| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cycsubmcom | Structured version Visualization version GIF version | ||
| Description: The operation of a monoid is commutative over the set of nonnegative integer powers of an element 𝐴 of the monoid. (Contributed by AV, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| cycsubmcom.b | ⊢ 𝐵 = (Base‘𝐺) |
| cycsubmcom.t | ⊢ · = (.g‘𝐺) |
| cycsubmcom.f | ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) |
| cycsubmcom.c | ⊢ 𝐶 = ran 𝐹 |
| cycsubmcom.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| cycsubmcom | ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubmcom.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | cycsubmcom.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
| 3 | cycsubmcom.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) | |
| 4 | cycsubmcom.c | . . . . . 6 ⊢ 𝐶 = ran 𝐹 | |
| 5 | 1, 2, 3, 4 | cycsubmel 19079 | . . . . 5 ⊢ (𝑐 ∈ 𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴)) |
| 6 | 5 | biimpi 216 | . . . 4 ⊢ (𝑐 ∈ 𝐶 → ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴)) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ 𝑐 ∈ 𝐶) → ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴)) |
| 8 | 7 | ralrimiva 3121 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → ∀𝑐 ∈ 𝐶 ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴)) |
| 9 | simplll 774 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → 𝐺 ∈ Mnd) | |
| 10 | simprl 770 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → 𝑚 ∈ ℕ0) | |
| 11 | simprr 772 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → 𝑛 ∈ ℕ0) | |
| 12 | simpllr 775 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → 𝐴 ∈ 𝐵) | |
| 13 | cycsubmcom.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 14 | 1, 2, 13 | mulgnn0dir 18983 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴))) |
| 15 | 9, 10, 11, 12, 14 | syl13anc 1374 | . . 3 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴))) |
| 16 | 15 | ralrimivva 3172 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → ∀𝑚 ∈ ℕ0 ∀𝑛 ∈ ℕ0 ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴))) |
| 17 | simprl 770 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑋 ∈ 𝐶) | |
| 18 | simprr 772 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑌 ∈ 𝐶) | |
| 19 | nn0sscn 12389 | . . 3 ⊢ ℕ0 ⊆ ℂ | |
| 20 | 19 | a1i 11 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → ℕ0 ⊆ ℂ) |
| 21 | 8, 16, 17, 18, 20 | cyccom 19082 | 1 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3903 ↦ cmpt 5173 ran crn 5620 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 + caddc 11012 ℕ0cn0 12384 Basecbs 17120 +gcplusg 17161 Mndcmnd 18608 .gcmg 18946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-seq 13909 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mulg 18947 |
| This theorem is referenced by: cycsubmcmn 19768 |
| Copyright terms: Public domain | W3C validator |