg 19059 | . . . . . . 7 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
| 8 | 5, 7 | eqeltrid 2832 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝑆 ∈ (SubGrp‘𝐺)) |
| 9 | qus0subg.e | . . . . . . 7 ⊢ ∼ = (𝐺 ~QG 𝑆) | |
| 10 | 3, 9 | eqger 19086 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → ∼ Er 𝐵) |
| 11 | 8, 10 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ Grp → ∼ Er 𝐵) |
| 12 | id 22 | . . . . 5 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | |
| 13 | 6 | 0nsg 19077 | . . . . . . 7 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺)) |
| 14 | 5, 13 | eqeltrid 2832 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝑆 ∈ (NrmSGrp‘𝐺)) |
| 15 | eqid 2729 | . . . . . . 7 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 16 | 3, 9, 15 | eqgcpbl 19090 | . . . . . 6 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → ((𝑥 ∼ 𝑝 ∧ 𝑦 ∼ 𝑞) → (𝑥(+g‘𝐺)𝑦) ∼ (𝑝(+g‘𝐺)𝑞))) |
| 17 | 14, 16 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ Grp → ((𝑥 ∼ 𝑝 ∧ 𝑦 ∼ 𝑞) → (𝑥(+g‘𝐺)𝑦) ∼ (𝑝(+g‘𝐺)𝑞))) |
| 18 | 3, 15 | grpcl 18849 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑝(+g‘𝐺)𝑞) ∈ 𝐵) |
| 19 | 18 | 3expb 1120 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝(+g‘𝐺)𝑞) ∈ 𝐵) |
| 20 | eqid 2729 | . . . . 5 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
| 21 | 2, 4, 11, 12, 17, 19, 15, 20 | qusaddval 17492 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → ([𝑎] ∼ (+g‘𝑈)[𝑏] ∼ ) = [(𝑎(+g‘𝐺)𝑏)] ∼ ) |
| 22 | 21 | 3expb 1120 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ([𝑎] ∼ (+g‘𝑈)[𝑏] ∼ ) = [(𝑎(+g‘𝐺)𝑏)] ∼ ) |
| 23 | 6, 5, 3, 9 | eqg0subgecsn 19105 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑎 ∈ 𝐵) → [𝑎] ∼ = {𝑎}) |
| 24 | 23 | adantrr 717 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → [𝑎] ∼ = {𝑎}) |
| 25 | 6, 5, 3, 9 | eqg0subgecsn 19105 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑏 ∈ 𝐵) → [𝑏] ∼ = {𝑏}) |
| 26 | 25 | adantrl 716 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → [𝑏] ∼ = {𝑏}) |
| 27 | 24, 26 | oveq12d 7387 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ([𝑎] ∼ (+g‘𝑈)[𝑏] ∼ ) = ({𝑎} (+g‘𝑈){𝑏})) |
| 28 | 3, 15 | grpcl 18849 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝐺)𝑏) ∈ 𝐵) |
| 29 | 28 | 3expb 1120 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝐺)𝑏) ∈ 𝐵) |
| 30 | 6, 5, 3, 9 | eqg0subgecsn 19105 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑎(+g‘𝐺)𝑏) ∈ 𝐵) → [(𝑎(+g‘𝐺)𝑏)] ∼ = {(𝑎(+g‘𝐺)𝑏)}) |
| 31 | 29, 30 | syldan 591 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → [(𝑎(+g‘𝐺)𝑏)] ∼ = {(𝑎(+g‘𝐺)𝑏)}) |
| 32 | 22, 27, 31 | 3eqtr3d 2772 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ({𝑎} (+g‘𝑈){𝑏}) = {(𝑎(+g‘𝐺)𝑏)}) |
| 33 | 32 | ralrimivva 3178 | 1 ⊢ (𝐺 ∈ Grp → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ({𝑎} (+g‘𝑈){𝑏}) = {(𝑎(+g‘𝐺)𝑏)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {csn 4585 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Er wer 8645 [cec 8646 Basecbs 17155 +gcplusg 17196 0gc0g 17378 /s cqus 17444 Grpcgrp 18841 SubGrpcsubg 19028 NrmSGrpcnsg 19029 ~QG cqg 19030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-ec 8650 df-qs 8654 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-0g 17380 df-imas 17447 df-qus 17448 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-nsg 19032 df-eqg 19033 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |