MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubm Structured version   Visualization version   GIF version

Theorem cycsubm 18736
Description: The set of nonnegative integer powers of an element 𝐴 of a monoid forms a submonoid containing 𝐴 (see cycsubmcl 18735), called the cyclic monoid generated by the element 𝐴. This corresponds to the statement in [Lang] p. 6. (Contributed by AV, 28-Dec-2023.)
Hypotheses
Ref Expression
cycsubm.b 𝐵 = (Base‘𝐺)
cycsubm.t · = (.g𝐺)
cycsubm.f 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
cycsubm.c 𝐶 = ran 𝐹
Assertion
Ref Expression
cycsubm ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐶 ∈ (SubMnd‘𝐺))
Distinct variable groups:   𝑥,𝐴   𝑥, ·   𝑥,𝐵   𝑥,𝐺
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem cycsubm
Dummy variables 𝑖 𝑎 𝑏 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycsubm.c . . 3 𝐶 = ran 𝐹
2 cycsubm.b . . . . . . . 8 𝐵 = (Base‘𝐺)
3 cycsubm.t . . . . . . . 8 · = (.g𝐺)
42, 3mulgnn0cl 18635 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑥 ∈ ℕ0𝐴𝐵) → (𝑥 · 𝐴) ∈ 𝐵)
543expa 1116 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑥 ∈ ℕ0) ∧ 𝐴𝐵) → (𝑥 · 𝐴) ∈ 𝐵)
65an32s 648 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑥 · 𝐴) ∈ 𝐵)
7 cycsubm.f . . . . 5 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
86, 7fmptd 6970 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐹:ℕ0𝐵)
98frnd 6592 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ran 𝐹𝐵)
101, 9eqsstrid 3965 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐶𝐵)
11 0nn0 12178 . . . . 5 0 ∈ ℕ0
1211a1i 11 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 0 ∈ ℕ0)
13 oveq1 7262 . . . . . 6 (𝑖 = 0 → (𝑖 · 𝐴) = (0 · 𝐴))
1413eqeq2d 2749 . . . . 5 (𝑖 = 0 → ((0g𝐺) = (𝑖 · 𝐴) ↔ (0g𝐺) = (0 · 𝐴)))
1514adantl 481 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 = 0) → ((0g𝐺) = (𝑖 · 𝐴) ↔ (0g𝐺) = (0 · 𝐴)))
16 eqid 2738 . . . . . . 7 (0g𝐺) = (0g𝐺)
172, 16, 3mulg0 18622 . . . . . 6 (𝐴𝐵 → (0 · 𝐴) = (0g𝐺))
1817adantl 481 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (0 · 𝐴) = (0g𝐺))
1918eqcomd 2744 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (0g𝐺) = (0 · 𝐴))
2012, 15, 19rspcedvd 3555 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ∃𝑖 ∈ ℕ0 (0g𝐺) = (𝑖 · 𝐴))
212, 3, 7, 1cycsubmel 18734 . . 3 ((0g𝐺) ∈ 𝐶 ↔ ∃𝑖 ∈ ℕ0 (0g𝐺) = (𝑖 · 𝐴))
2220, 21sylibr 233 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (0g𝐺) ∈ 𝐶)
23 simplr 765 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝑖 ∈ ℕ0)
24 simpr 484 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
2523, 24nn0addcld 12227 . . . . . . . . . . 11 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → (𝑖 + 𝑗) ∈ ℕ0)
2625adantr 480 . . . . . . . . . 10 (((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴))) → (𝑖 + 𝑗) ∈ ℕ0)
27 oveq1 7262 . . . . . . . . . . . 12 (𝑘 = (𝑖 + 𝑗) → (𝑘 · 𝐴) = ((𝑖 + 𝑗) · 𝐴))
2827eqeq2d 2749 . . . . . . . . . . 11 (𝑘 = (𝑖 + 𝑗) → ((𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴) ↔ (𝑎(+g𝐺)𝑏) = ((𝑖 + 𝑗) · 𝐴)))
2928adantl 481 . . . . . . . . . 10 ((((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴))) ∧ 𝑘 = (𝑖 + 𝑗)) → ((𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴) ↔ (𝑎(+g𝐺)𝑏) = ((𝑖 + 𝑗) · 𝐴)))
30 oveq12 7264 . . . . . . . . . . . 12 ((𝑎 = (𝑖 · 𝐴) ∧ 𝑏 = (𝑗 · 𝐴)) → (𝑎(+g𝐺)𝑏) = ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)))
3130ancoms 458 . . . . . . . . . . 11 ((𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴)) → (𝑎(+g𝐺)𝑏) = ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)))
32 simplll 771 . . . . . . . . . . . . 13 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝐺 ∈ Mnd)
33 simpllr 772 . . . . . . . . . . . . 13 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝐴𝐵)
34 eqid 2738 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
352, 3, 34mulgnn0dir 18648 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ (𝑖 ∈ ℕ0𝑗 ∈ ℕ0𝐴𝐵)) → ((𝑖 + 𝑗) · 𝐴) = ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)))
3632, 23, 24, 33, 35syl13anc 1370 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → ((𝑖 + 𝑗) · 𝐴) = ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)))
3736eqcomd 2744 . . . . . . . . . . 11 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)) = ((𝑖 + 𝑗) · 𝐴))
3831, 37sylan9eqr 2801 . . . . . . . . . 10 (((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴))) → (𝑎(+g𝐺)𝑏) = ((𝑖 + 𝑗) · 𝐴))
3926, 29, 38rspcedvd 3555 . . . . . . . . 9 (((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴))) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))
4039exp32 420 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → (𝑏 = (𝑗 · 𝐴) → (𝑎 = (𝑖 · 𝐴) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))))
4140rexlimdva 3212 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) → (∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴) → (𝑎 = (𝑖 · 𝐴) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))))
4241com23 86 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) → (𝑎 = (𝑖 · 𝐴) → (∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))))
4342rexlimdva 3212 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (∃𝑖 ∈ ℕ0 𝑎 = (𝑖 · 𝐴) → (∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))))
4443impd 410 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ((∃𝑖 ∈ ℕ0 𝑎 = (𝑖 · 𝐴) ∧ ∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴)) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴)))
452, 3, 7, 1cycsubmel 18734 . . . . 5 (𝑎𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑎 = (𝑖 · 𝐴))
462, 3, 7, 1cycsubmel 18734 . . . . 5 (𝑏𝐶 ↔ ∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴))
4745, 46anbi12i 626 . . . 4 ((𝑎𝐶𝑏𝐶) ↔ (∃𝑖 ∈ ℕ0 𝑎 = (𝑖 · 𝐴) ∧ ∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴)))
482, 3, 7, 1cycsubmel 18734 . . . 4 ((𝑎(+g𝐺)𝑏) ∈ 𝐶 ↔ ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))
4944, 47, 483imtr4g 295 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ((𝑎𝐶𝑏𝐶) → (𝑎(+g𝐺)𝑏) ∈ 𝐶))
5049ralrimivv 3113 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ∀𝑎𝐶𝑏𝐶 (𝑎(+g𝐺)𝑏) ∈ 𝐶)
512, 16, 34issubm 18357 . . 3 (𝐺 ∈ Mnd → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶𝐵 ∧ (0g𝐺) ∈ 𝐶 ∧ ∀𝑎𝐶𝑏𝐶 (𝑎(+g𝐺)𝑏) ∈ 𝐶)))
5251adantr 480 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶𝐵 ∧ (0g𝐺) ∈ 𝐶 ∧ ∀𝑎𝐶𝑏𝐶 (𝑎(+g𝐺)𝑏) ∈ 𝐶)))
5310, 22, 50, 52mpbir3and 1340 1 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐶 ∈ (SubMnd‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883  cmpt 5153  ran crn 5581  cfv 6418  (class class class)co 7255  0cc0 10802   + caddc 10805  0cn0 12163  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Mndcmnd 18300  SubMndcsubmnd 18344  .gcmg 18615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616
This theorem is referenced by:  cycsubmcmn  19404
  Copyright terms: Public domain W3C validator