| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cycsubmcom | Structured version Visualization version GIF version | ||
| Description: The operation of a monoid is commutative over the set of nonnegative integer powers of an element 𝐴 of the monoid. (Contributed by AV, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| cycsubmcom.b | ⊢ 𝐵 = (Base‘𝐺) |
| cycsubmcom.t | ⊢ · = (.g‘𝐺) |
| cycsubmcom.f | ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) |
| cycsubmcom.c | ⊢ 𝐶 = ran 𝐹 |
| cycsubmcom.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| cycsubmcom | ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubmcom.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | cycsubmcom.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
| 3 | cycsubmcom.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) | |
| 4 | cycsubmcom.c | . . . . . 6 ⊢ 𝐶 = ran 𝐹 | |
| 5 | 1, 2, 3, 4 | cycsubmel 19132 | . . . . 5 ⊢ (𝑐 ∈ 𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴)) |
| 6 | 5 | biimpi 216 | . . . 4 ⊢ (𝑐 ∈ 𝐶 → ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴)) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ 𝑐 ∈ 𝐶) → ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴)) |
| 8 | 7 | ralrimiva 3125 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → ∀𝑐 ∈ 𝐶 ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴)) |
| 9 | simplll 774 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → 𝐺 ∈ Mnd) | |
| 10 | simprl 770 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → 𝑚 ∈ ℕ0) | |
| 11 | simprr 772 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → 𝑛 ∈ ℕ0) | |
| 12 | simpllr 775 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → 𝐴 ∈ 𝐵) | |
| 13 | cycsubmcom.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 14 | 1, 2, 13 | mulgnn0dir 19036 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴))) |
| 15 | 9, 10, 11, 12, 14 | syl13anc 1374 | . . 3 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴))) |
| 16 | 15 | ralrimivva 3180 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → ∀𝑚 ∈ ℕ0 ∀𝑛 ∈ ℕ0 ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴))) |
| 17 | simprl 770 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑋 ∈ 𝐶) | |
| 18 | simprr 772 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑌 ∈ 𝐶) | |
| 19 | nn0sscn 12447 | . . 3 ⊢ ℕ0 ⊆ ℂ | |
| 20 | 19 | a1i 11 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → ℕ0 ⊆ ℂ) |
| 21 | 8, 16, 17, 18, 20 | cyccom 19135 | 1 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3914 ↦ cmpt 5188 ran crn 5639 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 + caddc 11071 ℕ0cn0 12442 Basecbs 17179 +gcplusg 17220 Mndcmnd 18661 .gcmg 18999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-seq 13967 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mulg 19000 |
| This theorem is referenced by: cycsubmcmn 19819 |
| Copyright terms: Public domain | W3C validator |