![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qus0subgadd | Structured version Visualization version GIF version |
Description: The addition in a quotient of a group by the trivial (zero) subgroup. (Contributed by AV, 26-Feb-2025.) |
Ref | Expression |
---|---|
qus0subg.0 | ⊢ 0 = (0g‘𝐺) |
qus0subg.s | ⊢ 𝑆 = { 0 } |
qus0subg.e | ⊢ ∼ = (𝐺 ~QG 𝑆) |
qus0subg.u | ⊢ 𝑈 = (𝐺 /s ∼ ) |
qus0subg.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
qus0subgadd | ⊢ (𝐺 ∈ Grp → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ({𝑎} (+g‘𝑈){𝑏}) = {(𝑎(+g‘𝐺)𝑏)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qus0subg.u | . . . . . 6 ⊢ 𝑈 = (𝐺 /s ∼ ) | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝐺 ∈ Grp → 𝑈 = (𝐺 /s ∼ )) |
3 | qus0subg.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝐺 ∈ Grp → 𝐵 = (Base‘𝐺)) |
5 | qus0subg.s | . . . . . . 7 ⊢ 𝑆 = { 0 } | |
6 | qus0subg.0 | . . . . . . . 8 ⊢ 0 = (0g‘𝐺) | |
7 | 6 | 0subg 19025 | . . . . . . 7 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
8 | 5, 7 | eqeltrid 2837 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝑆 ∈ (SubGrp‘𝐺)) |
9 | qus0subg.e | . . . . . . 7 ⊢ ∼ = (𝐺 ~QG 𝑆) | |
10 | 3, 9 | eqger 19052 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → ∼ Er 𝐵) |
11 | 8, 10 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ Grp → ∼ Er 𝐵) |
12 | id 22 | . . . . 5 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | |
13 | 6 | 0nsg 19043 | . . . . . . 7 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺)) |
14 | 5, 13 | eqeltrid 2837 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝑆 ∈ (NrmSGrp‘𝐺)) |
15 | eqid 2732 | . . . . . . 7 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
16 | 3, 9, 15 | eqgcpbl 19056 | . . . . . 6 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → ((𝑥 ∼ 𝑝 ∧ 𝑦 ∼ 𝑞) → (𝑥(+g‘𝐺)𝑦) ∼ (𝑝(+g‘𝐺)𝑞))) |
17 | 14, 16 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ Grp → ((𝑥 ∼ 𝑝 ∧ 𝑦 ∼ 𝑞) → (𝑥(+g‘𝐺)𝑦) ∼ (𝑝(+g‘𝐺)𝑞))) |
18 | 3, 15 | grpcl 18823 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑝(+g‘𝐺)𝑞) ∈ 𝐵) |
19 | 18 | 3expb 1120 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝(+g‘𝐺)𝑞) ∈ 𝐵) |
20 | eqid 2732 | . . . . 5 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
21 | 2, 4, 11, 12, 17, 19, 15, 20 | qusaddval 17495 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → ([𝑎] ∼ (+g‘𝑈)[𝑏] ∼ ) = [(𝑎(+g‘𝐺)𝑏)] ∼ ) |
22 | 21 | 3expb 1120 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ([𝑎] ∼ (+g‘𝑈)[𝑏] ∼ ) = [(𝑎(+g‘𝐺)𝑏)] ∼ ) |
23 | 6, 5, 3, 9 | eqg0subgecsn 19068 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑎 ∈ 𝐵) → [𝑎] ∼ = {𝑎}) |
24 | 23 | adantrr 715 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → [𝑎] ∼ = {𝑎}) |
25 | 6, 5, 3, 9 | eqg0subgecsn 19068 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑏 ∈ 𝐵) → [𝑏] ∼ = {𝑏}) |
26 | 25 | adantrl 714 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → [𝑏] ∼ = {𝑏}) |
27 | 24, 26 | oveq12d 7423 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ([𝑎] ∼ (+g‘𝑈)[𝑏] ∼ ) = ({𝑎} (+g‘𝑈){𝑏})) |
28 | 3, 15 | grpcl 18823 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝐺)𝑏) ∈ 𝐵) |
29 | 28 | 3expb 1120 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝐺)𝑏) ∈ 𝐵) |
30 | 6, 5, 3, 9 | eqg0subgecsn 19068 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑎(+g‘𝐺)𝑏) ∈ 𝐵) → [(𝑎(+g‘𝐺)𝑏)] ∼ = {(𝑎(+g‘𝐺)𝑏)}) |
31 | 29, 30 | syldan 591 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → [(𝑎(+g‘𝐺)𝑏)] ∼ = {(𝑎(+g‘𝐺)𝑏)}) |
32 | 22, 27, 31 | 3eqtr3d 2780 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ({𝑎} (+g‘𝑈){𝑏}) = {(𝑎(+g‘𝐺)𝑏)}) |
33 | 32 | ralrimivva 3200 | 1 ⊢ (𝐺 ∈ Grp → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ({𝑎} (+g‘𝑈){𝑏}) = {(𝑎(+g‘𝐺)𝑏)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 {csn 4627 class class class wbr 5147 ‘cfv 6540 (class class class)co 7405 Er wer 8696 [cec 8697 Basecbs 17140 +gcplusg 17193 0gc0g 17381 /s cqus 17447 Grpcgrp 18815 SubGrpcsubg 18994 NrmSGrpcnsg 18995 ~QG cqg 18996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-ec 8701 df-qs 8705 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-0g 17383 df-imas 17450 df-qus 17451 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-subg 18997 df-nsg 18998 df-eqg 18999 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |