MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubmcom Structured version   Visualization version   GIF version

Theorem cycsubmcom 19075
Description: The operation of a monoid is commutative over the set of nonnegative integer powers of an element 𝐴 of the monoid. (Contributed by AV, 20-Jan-2024.)
Hypotheses
Ref Expression
cycsubmcom.b 𝐵 = (Base‘𝐺)
cycsubmcom.t · = (.g𝐺)
cycsubmcom.f 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
cycsubmcom.c 𝐶 = ran 𝐹
cycsubmcom.p + = (+g𝐺)
Assertion
Ref Expression
cycsubmcom (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥, ·
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   + (𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem cycsubmcom
Dummy variables 𝑐 𝑖 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycsubmcom.b . . . . . 6 𝐵 = (Base‘𝐺)
2 cycsubmcom.t . . . . . 6 · = (.g𝐺)
3 cycsubmcom.f . . . . . 6 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
4 cycsubmcom.c . . . . . 6 𝐶 = ran 𝐹
51, 2, 3, 4cycsubmel 19071 . . . . 5 (𝑐𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴))
65biimpi 215 . . . 4 (𝑐𝐶 → ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴))
76adantl 482 . . 3 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ 𝑐𝐶) → ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴))
87ralrimiva 3146 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → ∀𝑐𝐶𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴))
9 simplll 773 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝐺 ∈ Mnd)
10 simprl 769 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑚 ∈ ℕ0)
11 simprr 771 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑛 ∈ ℕ0)
12 simpllr 774 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝐴𝐵)
13 cycsubmcom.p . . . . 5 + = (+g𝐺)
141, 2, 13mulgnn0dir 18978 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0𝐴𝐵)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴)))
159, 10, 11, 12, 14syl13anc 1372 . . 3 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴)))
1615ralrimivva 3200 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → ∀𝑚 ∈ ℕ0𝑛 ∈ ℕ0 ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴)))
17 simprl 769 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → 𝑋𝐶)
18 simprr 771 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → 𝑌𝐶)
19 nn0sscn 12473 . . 3 0 ⊆ ℂ
2019a1i 11 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → ℕ0 ⊆ ℂ)
218, 16, 17, 18, 20cyccom 19074 1 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wrex 3070  wss 3947  cmpt 5230  ran crn 5676  cfv 6540  (class class class)co 7405  cc 11104   + caddc 11109  0cn0 12468  Basecbs 17140  +gcplusg 17193  Mndcmnd 18621  .gcmg 18944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-seq 13963  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mulg 18945
This theorem is referenced by:  cycsubmcmn  19751
  Copyright terms: Public domain W3C validator