MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubmcom Structured version   Visualization version   GIF version

Theorem cycsubmcom 19118
Description: The operation of a monoid is commutative over the set of nonnegative integer powers of an element 𝐴 of the monoid. (Contributed by AV, 20-Jan-2024.)
Hypotheses
Ref Expression
cycsubmcom.b 𝐵 = (Base‘𝐺)
cycsubmcom.t · = (.g𝐺)
cycsubmcom.f 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
cycsubmcom.c 𝐶 = ran 𝐹
cycsubmcom.p + = (+g𝐺)
Assertion
Ref Expression
cycsubmcom (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥, ·
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   + (𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem cycsubmcom
Dummy variables 𝑐 𝑖 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycsubmcom.b . . . . . 6 𝐵 = (Base‘𝐺)
2 cycsubmcom.t . . . . . 6 · = (.g𝐺)
3 cycsubmcom.f . . . . . 6 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
4 cycsubmcom.c . . . . . 6 𝐶 = ran 𝐹
51, 2, 3, 4cycsubmel 19114 . . . . 5 (𝑐𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴))
65biimpi 216 . . . 4 (𝑐𝐶 → ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴))
76adantl 481 . . 3 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ 𝑐𝐶) → ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴))
87ralrimiva 3125 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → ∀𝑐𝐶𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴))
9 simplll 774 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝐺 ∈ Mnd)
10 simprl 770 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑚 ∈ ℕ0)
11 simprr 772 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑛 ∈ ℕ0)
12 simpllr 775 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝐴𝐵)
13 cycsubmcom.p . . . . 5 + = (+g𝐺)
141, 2, 13mulgnn0dir 19018 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0𝐴𝐵)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴)))
159, 10, 11, 12, 14syl13anc 1374 . . 3 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴)))
1615ralrimivva 3178 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → ∀𝑚 ∈ ℕ0𝑛 ∈ ℕ0 ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴)))
17 simprl 770 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → 𝑋𝐶)
18 simprr 772 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → 𝑌𝐶)
19 nn0sscn 12423 . . 3 0 ⊆ ℂ
2019a1i 11 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → ℕ0 ⊆ ℂ)
218, 16, 17, 18, 20cyccom 19117 1 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  wss 3911  cmpt 5183  ran crn 5632  cfv 6499  (class class class)co 7369  cc 11042   + caddc 11047  0cn0 12418  Basecbs 17155  +gcplusg 17196  Mndcmnd 18643  .gcmg 18981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-seq 13943  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mulg 18982
This theorem is referenced by:  cycsubmcmn  19803
  Copyright terms: Public domain W3C validator