![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnecl | Structured version Visualization version GIF version |
Description: Closure of exponentiation of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. Theorem 2.20 of [Schloeder] p. 6. (Contributed by NM, 24-Mar-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nnecl | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ↑o 𝐵) ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7456 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ↑o 𝑥) = (𝐴 ↑o 𝐵)) | |
2 | 1 | eleq1d 2829 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ↑o 𝑥) ∈ ω ↔ (𝐴 ↑o 𝐵) ∈ ω)) |
3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴 ↑o 𝑥) ∈ ω) ↔ (𝐴 ∈ ω → (𝐴 ↑o 𝐵) ∈ ω))) |
4 | oveq2 7456 | . . . . 5 ⊢ (𝑥 = ∅ → (𝐴 ↑o 𝑥) = (𝐴 ↑o ∅)) | |
5 | 4 | eleq1d 2829 | . . . 4 ⊢ (𝑥 = ∅ → ((𝐴 ↑o 𝑥) ∈ ω ↔ (𝐴 ↑o ∅) ∈ ω)) |
6 | oveq2 7456 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 ↑o 𝑥) = (𝐴 ↑o 𝑦)) | |
7 | 6 | eleq1d 2829 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐴 ↑o 𝑥) ∈ ω ↔ (𝐴 ↑o 𝑦) ∈ ω)) |
8 | oveq2 7456 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → (𝐴 ↑o 𝑥) = (𝐴 ↑o suc 𝑦)) | |
9 | 8 | eleq1d 2829 | . . . 4 ⊢ (𝑥 = suc 𝑦 → ((𝐴 ↑o 𝑥) ∈ ω ↔ (𝐴 ↑o suc 𝑦) ∈ ω)) |
10 | nnon 7909 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
11 | oe0 8578 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝐴 ↑o ∅) = 1o) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐴 ↑o ∅) = 1o) |
13 | df-1o 8522 | . . . . . 6 ⊢ 1o = suc ∅ | |
14 | peano1 7927 | . . . . . . 7 ⊢ ∅ ∈ ω | |
15 | peano2 7929 | . . . . . . 7 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ suc ∅ ∈ ω |
17 | 13, 16 | eqeltri 2840 | . . . . 5 ⊢ 1o ∈ ω |
18 | 12, 17 | eqeltrdi 2852 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ↑o ∅) ∈ ω) |
19 | nnmcl 8668 | . . . . . . . 8 ⊢ (((𝐴 ↑o 𝑦) ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴 ↑o 𝑦) ·o 𝐴) ∈ ω) | |
20 | 19 | expcom 413 | . . . . . . 7 ⊢ (𝐴 ∈ ω → ((𝐴 ↑o 𝑦) ∈ ω → ((𝐴 ↑o 𝑦) ·o 𝐴) ∈ ω)) |
21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ↑o 𝑦) ∈ ω → ((𝐴 ↑o 𝑦) ·o 𝐴) ∈ ω)) |
22 | nnesuc 8664 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ↑o suc 𝑦) = ((𝐴 ↑o 𝑦) ·o 𝐴)) | |
23 | 22 | eleq1d 2829 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ↑o suc 𝑦) ∈ ω ↔ ((𝐴 ↑o 𝑦) ·o 𝐴) ∈ ω)) |
24 | 21, 23 | sylibrd 259 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ↑o 𝑦) ∈ ω → (𝐴 ↑o suc 𝑦) ∈ ω)) |
25 | 24 | expcom 413 | . . . 4 ⊢ (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 ↑o 𝑦) ∈ ω → (𝐴 ↑o suc 𝑦) ∈ ω))) |
26 | 5, 7, 9, 18, 25 | finds2 7938 | . . 3 ⊢ (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴 ↑o 𝑥) ∈ ω)) |
27 | 3, 26 | vtoclga 3589 | . 2 ⊢ (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 ↑o 𝐵) ∈ ω)) |
28 | 27 | impcom 407 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ↑o 𝐵) ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∅c0 4352 Oncon0 6395 suc csuc 6397 (class class class)co 7448 ωcom 7903 1oc1o 8515 ·o comu 8520 ↑o coe 8521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-omul 8527 df-oexp 8528 |
This theorem is referenced by: nnamecl 43249 nnoeomeqom 43274 |
Copyright terms: Public domain | W3C validator |