![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cycsubmcom | Structured version Visualization version GIF version |
Description: The operation of a monoid is commutative over the set of nonnegative integer powers of an element 𝐴 of the monoid. (Contributed by AV, 20-Jan-2024.) |
Ref | Expression |
---|---|
cycsubmcom.b | ⊢ 𝐵 = (Base‘𝐺) |
cycsubmcom.t | ⊢ · = (.g‘𝐺) |
cycsubmcom.f | ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) |
cycsubmcom.c | ⊢ 𝐶 = ran 𝐹 |
cycsubmcom.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
cycsubmcom | ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycsubmcom.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
2 | cycsubmcom.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
3 | cycsubmcom.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) | |
4 | cycsubmcom.c | . . . . . 6 ⊢ 𝐶 = ran 𝐹 | |
5 | 1, 2, 3, 4 | cycsubmel 19231 | . . . . 5 ⊢ (𝑐 ∈ 𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴)) |
6 | 5 | biimpi 216 | . . . 4 ⊢ (𝑐 ∈ 𝐶 → ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴)) |
7 | 6 | adantl 481 | . . 3 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ 𝑐 ∈ 𝐶) → ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴)) |
8 | 7 | ralrimiva 3144 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → ∀𝑐 ∈ 𝐶 ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴)) |
9 | simplll 775 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → 𝐺 ∈ Mnd) | |
10 | simprl 771 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → 𝑚 ∈ ℕ0) | |
11 | simprr 773 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → 𝑛 ∈ ℕ0) | |
12 | simpllr 776 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → 𝐴 ∈ 𝐵) | |
13 | cycsubmcom.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
14 | 1, 2, 13 | mulgnn0dir 19135 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴))) |
15 | 9, 10, 11, 12, 14 | syl13anc 1371 | . . 3 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴))) |
16 | 15 | ralrimivva 3200 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → ∀𝑚 ∈ ℕ0 ∀𝑛 ∈ ℕ0 ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴))) |
17 | simprl 771 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑋 ∈ 𝐶) | |
18 | simprr 773 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑌 ∈ 𝐶) | |
19 | nn0sscn 12529 | . . 3 ⊢ ℕ0 ⊆ ℂ | |
20 | 19 | a1i 11 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → ℕ0 ⊆ ℂ) |
21 | 8, 16, 17, 18, 20 | cyccom 19234 | 1 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 ⊆ wss 3963 ↦ cmpt 5231 ran crn 5690 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 + caddc 11156 ℕ0cn0 12524 Basecbs 17245 +gcplusg 17298 Mndcmnd 18760 .gcmg 19098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-seq 14040 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mulg 19099 |
This theorem is referenced by: cycsubmcmn 19922 |
Copyright terms: Public domain | W3C validator |