| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnecl | Structured version Visualization version GIF version | ||
| Description: Closure of exponentiation of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. Theorem 2.20 of [Schloeder] p. 6. (Contributed by NM, 24-Mar-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| nnecl | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ↑o 𝐵) ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7395 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ↑o 𝑥) = (𝐴 ↑o 𝐵)) | |
| 2 | 1 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ↑o 𝑥) ∈ ω ↔ (𝐴 ↑o 𝐵) ∈ ω)) |
| 3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴 ↑o 𝑥) ∈ ω) ↔ (𝐴 ∈ ω → (𝐴 ↑o 𝐵) ∈ ω))) |
| 4 | oveq2 7395 | . . . . 5 ⊢ (𝑥 = ∅ → (𝐴 ↑o 𝑥) = (𝐴 ↑o ∅)) | |
| 5 | 4 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = ∅ → ((𝐴 ↑o 𝑥) ∈ ω ↔ (𝐴 ↑o ∅) ∈ ω)) |
| 6 | oveq2 7395 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 ↑o 𝑥) = (𝐴 ↑o 𝑦)) | |
| 7 | 6 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐴 ↑o 𝑥) ∈ ω ↔ (𝐴 ↑o 𝑦) ∈ ω)) |
| 8 | oveq2 7395 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → (𝐴 ↑o 𝑥) = (𝐴 ↑o suc 𝑦)) | |
| 9 | 8 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = suc 𝑦 → ((𝐴 ↑o 𝑥) ∈ ω ↔ (𝐴 ↑o suc 𝑦) ∈ ω)) |
| 10 | nnon 7848 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 11 | oe0 8486 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝐴 ↑o ∅) = 1o) | |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐴 ↑o ∅) = 1o) |
| 13 | df-1o 8434 | . . . . . 6 ⊢ 1o = suc ∅ | |
| 14 | peano1 7865 | . . . . . . 7 ⊢ ∅ ∈ ω | |
| 15 | peano2 7866 | . . . . . . 7 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ suc ∅ ∈ ω |
| 17 | 13, 16 | eqeltri 2824 | . . . . 5 ⊢ 1o ∈ ω |
| 18 | 12, 17 | eqeltrdi 2836 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ↑o ∅) ∈ ω) |
| 19 | nnmcl 8576 | . . . . . . . 8 ⊢ (((𝐴 ↑o 𝑦) ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴 ↑o 𝑦) ·o 𝐴) ∈ ω) | |
| 20 | 19 | expcom 413 | . . . . . . 7 ⊢ (𝐴 ∈ ω → ((𝐴 ↑o 𝑦) ∈ ω → ((𝐴 ↑o 𝑦) ·o 𝐴) ∈ ω)) |
| 21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ↑o 𝑦) ∈ ω → ((𝐴 ↑o 𝑦) ·o 𝐴) ∈ ω)) |
| 22 | nnesuc 8572 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ↑o suc 𝑦) = ((𝐴 ↑o 𝑦) ·o 𝐴)) | |
| 23 | 22 | eleq1d 2813 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ↑o suc 𝑦) ∈ ω ↔ ((𝐴 ↑o 𝑦) ·o 𝐴) ∈ ω)) |
| 24 | 21, 23 | sylibrd 259 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ↑o 𝑦) ∈ ω → (𝐴 ↑o suc 𝑦) ∈ ω)) |
| 25 | 24 | expcom 413 | . . . 4 ⊢ (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 ↑o 𝑦) ∈ ω → (𝐴 ↑o suc 𝑦) ∈ ω))) |
| 26 | 5, 7, 9, 18, 25 | finds2 7874 | . . 3 ⊢ (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴 ↑o 𝑥) ∈ ω)) |
| 27 | 3, 26 | vtoclga 3543 | . 2 ⊢ (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 ↑o 𝐵) ∈ ω)) |
| 28 | 27 | impcom 407 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ↑o 𝐵) ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4296 Oncon0 6332 suc csuc 6334 (class class class)co 7387 ωcom 7842 1oc1o 8427 ·o comu 8432 ↑o coe 8433 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 df-oexp 8440 |
| This theorem is referenced by: nnamecl 43276 nnoeomeqom 43301 |
| Copyright terms: Public domain | W3C validator |