Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnecl | Structured version Visualization version GIF version |
Description: Closure of exponentiation of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. (Contributed by NM, 24-Mar-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nnecl | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ↑o 𝐵) ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7158 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ↑o 𝑥) = (𝐴 ↑o 𝐵)) | |
2 | 1 | eleq1d 2836 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ↑o 𝑥) ∈ ω ↔ (𝐴 ↑o 𝐵) ∈ ω)) |
3 | 2 | imbi2d 344 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴 ↑o 𝑥) ∈ ω) ↔ (𝐴 ∈ ω → (𝐴 ↑o 𝐵) ∈ ω))) |
4 | oveq2 7158 | . . . . 5 ⊢ (𝑥 = ∅ → (𝐴 ↑o 𝑥) = (𝐴 ↑o ∅)) | |
5 | 4 | eleq1d 2836 | . . . 4 ⊢ (𝑥 = ∅ → ((𝐴 ↑o 𝑥) ∈ ω ↔ (𝐴 ↑o ∅) ∈ ω)) |
6 | oveq2 7158 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 ↑o 𝑥) = (𝐴 ↑o 𝑦)) | |
7 | 6 | eleq1d 2836 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐴 ↑o 𝑥) ∈ ω ↔ (𝐴 ↑o 𝑦) ∈ ω)) |
8 | oveq2 7158 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → (𝐴 ↑o 𝑥) = (𝐴 ↑o suc 𝑦)) | |
9 | 8 | eleq1d 2836 | . . . 4 ⊢ (𝑥 = suc 𝑦 → ((𝐴 ↑o 𝑥) ∈ ω ↔ (𝐴 ↑o suc 𝑦) ∈ ω)) |
10 | nnon 7585 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
11 | oe0 8157 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝐴 ↑o ∅) = 1o) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐴 ↑o ∅) = 1o) |
13 | df-1o 8112 | . . . . . 6 ⊢ 1o = suc ∅ | |
14 | peano1 7600 | . . . . . . 7 ⊢ ∅ ∈ ω | |
15 | peano2 7601 | . . . . . . 7 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ suc ∅ ∈ ω |
17 | 13, 16 | eqeltri 2848 | . . . . 5 ⊢ 1o ∈ ω |
18 | 12, 17 | eqeltrdi 2860 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ↑o ∅) ∈ ω) |
19 | nnmcl 8248 | . . . . . . . 8 ⊢ (((𝐴 ↑o 𝑦) ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴 ↑o 𝑦) ·o 𝐴) ∈ ω) | |
20 | 19 | expcom 417 | . . . . . . 7 ⊢ (𝐴 ∈ ω → ((𝐴 ↑o 𝑦) ∈ ω → ((𝐴 ↑o 𝑦) ·o 𝐴) ∈ ω)) |
21 | 20 | adantr 484 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ↑o 𝑦) ∈ ω → ((𝐴 ↑o 𝑦) ·o 𝐴) ∈ ω)) |
22 | nnesuc 8244 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ↑o suc 𝑦) = ((𝐴 ↑o 𝑦) ·o 𝐴)) | |
23 | 22 | eleq1d 2836 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ↑o suc 𝑦) ∈ ω ↔ ((𝐴 ↑o 𝑦) ·o 𝐴) ∈ ω)) |
24 | 21, 23 | sylibrd 262 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ↑o 𝑦) ∈ ω → (𝐴 ↑o suc 𝑦) ∈ ω)) |
25 | 24 | expcom 417 | . . . 4 ⊢ (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 ↑o 𝑦) ∈ ω → (𝐴 ↑o suc 𝑦) ∈ ω))) |
26 | 5, 7, 9, 18, 25 | finds2 7610 | . . 3 ⊢ (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴 ↑o 𝑥) ∈ ω)) |
27 | 3, 26 | vtoclga 3492 | . 2 ⊢ (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 ↑o 𝐵) ∈ ω)) |
28 | 27 | impcom 411 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ↑o 𝐵) ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∅c0 4225 Oncon0 6169 suc csuc 6171 (class class class)co 7150 ωcom 7579 1oc1o 8105 ·o comu 8110 ↑o coe 8111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-oadd 8116 df-omul 8117 df-oexp 8118 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |