MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qus0subgadd Structured version   Visualization version   GIF version

Theorem qus0subgadd 19106
Description: The addition in a quotient of a group by the trivial (zero) subgroup. (Contributed by AV, 26-Feb-2025.)
Hypotheses
Ref Expression
qus0subg.0 0 = (0g𝐺)
qus0subg.s 𝑆 = { 0 }
qus0subg.e = (𝐺 ~QG 𝑆)
qus0subg.u 𝑈 = (𝐺 /s )
qus0subg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
qus0subgadd (𝐺 ∈ Grp → ∀𝑎𝐵𝑏𝐵 ({𝑎} (+g𝑈){𝑏}) = {(𝑎(+g𝐺)𝑏)})
Distinct variable groups:   𝐵,𝑏   𝐺,𝑎,𝑏
Allowed substitution hints:   𝐵(𝑎)   (𝑎,𝑏)   𝑆(𝑎,𝑏)   𝑈(𝑎,𝑏)   0 (𝑎,𝑏)

Proof of Theorem qus0subgadd
Dummy variables 𝑥 𝑝 𝑞 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qus0subg.u . . . . . 6 𝑈 = (𝐺 /s )
21a1i 11 . . . . 5 (𝐺 ∈ Grp → 𝑈 = (𝐺 /s ))
3 qus0subg.b . . . . . 6 𝐵 = (Base‘𝐺)
43a1i 11 . . . . 5 (𝐺 ∈ Grp → 𝐵 = (Base‘𝐺))
5 qus0subg.s . . . . . . 7 𝑆 = { 0 }
6 qus0subg.0 . . . . . . . 8 0 = (0g𝐺)
760subg 19059 . . . . . . 7 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
85, 7eqeltrid 2835 . . . . . 6 (𝐺 ∈ Grp → 𝑆 ∈ (SubGrp‘𝐺))
9 qus0subg.e . . . . . . 7 = (𝐺 ~QG 𝑆)
103, 9eqger 19085 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → Er 𝐵)
118, 10syl 17 . . . . 5 (𝐺 ∈ Grp → Er 𝐵)
12 id 22 . . . . 5 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
1360nsg 19076 . . . . . . 7 (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺))
145, 13eqeltrid 2835 . . . . . 6 (𝐺 ∈ Grp → 𝑆 ∈ (NrmSGrp‘𝐺))
15 eqid 2731 . . . . . . 7 (+g𝐺) = (+g𝐺)
163, 9, 15eqgcpbl 19089 . . . . . 6 (𝑆 ∈ (NrmSGrp‘𝐺) → ((𝑥 𝑝𝑦 𝑞) → (𝑥(+g𝐺)𝑦) (𝑝(+g𝐺)𝑞)))
1714, 16syl 17 . . . . 5 (𝐺 ∈ Grp → ((𝑥 𝑝𝑦 𝑞) → (𝑥(+g𝐺)𝑦) (𝑝(+g𝐺)𝑞)))
183, 15grpcl 18849 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑝𝐵𝑞𝐵) → (𝑝(+g𝐺)𝑞) ∈ 𝐵)
19183expb 1120 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑝𝐵𝑞𝐵)) → (𝑝(+g𝐺)𝑞) ∈ 𝐵)
20 eqid 2731 . . . . 5 (+g𝑈) = (+g𝑈)
212, 4, 11, 12, 17, 19, 15, 20qusaddval 17452 . . . 4 ((𝐺 ∈ Grp ∧ 𝑎𝐵𝑏𝐵) → ([𝑎] (+g𝑈)[𝑏] ) = [(𝑎(+g𝐺)𝑏)] )
22213expb 1120 . . 3 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → ([𝑎] (+g𝑈)[𝑏] ) = [(𝑎(+g𝐺)𝑏)] )
236, 5, 3, 9eqg0subgecsn 19104 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑎𝐵) → [𝑎] = {𝑎})
2423adantrr 717 . . . 4 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → [𝑎] = {𝑎})
256, 5, 3, 9eqg0subgecsn 19104 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑏𝐵) → [𝑏] = {𝑏})
2625adantrl 716 . . . 4 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → [𝑏] = {𝑏})
2724, 26oveq12d 7359 . . 3 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → ([𝑎] (+g𝑈)[𝑏] ) = ({𝑎} (+g𝑈){𝑏}))
283, 15grpcl 18849 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝐺)𝑏) ∈ 𝐵)
29283expb 1120 . . . 4 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝐺)𝑏) ∈ 𝐵)
306, 5, 3, 9eqg0subgecsn 19104 . . . 4 ((𝐺 ∈ Grp ∧ (𝑎(+g𝐺)𝑏) ∈ 𝐵) → [(𝑎(+g𝐺)𝑏)] = {(𝑎(+g𝐺)𝑏)})
3129, 30syldan 591 . . 3 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → [(𝑎(+g𝐺)𝑏)] = {(𝑎(+g𝐺)𝑏)})
3222, 27, 313eqtr3d 2774 . 2 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → ({𝑎} (+g𝑈){𝑏}) = {(𝑎(+g𝐺)𝑏)})
3332ralrimivva 3175 1 (𝐺 ∈ Grp → ∀𝑎𝐵𝑏𝐵 ({𝑎} (+g𝑈){𝑏}) = {(𝑎(+g𝐺)𝑏)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  {csn 4571   class class class wbr 5086  cfv 6476  (class class class)co 7341   Er wer 8614  [cec 8615  Basecbs 17115  +gcplusg 17156  0gc0g 17338   /s cqus 17404  Grpcgrp 18841  SubGrpcsubg 19028  NrmSGrpcnsg 19029   ~QG cqg 19030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-ec 8619  df-qs 8623  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-0g 17340  df-imas 17407  df-qus 17408  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-nsg 19032  df-eqg 19033
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator