MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubmcom Structured version   Visualization version   GIF version

Theorem cycsubmcom 19244
Description: The operation of a monoid is commutative over the set of nonnegative integer powers of an element 𝐴 of the monoid. (Contributed by AV, 20-Jan-2024.)
Hypotheses
Ref Expression
cycsubmcom.b 𝐵 = (Base‘𝐺)
cycsubmcom.t · = (.g𝐺)
cycsubmcom.f 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
cycsubmcom.c 𝐶 = ran 𝐹
cycsubmcom.p + = (+g𝐺)
Assertion
Ref Expression
cycsubmcom (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥, ·
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   + (𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem cycsubmcom
Dummy variables 𝑐 𝑖 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycsubmcom.b . . . . . 6 𝐵 = (Base‘𝐺)
2 cycsubmcom.t . . . . . 6 · = (.g𝐺)
3 cycsubmcom.f . . . . . 6 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
4 cycsubmcom.c . . . . . 6 𝐶 = ran 𝐹
51, 2, 3, 4cycsubmel 19240 . . . . 5 (𝑐𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴))
65biimpi 216 . . . 4 (𝑐𝐶 → ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴))
76adantl 481 . . 3 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ 𝑐𝐶) → ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴))
87ralrimiva 3152 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → ∀𝑐𝐶𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴))
9 simplll 774 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝐺 ∈ Mnd)
10 simprl 770 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑚 ∈ ℕ0)
11 simprr 772 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑛 ∈ ℕ0)
12 simpllr 775 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝐴𝐵)
13 cycsubmcom.p . . . . 5 + = (+g𝐺)
141, 2, 13mulgnn0dir 19144 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0𝐴𝐵)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴)))
159, 10, 11, 12, 14syl13anc 1372 . . 3 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴)))
1615ralrimivva 3208 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → ∀𝑚 ∈ ℕ0𝑛 ∈ ℕ0 ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴)))
17 simprl 770 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → 𝑋𝐶)
18 simprr 772 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → 𝑌𝐶)
19 nn0sscn 12558 . . 3 0 ⊆ ℂ
2019a1i 11 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → ℕ0 ⊆ ℂ)
218, 16, 17, 18, 20cyccom 19243 1 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  wss 3976  cmpt 5249  ran crn 5701  cfv 6573  (class class class)co 7448  cc 11182   + caddc 11187  0cn0 12553  Basecbs 17258  +gcplusg 17311  Mndcmnd 18772  .gcmg 19107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-seq 14053  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mulg 19108
This theorem is referenced by:  cycsubmcmn  19931
  Copyright terms: Public domain W3C validator