MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnecl Structured version   Visualization version   GIF version

Theorem nnecl 8630
Description: Closure of exponentiation of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. Theorem 2.20 of [Schloeder] p. 6. (Contributed by NM, 24-Mar-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnecl ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴o 𝐵) ∈ ω)

Proof of Theorem nnecl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7418 . . . . 5 (𝑥 = 𝐵 → (𝐴o 𝑥) = (𝐴o 𝐵))
21eleq1d 2820 . . . 4 (𝑥 = 𝐵 → ((𝐴o 𝑥) ∈ ω ↔ (𝐴o 𝐵) ∈ ω))
32imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴o 𝑥) ∈ ω) ↔ (𝐴 ∈ ω → (𝐴o 𝐵) ∈ ω)))
4 oveq2 7418 . . . . 5 (𝑥 = ∅ → (𝐴o 𝑥) = (𝐴o ∅))
54eleq1d 2820 . . . 4 (𝑥 = ∅ → ((𝐴o 𝑥) ∈ ω ↔ (𝐴o ∅) ∈ ω))
6 oveq2 7418 . . . . 5 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
76eleq1d 2820 . . . 4 (𝑥 = 𝑦 → ((𝐴o 𝑥) ∈ ω ↔ (𝐴o 𝑦) ∈ ω))
8 oveq2 7418 . . . . 5 (𝑥 = suc 𝑦 → (𝐴o 𝑥) = (𝐴o suc 𝑦))
98eleq1d 2820 . . . 4 (𝑥 = suc 𝑦 → ((𝐴o 𝑥) ∈ ω ↔ (𝐴o suc 𝑦) ∈ ω))
10 nnon 7872 . . . . . 6 (𝐴 ∈ ω → 𝐴 ∈ On)
11 oe0 8539 . . . . . 6 (𝐴 ∈ On → (𝐴o ∅) = 1o)
1210, 11syl 17 . . . . 5 (𝐴 ∈ ω → (𝐴o ∅) = 1o)
13 df-1o 8485 . . . . . 6 1o = suc ∅
14 peano1 7889 . . . . . . 7 ∅ ∈ ω
15 peano2 7891 . . . . . . 7 (∅ ∈ ω → suc ∅ ∈ ω)
1614, 15ax-mp 5 . . . . . 6 suc ∅ ∈ ω
1713, 16eqeltri 2831 . . . . 5 1o ∈ ω
1812, 17eqeltrdi 2843 . . . 4 (𝐴 ∈ ω → (𝐴o ∅) ∈ ω)
19 nnmcl 8629 . . . . . . . 8 (((𝐴o 𝑦) ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴o 𝑦) ·o 𝐴) ∈ ω)
2019expcom 413 . . . . . . 7 (𝐴 ∈ ω → ((𝐴o 𝑦) ∈ ω → ((𝐴o 𝑦) ·o 𝐴) ∈ ω))
2120adantr 480 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴o 𝑦) ∈ ω → ((𝐴o 𝑦) ·o 𝐴) ∈ ω))
22 nnesuc 8625 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴o suc 𝑦) = ((𝐴o 𝑦) ·o 𝐴))
2322eleq1d 2820 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴o suc 𝑦) ∈ ω ↔ ((𝐴o 𝑦) ·o 𝐴) ∈ ω))
2421, 23sylibrd 259 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴o 𝑦) ∈ ω → (𝐴o suc 𝑦) ∈ ω))
2524expcom 413 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴o 𝑦) ∈ ω → (𝐴o suc 𝑦) ∈ ω)))
265, 7, 9, 18, 25finds2 7899 . . 3 (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴o 𝑥) ∈ ω))
273, 26vtoclga 3561 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴o 𝐵) ∈ ω))
2827impcom 407 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴o 𝐵) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  c0 4313  Oncon0 6357  suc csuc 6359  (class class class)co 7410  ωcom 7866  1oc1o 8478   ·o comu 8483  o coe 8484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-omul 8490  df-oexp 8491
This theorem is referenced by:  nnamecl  43286  nnoeomeqom  43311
  Copyright terms: Public domain W3C validator