MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubmcom Structured version   Visualization version   GIF version

Theorem cycsubmcom 18823
Description: The operation of a monoid is commutative over the set of nonnegative integer powers of an element 𝐴 of the monoid. (Contributed by AV, 20-Jan-2024.)
Hypotheses
Ref Expression
cycsubmcom.b 𝐵 = (Base‘𝐺)
cycsubmcom.t · = (.g𝐺)
cycsubmcom.f 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
cycsubmcom.c 𝐶 = ran 𝐹
cycsubmcom.p + = (+g𝐺)
Assertion
Ref Expression
cycsubmcom (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥, ·
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   + (𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem cycsubmcom
Dummy variables 𝑐 𝑖 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycsubmcom.b . . . . . 6 𝐵 = (Base‘𝐺)
2 cycsubmcom.t . . . . . 6 · = (.g𝐺)
3 cycsubmcom.f . . . . . 6 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
4 cycsubmcom.c . . . . . 6 𝐶 = ran 𝐹
51, 2, 3, 4cycsubmel 18819 . . . . 5 (𝑐𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴))
65biimpi 215 . . . 4 (𝑐𝐶 → ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴))
76adantl 482 . . 3 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ 𝑐𝐶) → ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴))
87ralrimiva 3103 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → ∀𝑐𝐶𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴))
9 simplll 772 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝐺 ∈ Mnd)
10 simprl 768 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑚 ∈ ℕ0)
11 simprr 770 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑛 ∈ ℕ0)
12 simpllr 773 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝐴𝐵)
13 cycsubmcom.p . . . . 5 + = (+g𝐺)
141, 2, 13mulgnn0dir 18733 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0𝐴𝐵)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴)))
159, 10, 11, 12, 14syl13anc 1371 . . 3 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴)))
1615ralrimivva 3123 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → ∀𝑚 ∈ ℕ0𝑛 ∈ ℕ0 ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴)))
17 simprl 768 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → 𝑋𝐶)
18 simprr 770 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → 𝑌𝐶)
19 nn0sscn 12238 . . 3 0 ⊆ ℂ
2019a1i 11 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → ℕ0 ⊆ ℂ)
218, 16, 17, 18, 20cyccom 18822 1 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065  wss 3887  cmpt 5157  ran crn 5590  cfv 6433  (class class class)co 7275  cc 10869   + caddc 10874  0cn0 12233  Basecbs 16912  +gcplusg 16962  Mndcmnd 18385  .gcmg 18700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mulg 18701
This theorem is referenced by:  cycsubmcmn  19489
  Copyright terms: Public domain W3C validator