Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cycsubmcom | Structured version Visualization version GIF version |
Description: The operation of a monoid is commutative over the set of nonnegative integer powers of an element 𝐴 of the monoid. (Contributed by AV, 20-Jan-2024.) |
Ref | Expression |
---|---|
cycsubmcom.b | ⊢ 𝐵 = (Base‘𝐺) |
cycsubmcom.t | ⊢ · = (.g‘𝐺) |
cycsubmcom.f | ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) |
cycsubmcom.c | ⊢ 𝐶 = ran 𝐹 |
cycsubmcom.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
cycsubmcom | ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycsubmcom.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
2 | cycsubmcom.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
3 | cycsubmcom.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) | |
4 | cycsubmcom.c | . . . . . 6 ⊢ 𝐶 = ran 𝐹 | |
5 | 1, 2, 3, 4 | cycsubmel 18819 | . . . . 5 ⊢ (𝑐 ∈ 𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴)) |
6 | 5 | biimpi 215 | . . . 4 ⊢ (𝑐 ∈ 𝐶 → ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴)) |
7 | 6 | adantl 482 | . . 3 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ 𝑐 ∈ 𝐶) → ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴)) |
8 | 7 | ralrimiva 3103 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → ∀𝑐 ∈ 𝐶 ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴)) |
9 | simplll 772 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → 𝐺 ∈ Mnd) | |
10 | simprl 768 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → 𝑚 ∈ ℕ0) | |
11 | simprr 770 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → 𝑛 ∈ ℕ0) | |
12 | simpllr 773 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → 𝐴 ∈ 𝐵) | |
13 | cycsubmcom.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
14 | 1, 2, 13 | mulgnn0dir 18733 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴))) |
15 | 9, 10, 11, 12, 14 | syl13anc 1371 | . . 3 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴))) |
16 | 15 | ralrimivva 3123 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → ∀𝑚 ∈ ℕ0 ∀𝑛 ∈ ℕ0 ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴))) |
17 | simprl 768 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑋 ∈ 𝐶) | |
18 | simprr 770 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑌 ∈ 𝐶) | |
19 | nn0sscn 12238 | . . 3 ⊢ ℕ0 ⊆ ℂ | |
20 | 19 | a1i 11 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → ℕ0 ⊆ ℂ) |
21 | 8, 16, 17, 18, 20 | cyccom 18822 | 1 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ⊆ wss 3887 ↦ cmpt 5157 ran crn 5590 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 + caddc 10874 ℕ0cn0 12233 Basecbs 16912 +gcplusg 16962 Mndcmnd 18385 .gcmg 18700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-seq 13722 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mulg 18701 |
This theorem is referenced by: cycsubmcmn 19489 |
Copyright terms: Public domain | W3C validator |