Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubm Structured version   Visualization version   GIF version

Theorem cycsubm 18417
 Description: The set of nonnegative integer powers of an element 𝐴 of a monoid forms a submonoid containing 𝐴 (see cycsubmcl 18416), called the cyclic monoid generated by the element 𝐴. This corresponds to the statement in [Lang] p. 6. (Contributed by AV, 28-Dec-2023.)
Hypotheses
Ref Expression
cycsubm.b 𝐵 = (Base‘𝐺)
cycsubm.t · = (.g𝐺)
cycsubm.f 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
cycsubm.c 𝐶 = ran 𝐹
Assertion
Ref Expression
cycsubm ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐶 ∈ (SubMnd‘𝐺))
Distinct variable groups:   𝑥,𝐴   𝑥, ·   𝑥,𝐵   𝑥,𝐺
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem cycsubm
Dummy variables 𝑖 𝑎 𝑏 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycsubm.c . . 3 𝐶 = ran 𝐹
2 cycsubm.b . . . . . . . 8 𝐵 = (Base‘𝐺)
3 cycsubm.t . . . . . . . 8 · = (.g𝐺)
42, 3mulgnn0cl 18316 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑥 ∈ ℕ0𝐴𝐵) → (𝑥 · 𝐴) ∈ 𝐵)
543expa 1115 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑥 ∈ ℕ0) ∧ 𝐴𝐵) → (𝑥 · 𝐴) ∈ 𝐵)
65an32s 651 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑥 · 𝐴) ∈ 𝐵)
7 cycsubm.f . . . . 5 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
86, 7fmptd 6874 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐹:ℕ0𝐵)
98frnd 6509 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ran 𝐹𝐵)
101, 9eqsstrid 3942 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐶𝐵)
11 0nn0 11954 . . . . 5 0 ∈ ℕ0
1211a1i 11 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 0 ∈ ℕ0)
13 oveq1 7162 . . . . . 6 (𝑖 = 0 → (𝑖 · 𝐴) = (0 · 𝐴))
1413eqeq2d 2769 . . . . 5 (𝑖 = 0 → ((0g𝐺) = (𝑖 · 𝐴) ↔ (0g𝐺) = (0 · 𝐴)))
1514adantl 485 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 = 0) → ((0g𝐺) = (𝑖 · 𝐴) ↔ (0g𝐺) = (0 · 𝐴)))
16 eqid 2758 . . . . . . 7 (0g𝐺) = (0g𝐺)
172, 16, 3mulg0 18303 . . . . . 6 (𝐴𝐵 → (0 · 𝐴) = (0g𝐺))
1817adantl 485 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (0 · 𝐴) = (0g𝐺))
1918eqcomd 2764 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (0g𝐺) = (0 · 𝐴))
2012, 15, 19rspcedvd 3546 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ∃𝑖 ∈ ℕ0 (0g𝐺) = (𝑖 · 𝐴))
212, 3, 7, 1cycsubmel 18415 . . 3 ((0g𝐺) ∈ 𝐶 ↔ ∃𝑖 ∈ ℕ0 (0g𝐺) = (𝑖 · 𝐴))
2220, 21sylibr 237 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (0g𝐺) ∈ 𝐶)
23 simplr 768 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝑖 ∈ ℕ0)
24 simpr 488 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
2523, 24nn0addcld 12003 . . . . . . . . . . 11 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → (𝑖 + 𝑗) ∈ ℕ0)
2625adantr 484 . . . . . . . . . 10 (((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴))) → (𝑖 + 𝑗) ∈ ℕ0)
27 oveq1 7162 . . . . . . . . . . . 12 (𝑘 = (𝑖 + 𝑗) → (𝑘 · 𝐴) = ((𝑖 + 𝑗) · 𝐴))
2827eqeq2d 2769 . . . . . . . . . . 11 (𝑘 = (𝑖 + 𝑗) → ((𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴) ↔ (𝑎(+g𝐺)𝑏) = ((𝑖 + 𝑗) · 𝐴)))
2928adantl 485 . . . . . . . . . 10 ((((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴))) ∧ 𝑘 = (𝑖 + 𝑗)) → ((𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴) ↔ (𝑎(+g𝐺)𝑏) = ((𝑖 + 𝑗) · 𝐴)))
30 oveq12 7164 . . . . . . . . . . . 12 ((𝑎 = (𝑖 · 𝐴) ∧ 𝑏 = (𝑗 · 𝐴)) → (𝑎(+g𝐺)𝑏) = ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)))
3130ancoms 462 . . . . . . . . . . 11 ((𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴)) → (𝑎(+g𝐺)𝑏) = ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)))
32 simplll 774 . . . . . . . . . . . . 13 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝐺 ∈ Mnd)
33 simpllr 775 . . . . . . . . . . . . 13 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝐴𝐵)
34 eqid 2758 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
352, 3, 34mulgnn0dir 18329 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ (𝑖 ∈ ℕ0𝑗 ∈ ℕ0𝐴𝐵)) → ((𝑖 + 𝑗) · 𝐴) = ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)))
3632, 23, 24, 33, 35syl13anc 1369 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → ((𝑖 + 𝑗) · 𝐴) = ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)))
3736eqcomd 2764 . . . . . . . . . . 11 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → ((𝑖 · 𝐴)(+g𝐺)(𝑗 · 𝐴)) = ((𝑖 + 𝑗) · 𝐴))
3831, 37sylan9eqr 2815 . . . . . . . . . 10 (((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴))) → (𝑎(+g𝐺)𝑏) = ((𝑖 + 𝑗) · 𝐴))
3926, 29, 38rspcedvd 3546 . . . . . . . . 9 (((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝑏 = (𝑗 · 𝐴) ∧ 𝑎 = (𝑖 · 𝐴))) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))
4039exp32 424 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → (𝑏 = (𝑗 · 𝐴) → (𝑎 = (𝑖 · 𝐴) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))))
4140rexlimdva 3208 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) → (∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴) → (𝑎 = (𝑖 · 𝐴) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))))
4241com23 86 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ 𝑖 ∈ ℕ0) → (𝑎 = (𝑖 · 𝐴) → (∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))))
4342rexlimdva 3208 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (∃𝑖 ∈ ℕ0 𝑎 = (𝑖 · 𝐴) → (∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))))
4443impd 414 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ((∃𝑖 ∈ ℕ0 𝑎 = (𝑖 · 𝐴) ∧ ∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴)) → ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴)))
452, 3, 7, 1cycsubmel 18415 . . . . 5 (𝑎𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑎 = (𝑖 · 𝐴))
462, 3, 7, 1cycsubmel 18415 . . . . 5 (𝑏𝐶 ↔ ∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴))
4745, 46anbi12i 629 . . . 4 ((𝑎𝐶𝑏𝐶) ↔ (∃𝑖 ∈ ℕ0 𝑎 = (𝑖 · 𝐴) ∧ ∃𝑗 ∈ ℕ0 𝑏 = (𝑗 · 𝐴)))
482, 3, 7, 1cycsubmel 18415 . . . 4 ((𝑎(+g𝐺)𝑏) ∈ 𝐶 ↔ ∃𝑘 ∈ ℕ0 (𝑎(+g𝐺)𝑏) = (𝑘 · 𝐴))
4944, 47, 483imtr4g 299 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ((𝑎𝐶𝑏𝐶) → (𝑎(+g𝐺)𝑏) ∈ 𝐶))
5049ralrimivv 3119 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ∀𝑎𝐶𝑏𝐶 (𝑎(+g𝐺)𝑏) ∈ 𝐶)
512, 16, 34issubm 18039 . . 3 (𝐺 ∈ Mnd → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶𝐵 ∧ (0g𝐺) ∈ 𝐶 ∧ ∀𝑎𝐶𝑏𝐶 (𝑎(+g𝐺)𝑏) ∈ 𝐶)))
5251adantr 484 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶𝐵 ∧ (0g𝐺) ∈ 𝐶 ∧ ∀𝑎𝐶𝑏𝐶 (𝑎(+g𝐺)𝑏) ∈ 𝐶)))
5310, 22, 50, 52mpbir3and 1339 1 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐶 ∈ (SubMnd‘𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3070  ∃wrex 3071   ⊆ wss 3860   ↦ cmpt 5115  ran crn 5528  ‘cfv 6339  (class class class)co 7155  0cc0 10580   + caddc 10583  ℕ0cn0 11939  Basecbs 16546  +gcplusg 16628  0gc0g 16776  Mndcmnd 17982  SubMndcsubmnd 18026  .gcmg 18296 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-er 8304  df-en 8533  df-dom 8534  df-sdom 8535  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-n0 11940  df-z 12026  df-uz 12288  df-fz 12945  df-seq 13424  df-0g 16778  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-submnd 18028  df-mulg 18297 This theorem is referenced by:  cycsubmcmn  19081
 Copyright terms: Public domain W3C validator