MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubm Structured version   Visualization version   GIF version

Theorem cycsubm 18821
Description: The set of nonnegative integer powers of an element 𝐴 of a monoid forms a submonoid containing 𝐴 (see cycsubmcl 18820), called the cyclic monoid generated by the element 𝐴. This corresponds to the statement in [Lang] p. 6. (Contributed by AV, 28-Dec-2023.)
Hypotheses
Ref Expression
cycsubm.b 𝐵 = (Base‘𝐺)
cycsubm.t · = (.g𝐺)
cycsubm.f 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
cycsubm.c 𝐶 = ran 𝐹
Assertion
Ref Expression
cycsubm ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐶 ∈ (SubMnd‘𝐺))
Distinct variable groups:   𝑥,𝐴   𝑥, ·   𝑥,𝐵   𝑥,𝐺
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem cycsubm
Dummy variables 𝑖 𝑎 𝑏 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycsubm.c . . 3 𝐶 = ran 𝐹
2 cycsubm.b . . . . . . . 8 𝐵 = (Base‘𝐺)
3 cycsubm.t . . . . . . . 8 · = (.g𝐺)
42, 3mulgnn0cl 18720 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑥 ∈ ℕ0𝐴𝐵) → (𝑥 · 𝐴) ∈ 𝐵)
543expa 1117 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑥 ∈ ℕ0) ∧ 𝐴𝐵) → (𝑥 · 𝐴) ∈ 𝐵)
65an32s 649 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑥 · 𝐴) ∈ 𝐵)
7 cycsubm.f . . . . 5 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
86, 7fmptd 6988 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐹:ℕ0𝐵)
98frnd 6608 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ran 𝐹𝐵)
101, 9eqsstrid 3969 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐶𝐵)
11 0nn0 12248 . . . . 5 0 ∈ ℕ0
1211a1i 11 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 0 ∈ ℕ0)
13 oveq1 7282 . . . . . 6 (𝑖 = 0 → (𝑖 · 𝐴) = (0 · 𝐴))
1413eqeq2d 2749 . . . . 5 (𝑖 = 0 → ((0g𝐺) = (𝑖 · 𝐴) ↔ (0g𝐺) = (0 · 𝐴)))
1514adantl 482 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 = 0) → ((0g𝐺) = (𝑖 · 𝐴) ↔ (0g𝐺) = (0 · 𝐴)))
16 eqid 2738 . . . . . . 7 (0g𝐺) = (0g𝐺)
172, 16, 3mulg0 18707 . . . . . 6 (𝐴𝐵 → (0 · 𝐴) = (0g𝐺))
1817adantl 482 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (0 · 𝐴) = (0g𝐺))
1918eqcomd 2744 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (0g𝐺) = (0 · 𝐴))
2012, 15, 19rspcedvd 3563 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ∃𝑖 ∈ ℕ0 (0g𝐺) = (𝑖 · 𝐴))
212, 3, 7, 1cycsubmel 18819 . . 3 ((0g𝐺) ∈ 𝐶 ↔ ∃𝑖 ∈ ℕ0 (0g𝐺) = (𝑖 · 𝐴))
2220, 21sylibr 233 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (0g𝐺) ∈ 𝐶)
23 simplr 766 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝑖 ∈ ℕ0)
24 simpr 485 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
2523, 24nn0addcld 12297 . . . . . . . . . . 11 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → (𝑖 + 𝑗) ∈ ℕ0)
2625adantr 481 . . . . . . . . . 10 (((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴))) → (𝑖 + 𝑗) ∈ ℕ0)
27 oveq1 7282 . . . . . . . . . . . 12 (𝑘 = (𝑖 + 𝑗) → (𝑘 · 𝐴) = ((𝑖 + 𝑗) · 𝐴))
2827eqeq2d 2749 . . . . . . . . . . 11 (𝑘 = (𝑖 + 𝑗) → ((𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴) ↔ (𝑎(+g𝐺)𝑏) = ((𝑖 + 𝑗) · 𝐴)))
2928adantl 482 . . . . . . . . . 10 ((((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴))) ∧ 𝑘 = (𝑖 + 𝑗)) → ((𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴) ↔ (𝑎(+g𝐺)𝑏) = ((𝑖 + 𝑗) · 𝐴)))
30 oveq12 7284 . . . . . . . . . . . 12 ((𝑎 = (𝑖 · 𝐴) ∧ 𝑏 = (𝑗 · 𝐴)) → (𝑎(+g𝐺)𝑏) = ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)))
3130ancoms 459 . . . . . . . . . . 11 ((𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴)) → (𝑎(+g𝐺)𝑏) = ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)))
32 simplll 772 . . . . . . . . . . . . 13 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝐺 ∈ Mnd)
33 simpllr 773 . . . . . . . . . . . . 13 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝐴𝐵)
34 eqid 2738 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
352, 3, 34mulgnn0dir 18733 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ (𝑖 ∈ ℕ0𝑗 ∈ ℕ0𝐴𝐵)) → ((𝑖 + 𝑗) · 𝐴) = ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)))
3632, 23, 24, 33, 35syl13anc 1371 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → ((𝑖 + 𝑗) · 𝐴) = ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)))
3736eqcomd 2744 . . . . . . . . . . 11 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)) = ((𝑖 + 𝑗) · 𝐴))
3831, 37sylan9eqr 2800 . . . . . . . . . 10 (((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴))) → (𝑎(+g𝐺)𝑏) = ((𝑖 + 𝑗) · 𝐴))
3926, 29, 38rspcedvd 3563 . . . . . . . . 9 (((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴))) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))
4039exp32 421 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → (𝑏 = (𝑗 · 𝐴) → (𝑎 = (𝑖 · 𝐴) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))))
4140rexlimdva 3213 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) → (∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴) → (𝑎 = (𝑖 · 𝐴) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))))
4241com23 86 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) → (𝑎 = (𝑖 · 𝐴) → (∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))))
4342rexlimdva 3213 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (∃𝑖 ∈ ℕ0 𝑎 = (𝑖 · 𝐴) → (∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))))
4443impd 411 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ((∃𝑖 ∈ ℕ0 𝑎 = (𝑖 · 𝐴) ∧ ∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴)) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴)))
452, 3, 7, 1cycsubmel 18819 . . . . 5 (𝑎𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑎 = (𝑖 · 𝐴))
462, 3, 7, 1cycsubmel 18819 . . . . 5 (𝑏𝐶 ↔ ∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴))
4745, 46anbi12i 627 . . . 4 ((𝑎𝐶𝑏𝐶) ↔ (∃𝑖 ∈ ℕ0 𝑎 = (𝑖 · 𝐴) ∧ ∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴)))
482, 3, 7, 1cycsubmel 18819 . . . 4 ((𝑎(+g𝐺)𝑏) ∈ 𝐶 ↔ ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))
4944, 47, 483imtr4g 296 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ((𝑎𝐶𝑏𝐶) → (𝑎(+g𝐺)𝑏) ∈ 𝐶))
5049ralrimivv 3122 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ∀𝑎𝐶𝑏𝐶 (𝑎(+g𝐺)𝑏) ∈ 𝐶)
512, 16, 34issubm 18442 . . 3 (𝐺 ∈ Mnd → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶𝐵 ∧ (0g𝐺) ∈ 𝐶 ∧ ∀𝑎𝐶𝑏𝐶 (𝑎(+g𝐺)𝑏) ∈ 𝐶)))
5251adantr 481 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶𝐵 ∧ (0g𝐺) ∈ 𝐶 ∧ ∀𝑎𝐶𝑏𝐶 (𝑎(+g𝐺)𝑏) ∈ 𝐶)))
5310, 22, 50, 52mpbir3and 1341 1 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐶 ∈ (SubMnd‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887  cmpt 5157  ran crn 5590  cfv 6433  (class class class)co 7275  0cc0 10871   + caddc 10874  0cn0 12233  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Mndcmnd 18385  SubMndcsubmnd 18429  .gcmg 18700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701
This theorem is referenced by:  cycsubmcmn  19489
  Copyright terms: Public domain W3C validator