MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnecl Structured version   Visualization version   GIF version

Theorem nnecl 8406
Description: Closure of exponentiation of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. (Contributed by NM, 24-Mar-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnecl ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴o 𝐵) ∈ ω)

Proof of Theorem nnecl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7263 . . . . 5 (𝑥 = 𝐵 → (𝐴o 𝑥) = (𝐴o 𝐵))
21eleq1d 2823 . . . 4 (𝑥 = 𝐵 → ((𝐴o 𝑥) ∈ ω ↔ (𝐴o 𝐵) ∈ ω))
32imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴o 𝑥) ∈ ω) ↔ (𝐴 ∈ ω → (𝐴o 𝐵) ∈ ω)))
4 oveq2 7263 . . . . 5 (𝑥 = ∅ → (𝐴o 𝑥) = (𝐴o ∅))
54eleq1d 2823 . . . 4 (𝑥 = ∅ → ((𝐴o 𝑥) ∈ ω ↔ (𝐴o ∅) ∈ ω))
6 oveq2 7263 . . . . 5 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
76eleq1d 2823 . . . 4 (𝑥 = 𝑦 → ((𝐴o 𝑥) ∈ ω ↔ (𝐴o 𝑦) ∈ ω))
8 oveq2 7263 . . . . 5 (𝑥 = suc 𝑦 → (𝐴o 𝑥) = (𝐴o suc 𝑦))
98eleq1d 2823 . . . 4 (𝑥 = suc 𝑦 → ((𝐴o 𝑥) ∈ ω ↔ (𝐴o suc 𝑦) ∈ ω))
10 nnon 7693 . . . . . 6 (𝐴 ∈ ω → 𝐴 ∈ On)
11 oe0 8314 . . . . . 6 (𝐴 ∈ On → (𝐴o ∅) = 1o)
1210, 11syl 17 . . . . 5 (𝐴 ∈ ω → (𝐴o ∅) = 1o)
13 df-1o 8267 . . . . . 6 1o = suc ∅
14 peano1 7710 . . . . . . 7 ∅ ∈ ω
15 peano2 7711 . . . . . . 7 (∅ ∈ ω → suc ∅ ∈ ω)
1614, 15ax-mp 5 . . . . . 6 suc ∅ ∈ ω
1713, 16eqeltri 2835 . . . . 5 1o ∈ ω
1812, 17eqeltrdi 2847 . . . 4 (𝐴 ∈ ω → (𝐴o ∅) ∈ ω)
19 nnmcl 8405 . . . . . . . 8 (((𝐴o 𝑦) ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴o 𝑦) ·o 𝐴) ∈ ω)
2019expcom 413 . . . . . . 7 (𝐴 ∈ ω → ((𝐴o 𝑦) ∈ ω → ((𝐴o 𝑦) ·o 𝐴) ∈ ω))
2120adantr 480 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴o 𝑦) ∈ ω → ((𝐴o 𝑦) ·o 𝐴) ∈ ω))
22 nnesuc 8401 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴o suc 𝑦) = ((𝐴o 𝑦) ·o 𝐴))
2322eleq1d 2823 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴o suc 𝑦) ∈ ω ↔ ((𝐴o 𝑦) ·o 𝐴) ∈ ω))
2421, 23sylibrd 258 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴o 𝑦) ∈ ω → (𝐴o suc 𝑦) ∈ ω))
2524expcom 413 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴o 𝑦) ∈ ω → (𝐴o suc 𝑦) ∈ ω)))
265, 7, 9, 18, 25finds2 7721 . . 3 (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴o 𝑥) ∈ ω))
273, 26vtoclga 3503 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴o 𝐵) ∈ ω))
2827impcom 407 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴o 𝐵) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  c0 4253  Oncon0 6251  suc csuc 6253  (class class class)co 7255  ωcom 7687  1oc1o 8260   ·o comu 8265  o coe 8266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-oexp 8273
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator