Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cycsubmcom | Structured version Visualization version GIF version |
Description: The operation of a monoid is commutative over the set of nonnegative integer powers of an element 𝐴 of the monoid. (Contributed by AV, 20-Jan-2024.) |
Ref | Expression |
---|---|
cycsubmcom.b | ⊢ 𝐵 = (Base‘𝐺) |
cycsubmcom.t | ⊢ · = (.g‘𝐺) |
cycsubmcom.f | ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) |
cycsubmcom.c | ⊢ 𝐶 = ran 𝐹 |
cycsubmcom.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
cycsubmcom | ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycsubmcom.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
2 | cycsubmcom.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
3 | cycsubmcom.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) | |
4 | cycsubmcom.c | . . . . . 6 ⊢ 𝐶 = ran 𝐹 | |
5 | 1, 2, 3, 4 | cycsubmel 18607 | . . . . 5 ⊢ (𝑐 ∈ 𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴)) |
6 | 5 | biimpi 219 | . . . 4 ⊢ (𝑐 ∈ 𝐶 → ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴)) |
7 | 6 | adantl 485 | . . 3 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ 𝑐 ∈ 𝐶) → ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴)) |
8 | 7 | ralrimiva 3105 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → ∀𝑐 ∈ 𝐶 ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴)) |
9 | simplll 775 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → 𝐺 ∈ Mnd) | |
10 | simprl 771 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → 𝑚 ∈ ℕ0) | |
11 | simprr 773 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → 𝑛 ∈ ℕ0) | |
12 | simpllr 776 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → 𝐴 ∈ 𝐵) | |
13 | cycsubmcom.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
14 | 1, 2, 13 | mulgnn0dir 18521 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴))) |
15 | 9, 10, 11, 12, 14 | syl13anc 1374 | . . 3 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴))) |
16 | 15 | ralrimivva 3112 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → ∀𝑚 ∈ ℕ0 ∀𝑛 ∈ ℕ0 ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴))) |
17 | simprl 771 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑋 ∈ 𝐶) | |
18 | simprr 773 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑌 ∈ 𝐶) | |
19 | nn0sscn 12095 | . . 3 ⊢ ℕ0 ⊆ ℂ | |
20 | 19 | a1i 11 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → ℕ0 ⊆ ℂ) |
21 | 8, 16, 17, 18, 20 | cyccom 18610 | 1 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 ⊆ wss 3866 ↦ cmpt 5135 ran crn 5552 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 + caddc 10732 ℕ0cn0 12090 Basecbs 16760 +gcplusg 16802 Mndcmnd 18173 .gcmg 18488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-seq 13575 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-mulg 18489 |
This theorem is referenced by: cycsubmcmn 19273 |
Copyright terms: Public domain | W3C validator |