MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnecl Structured version   Visualization version   GIF version

Theorem nnecl 8444
Description: Closure of exponentiation of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. (Contributed by NM, 24-Mar-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnecl ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴o 𝐵) ∈ ω)

Proof of Theorem nnecl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7283 . . . . 5 (𝑥 = 𝐵 → (𝐴o 𝑥) = (𝐴o 𝐵))
21eleq1d 2823 . . . 4 (𝑥 = 𝐵 → ((𝐴o 𝑥) ∈ ω ↔ (𝐴o 𝐵) ∈ ω))
32imbi2d 341 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴o 𝑥) ∈ ω) ↔ (𝐴 ∈ ω → (𝐴o 𝐵) ∈ ω)))
4 oveq2 7283 . . . . 5 (𝑥 = ∅ → (𝐴o 𝑥) = (𝐴o ∅))
54eleq1d 2823 . . . 4 (𝑥 = ∅ → ((𝐴o 𝑥) ∈ ω ↔ (𝐴o ∅) ∈ ω))
6 oveq2 7283 . . . . 5 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
76eleq1d 2823 . . . 4 (𝑥 = 𝑦 → ((𝐴o 𝑥) ∈ ω ↔ (𝐴o 𝑦) ∈ ω))
8 oveq2 7283 . . . . 5 (𝑥 = suc 𝑦 → (𝐴o 𝑥) = (𝐴o suc 𝑦))
98eleq1d 2823 . . . 4 (𝑥 = suc 𝑦 → ((𝐴o 𝑥) ∈ ω ↔ (𝐴o suc 𝑦) ∈ ω))
10 nnon 7718 . . . . . 6 (𝐴 ∈ ω → 𝐴 ∈ On)
11 oe0 8352 . . . . . 6 (𝐴 ∈ On → (𝐴o ∅) = 1o)
1210, 11syl 17 . . . . 5 (𝐴 ∈ ω → (𝐴o ∅) = 1o)
13 df-1o 8297 . . . . . 6 1o = suc ∅
14 peano1 7735 . . . . . . 7 ∅ ∈ ω
15 peano2 7737 . . . . . . 7 (∅ ∈ ω → suc ∅ ∈ ω)
1614, 15ax-mp 5 . . . . . 6 suc ∅ ∈ ω
1713, 16eqeltri 2835 . . . . 5 1o ∈ ω
1812, 17eqeltrdi 2847 . . . 4 (𝐴 ∈ ω → (𝐴o ∅) ∈ ω)
19 nnmcl 8443 . . . . . . . 8 (((𝐴o 𝑦) ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴o 𝑦) ·o 𝐴) ∈ ω)
2019expcom 414 . . . . . . 7 (𝐴 ∈ ω → ((𝐴o 𝑦) ∈ ω → ((𝐴o 𝑦) ·o 𝐴) ∈ ω))
2120adantr 481 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴o 𝑦) ∈ ω → ((𝐴o 𝑦) ·o 𝐴) ∈ ω))
22 nnesuc 8439 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴o suc 𝑦) = ((𝐴o 𝑦) ·o 𝐴))
2322eleq1d 2823 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴o suc 𝑦) ∈ ω ↔ ((𝐴o 𝑦) ·o 𝐴) ∈ ω))
2421, 23sylibrd 258 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴o 𝑦) ∈ ω → (𝐴o suc 𝑦) ∈ ω))
2524expcom 414 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴o 𝑦) ∈ ω → (𝐴o suc 𝑦) ∈ ω)))
265, 7, 9, 18, 25finds2 7747 . . 3 (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴o 𝑥) ∈ ω))
273, 26vtoclga 3513 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴o 𝐵) ∈ ω))
2827impcom 408 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴o 𝐵) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  c0 4256  Oncon0 6266  suc csuc 6268  (class class class)co 7275  ωcom 7712  1oc1o 8290   ·o comu 8295  o coe 8296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-oexp 8303
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator