MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubm Structured version   Visualization version   GIF version

Theorem cycsubm 19148
Description: The set of nonnegative integer powers of an element 𝐴 of a monoid forms a submonoid containing 𝐴 (see cycsubmcl 19147), called the cyclic monoid generated by the element 𝐴. This corresponds to the statement in [Lang] p. 6. (Contributed by AV, 28-Dec-2023.)
Hypotheses
Ref Expression
cycsubm.b 𝐵 = (Base‘𝐺)
cycsubm.t · = (.g𝐺)
cycsubm.f 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
cycsubm.c 𝐶 = ran 𝐹
Assertion
Ref Expression
cycsubm ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐶 ∈ (SubMnd‘𝐺))
Distinct variable groups:   𝑥,𝐴   𝑥, ·   𝑥,𝐵   𝑥,𝐺
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem cycsubm
Dummy variables 𝑖 𝑎 𝑏 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycsubm.c . . 3 𝐶 = ran 𝐹
2 cycsubm.b . . . . . . . 8 𝐵 = (Base‘𝐺)
3 cycsubm.t . . . . . . . 8 · = (.g𝐺)
42, 3mulgnn0cl 19036 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑥 ∈ ℕ0𝐴𝐵) → (𝑥 · 𝐴) ∈ 𝐵)
543expa 1116 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑥 ∈ ℕ0) ∧ 𝐴𝐵) → (𝑥 · 𝐴) ∈ 𝐵)
65an32s 651 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑥 · 𝐴) ∈ 𝐵)
7 cycsubm.f . . . . 5 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
86, 7fmptd 7118 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐹:ℕ0𝐵)
98frnd 6724 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ran 𝐹𝐵)
101, 9eqsstrid 4026 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐶𝐵)
11 0nn0 12509 . . . . 5 0 ∈ ℕ0
1211a1i 11 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 0 ∈ ℕ0)
13 oveq1 7421 . . . . . 6 (𝑖 = 0 → (𝑖 · 𝐴) = (0 · 𝐴))
1413eqeq2d 2738 . . . . 5 (𝑖 = 0 → ((0g𝐺) = (𝑖 · 𝐴) ↔ (0g𝐺) = (0 · 𝐴)))
1514adantl 481 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 = 0) → ((0g𝐺) = (𝑖 · 𝐴) ↔ (0g𝐺) = (0 · 𝐴)))
16 eqid 2727 . . . . . . 7 (0g𝐺) = (0g𝐺)
172, 16, 3mulg0 19021 . . . . . 6 (𝐴𝐵 → (0 · 𝐴) = (0g𝐺))
1817adantl 481 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (0 · 𝐴) = (0g𝐺))
1918eqcomd 2733 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (0g𝐺) = (0 · 𝐴))
2012, 15, 19rspcedvd 3609 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ∃𝑖 ∈ ℕ0 (0g𝐺) = (𝑖 · 𝐴))
212, 3, 7, 1cycsubmel 19146 . . 3 ((0g𝐺) ∈ 𝐶 ↔ ∃𝑖 ∈ ℕ0 (0g𝐺) = (𝑖 · 𝐴))
2220, 21sylibr 233 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (0g𝐺) ∈ 𝐶)
23 simplr 768 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝑖 ∈ ℕ0)
24 simpr 484 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
2523, 24nn0addcld 12558 . . . . . . . . . . 11 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → (𝑖 + 𝑗) ∈ ℕ0)
2625adantr 480 . . . . . . . . . 10 (((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴))) → (𝑖 + 𝑗) ∈ ℕ0)
27 oveq1 7421 . . . . . . . . . . . 12 (𝑘 = (𝑖 + 𝑗) → (𝑘 · 𝐴) = ((𝑖 + 𝑗) · 𝐴))
2827eqeq2d 2738 . . . . . . . . . . 11 (𝑘 = (𝑖 + 𝑗) → ((𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴) ↔ (𝑎(+g𝐺)𝑏) = ((𝑖 + 𝑗) · 𝐴)))
2928adantl 481 . . . . . . . . . 10 ((((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴))) ∧ 𝑘 = (𝑖 + 𝑗)) → ((𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴) ↔ (𝑎(+g𝐺)𝑏) = ((𝑖 + 𝑗) · 𝐴)))
30 oveq12 7423 . . . . . . . . . . . 12 ((𝑎 = (𝑖 · 𝐴) ∧ 𝑏 = (𝑗 · 𝐴)) → (𝑎(+g𝐺)𝑏) = ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)))
3130ancoms 458 . . . . . . . . . . 11 ((𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴)) → (𝑎(+g𝐺)𝑏) = ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)))
32 simplll 774 . . . . . . . . . . . . 13 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝐺 ∈ Mnd)
33 simpllr 775 . . . . . . . . . . . . 13 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝐴𝐵)
34 eqid 2727 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
352, 3, 34mulgnn0dir 19050 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ (𝑖 ∈ ℕ0𝑗 ∈ ℕ0𝐴𝐵)) → ((𝑖 + 𝑗) · 𝐴) = ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)))
3632, 23, 24, 33, 35syl13anc 1370 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → ((𝑖 + 𝑗) · 𝐴) = ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)))
3736eqcomd 2733 . . . . . . . . . . 11 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)) = ((𝑖 + 𝑗) · 𝐴))
3831, 37sylan9eqr 2789 . . . . . . . . . 10 (((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴))) → (𝑎(+g𝐺)𝑏) = ((𝑖 + 𝑗) · 𝐴))
3926, 29, 38rspcedvd 3609 . . . . . . . . 9 (((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴))) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))
4039exp32 420 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → (𝑏 = (𝑗 · 𝐴) → (𝑎 = (𝑖 · 𝐴) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))))
4140rexlimdva 3150 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) → (∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴) → (𝑎 = (𝑖 · 𝐴) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))))
4241com23 86 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) → (𝑎 = (𝑖 · 𝐴) → (∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))))
4342rexlimdva 3150 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (∃𝑖 ∈ ℕ0 𝑎 = (𝑖 · 𝐴) → (∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))))
4443impd 410 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ((∃𝑖 ∈ ℕ0 𝑎 = (𝑖 · 𝐴) ∧ ∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴)) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴)))
452, 3, 7, 1cycsubmel 19146 . . . . 5 (𝑎𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑎 = (𝑖 · 𝐴))
462, 3, 7, 1cycsubmel 19146 . . . . 5 (𝑏𝐶 ↔ ∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴))
4745, 46anbi12i 626 . . . 4 ((𝑎𝐶𝑏𝐶) ↔ (∃𝑖 ∈ ℕ0 𝑎 = (𝑖 · 𝐴) ∧ ∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴)))
482, 3, 7, 1cycsubmel 19146 . . . 4 ((𝑎(+g𝐺)𝑏) ∈ 𝐶 ↔ ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))
4944, 47, 483imtr4g 296 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ((𝑎𝐶𝑏𝐶) → (𝑎(+g𝐺)𝑏) ∈ 𝐶))
5049ralrimivv 3193 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ∀𝑎𝐶𝑏𝐶 (𝑎(+g𝐺)𝑏) ∈ 𝐶)
512, 16, 34issubm 18746 . . 3 (𝐺 ∈ Mnd → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶𝐵 ∧ (0g𝐺) ∈ 𝐶 ∧ ∀𝑎𝐶𝑏𝐶 (𝑎(+g𝐺)𝑏) ∈ 𝐶)))
5251adantr 480 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶𝐵 ∧ (0g𝐺) ∈ 𝐶 ∧ ∀𝑎𝐶𝑏𝐶 (𝑎(+g𝐺)𝑏) ∈ 𝐶)))
5310, 22, 50, 52mpbir3and 1340 1 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐶 ∈ (SubMnd‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3056  wrex 3065  wss 3944  cmpt 5225  ran crn 5673  cfv 6542  (class class class)co 7414  0cc0 11130   + caddc 11133  0cn0 12494  Basecbs 17171  +gcplusg 17224  0gc0g 17412  Mndcmnd 18685  SubMndcsubmnd 18730  .gcmg 19014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-n0 12495  df-z 12581  df-uz 12845  df-fz 13509  df-seq 13991  df-0g 17414  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-submnd 18732  df-mulg 19015
This theorem is referenced by:  cycsubmcmn  19835
  Copyright terms: Public domain W3C validator