MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubm Structured version   Visualization version   GIF version

Theorem cycsubm 19114
Description: The set of nonnegative integer powers of an element 𝐴 of a monoid forms a submonoid containing 𝐴 (see cycsubmcl 19113), called the cyclic monoid generated by the element 𝐴. This corresponds to the statement in [Lang] p. 6. (Contributed by AV, 28-Dec-2023.)
Hypotheses
Ref Expression
cycsubm.b 𝐵 = (Base‘𝐺)
cycsubm.t · = (.g𝐺)
cycsubm.f 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
cycsubm.c 𝐶 = ran 𝐹
Assertion
Ref Expression
cycsubm ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐶 ∈ (SubMnd‘𝐺))
Distinct variable groups:   𝑥,𝐴   𝑥, ·   𝑥,𝐵   𝑥,𝐺
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem cycsubm
Dummy variables 𝑖 𝑎 𝑏 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycsubm.c . . 3 𝐶 = ran 𝐹
2 cycsubm.b . . . . . . . 8 𝐵 = (Base‘𝐺)
3 cycsubm.t . . . . . . . 8 · = (.g𝐺)
42, 3mulgnn0cl 19003 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑥 ∈ ℕ0𝐴𝐵) → (𝑥 · 𝐴) ∈ 𝐵)
543expa 1118 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑥 ∈ ℕ0) ∧ 𝐴𝐵) → (𝑥 · 𝐴) ∈ 𝐵)
65an32s 652 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑥 · 𝐴) ∈ 𝐵)
7 cycsubm.f . . . . 5 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
86, 7fmptd 7047 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐹:ℕ0𝐵)
98frnd 6659 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ran 𝐹𝐵)
101, 9eqsstrid 3968 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐶𝐵)
11 0nn0 12396 . . . . 5 0 ∈ ℕ0
1211a1i 11 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 0 ∈ ℕ0)
13 oveq1 7353 . . . . . 6 (𝑖 = 0 → (𝑖 · 𝐴) = (0 · 𝐴))
1413eqeq2d 2742 . . . . 5 (𝑖 = 0 → ((0g𝐺) = (𝑖 · 𝐴) ↔ (0g𝐺) = (0 · 𝐴)))
1514adantl 481 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 = 0) → ((0g𝐺) = (𝑖 · 𝐴) ↔ (0g𝐺) = (0 · 𝐴)))
16 eqid 2731 . . . . . . 7 (0g𝐺) = (0g𝐺)
172, 16, 3mulg0 18987 . . . . . 6 (𝐴𝐵 → (0 · 𝐴) = (0g𝐺))
1817adantl 481 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (0 · 𝐴) = (0g𝐺))
1918eqcomd 2737 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (0g𝐺) = (0 · 𝐴))
2012, 15, 19rspcedvd 3574 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ∃𝑖 ∈ ℕ0 (0g𝐺) = (𝑖 · 𝐴))
212, 3, 7, 1cycsubmel 19112 . . 3 ((0g𝐺) ∈ 𝐶 ↔ ∃𝑖 ∈ ℕ0 (0g𝐺) = (𝑖 · 𝐴))
2220, 21sylibr 234 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (0g𝐺) ∈ 𝐶)
23 simplr 768 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝑖 ∈ ℕ0)
24 simpr 484 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
2523, 24nn0addcld 12446 . . . . . . . . . . 11 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → (𝑖 + 𝑗) ∈ ℕ0)
2625adantr 480 . . . . . . . . . 10 (((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴))) → (𝑖 + 𝑗) ∈ ℕ0)
27 oveq1 7353 . . . . . . . . . . . 12 (𝑘 = (𝑖 + 𝑗) → (𝑘 · 𝐴) = ((𝑖 + 𝑗) · 𝐴))
2827eqeq2d 2742 . . . . . . . . . . 11 (𝑘 = (𝑖 + 𝑗) → ((𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴) ↔ (𝑎(+g𝐺)𝑏) = ((𝑖 + 𝑗) · 𝐴)))
2928adantl 481 . . . . . . . . . 10 ((((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴))) ∧ 𝑘 = (𝑖 + 𝑗)) → ((𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴) ↔ (𝑎(+g𝐺)𝑏) = ((𝑖 + 𝑗) · 𝐴)))
30 oveq12 7355 . . . . . . . . . . . 12 ((𝑎 = (𝑖 · 𝐴) ∧ 𝑏 = (𝑗 · 𝐴)) → (𝑎(+g𝐺)𝑏) = ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)))
3130ancoms 458 . . . . . . . . . . 11 ((𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴)) → (𝑎(+g𝐺)𝑏) = ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)))
32 simplll 774 . . . . . . . . . . . . 13 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝐺 ∈ Mnd)
33 simpllr 775 . . . . . . . . . . . . 13 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝐴𝐵)
34 eqid 2731 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
352, 3, 34mulgnn0dir 19017 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ (𝑖 ∈ ℕ0𝑗 ∈ ℕ0𝐴𝐵)) → ((𝑖 + 𝑗) · 𝐴) = ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)))
3632, 23, 24, 33, 35syl13anc 1374 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → ((𝑖 + 𝑗) · 𝐴) = ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)))
3736eqcomd 2737 . . . . . . . . . . 11 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)) = ((𝑖 + 𝑗) · 𝐴))
3831, 37sylan9eqr 2788 . . . . . . . . . 10 (((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴))) → (𝑎(+g𝐺)𝑏) = ((𝑖 + 𝑗) · 𝐴))
3926, 29, 38rspcedvd 3574 . . . . . . . . 9 (((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴))) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))
4039exp32 420 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → (𝑏 = (𝑗 · 𝐴) → (𝑎 = (𝑖 · 𝐴) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))))
4140rexlimdva 3133 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) → (∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴) → (𝑎 = (𝑖 · 𝐴) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))))
4241com23 86 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) → (𝑎 = (𝑖 · 𝐴) → (∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))))
4342rexlimdva 3133 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (∃𝑖 ∈ ℕ0 𝑎 = (𝑖 · 𝐴) → (∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))))
4443impd 410 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ((∃𝑖 ∈ ℕ0 𝑎 = (𝑖 · 𝐴) ∧ ∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴)) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴)))
452, 3, 7, 1cycsubmel 19112 . . . . 5 (𝑎𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑎 = (𝑖 · 𝐴))
462, 3, 7, 1cycsubmel 19112 . . . . 5 (𝑏𝐶 ↔ ∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴))
4745, 46anbi12i 628 . . . 4 ((𝑎𝐶𝑏𝐶) ↔ (∃𝑖 ∈ ℕ0 𝑎 = (𝑖 · 𝐴) ∧ ∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴)))
482, 3, 7, 1cycsubmel 19112 . . . 4 ((𝑎(+g𝐺)𝑏) ∈ 𝐶 ↔ ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))
4944, 47, 483imtr4g 296 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ((𝑎𝐶𝑏𝐶) → (𝑎(+g𝐺)𝑏) ∈ 𝐶))
5049ralrimivv 3173 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ∀𝑎𝐶𝑏𝐶 (𝑎(+g𝐺)𝑏) ∈ 𝐶)
512, 16, 34issubm 18711 . . 3 (𝐺 ∈ Mnd → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶𝐵 ∧ (0g𝐺) ∈ 𝐶 ∧ ∀𝑎𝐶𝑏𝐶 (𝑎(+g𝐺)𝑏) ∈ 𝐶)))
5251adantr 480 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶𝐵 ∧ (0g𝐺) ∈ 𝐶 ∧ ∀𝑎𝐶𝑏𝐶 (𝑎(+g𝐺)𝑏) ∈ 𝐶)))
5310, 22, 50, 52mpbir3and 1343 1 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐶 ∈ (SubMnd‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3897  cmpt 5170  ran crn 5615  cfv 6481  (class class class)co 7346  0cc0 11006   + caddc 11009  0cn0 12381  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Mndcmnd 18642  SubMndcsubmnd 18690  .gcmg 18980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-seq 13909  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981
This theorem is referenced by:  cycsubmcmn  19801
  Copyright terms: Public domain W3C validator