MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qus0subgadd Structured version   Visualization version   GIF version

Theorem qus0subgadd 19096
Description: The addition in a quotient of a group by the trivial (zero) subgroup. (Contributed by AV, 26-Feb-2025.)
Hypotheses
Ref Expression
qus0subg.0 0 = (0g𝐺)
qus0subg.s 𝑆 = { 0 }
qus0subg.e = (𝐺 ~QG 𝑆)
qus0subg.u 𝑈 = (𝐺 /s )
qus0subg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
qus0subgadd (𝐺 ∈ Grp → ∀𝑎𝐵𝑏𝐵 ({𝑎} (+g𝑈){𝑏}) = {(𝑎(+g𝐺)𝑏)})
Distinct variable groups:   𝐵,𝑏   𝐺,𝑎,𝑏
Allowed substitution hints:   𝐵(𝑎)   (𝑎,𝑏)   𝑆(𝑎,𝑏)   𝑈(𝑎,𝑏)   0 (𝑎,𝑏)

Proof of Theorem qus0subgadd
Dummy variables 𝑥 𝑝 𝑞 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qus0subg.u . . . . . 6 𝑈 = (𝐺 /s )
21a1i 11 . . . . 5 (𝐺 ∈ Grp → 𝑈 = (𝐺 /s ))
3 qus0subg.b . . . . . 6 𝐵 = (Base‘𝐺)
43a1i 11 . . . . 5 (𝐺 ∈ Grp → 𝐵 = (Base‘𝐺))
5 qus0subg.s . . . . . . 7 𝑆 = { 0 }
6 qus0subg.0 . . . . . . . 8 0 = (0g𝐺)
760subg 19048 . . . . . . 7 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
85, 7eqeltrid 2832 . . . . . 6 (𝐺 ∈ Grp → 𝑆 ∈ (SubGrp‘𝐺))
9 qus0subg.e . . . . . . 7 = (𝐺 ~QG 𝑆)
103, 9eqger 19075 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → Er 𝐵)
118, 10syl 17 . . . . 5 (𝐺 ∈ Grp → Er 𝐵)
12 id 22 . . . . 5 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
1360nsg 19066 . . . . . . 7 (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺))
145, 13eqeltrid 2832 . . . . . 6 (𝐺 ∈ Grp → 𝑆 ∈ (NrmSGrp‘𝐺))
15 eqid 2729 . . . . . . 7 (+g𝐺) = (+g𝐺)
163, 9, 15eqgcpbl 19079 . . . . . 6 (𝑆 ∈ (NrmSGrp‘𝐺) → ((𝑥 𝑝𝑦 𝑞) → (𝑥(+g𝐺)𝑦) (𝑝(+g𝐺)𝑞)))
1714, 16syl 17 . . . . 5 (𝐺 ∈ Grp → ((𝑥 𝑝𝑦 𝑞) → (𝑥(+g𝐺)𝑦) (𝑝(+g𝐺)𝑞)))
183, 15grpcl 18838 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑝𝐵𝑞𝐵) → (𝑝(+g𝐺)𝑞) ∈ 𝐵)
19183expb 1120 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑝𝐵𝑞𝐵)) → (𝑝(+g𝐺)𝑞) ∈ 𝐵)
20 eqid 2729 . . . . 5 (+g𝑈) = (+g𝑈)
212, 4, 11, 12, 17, 19, 15, 20qusaddval 17475 . . . 4 ((𝐺 ∈ Grp ∧ 𝑎𝐵𝑏𝐵) → ([𝑎] (+g𝑈)[𝑏] ) = [(𝑎(+g𝐺)𝑏)] )
22213expb 1120 . . 3 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → ([𝑎] (+g𝑈)[𝑏] ) = [(𝑎(+g𝐺)𝑏)] )
236, 5, 3, 9eqg0subgecsn 19094 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑎𝐵) → [𝑎] = {𝑎})
2423adantrr 717 . . . 4 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → [𝑎] = {𝑎})
256, 5, 3, 9eqg0subgecsn 19094 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑏𝐵) → [𝑏] = {𝑏})
2625adantrl 716 . . . 4 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → [𝑏] = {𝑏})
2724, 26oveq12d 7371 . . 3 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → ([𝑎] (+g𝑈)[𝑏] ) = ({𝑎} (+g𝑈){𝑏}))
283, 15grpcl 18838 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝐺)𝑏) ∈ 𝐵)
29283expb 1120 . . . 4 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝐺)𝑏) ∈ 𝐵)
306, 5, 3, 9eqg0subgecsn 19094 . . . 4 ((𝐺 ∈ Grp ∧ (𝑎(+g𝐺)𝑏) ∈ 𝐵) → [(𝑎(+g𝐺)𝑏)] = {(𝑎(+g𝐺)𝑏)})
3129, 30syldan 591 . . 3 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → [(𝑎(+g𝐺)𝑏)] = {(𝑎(+g𝐺)𝑏)})
3222, 27, 313eqtr3d 2772 . 2 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → ({𝑎} (+g𝑈){𝑏}) = {(𝑎(+g𝐺)𝑏)})
3332ralrimivva 3172 1 (𝐺 ∈ Grp → ∀𝑎𝐵𝑏𝐵 ({𝑎} (+g𝑈){𝑏}) = {(𝑎(+g𝐺)𝑏)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {csn 4579   class class class wbr 5095  cfv 6486  (class class class)co 7353   Er wer 8629  [cec 8630  Basecbs 17138  +gcplusg 17179  0gc0g 17361   /s cqus 17427  Grpcgrp 18830  SubGrpcsubg 19017  NrmSGrpcnsg 19018   ~QG cqg 19019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-ec 8634  df-qs 8638  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-0g 17363  df-imas 17430  df-qus 17431  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-nsg 19021  df-eqg 19022
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator