Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnecl | Structured version Visualization version GIF version |
Description: Closure of exponentiation of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. (Contributed by NM, 24-Mar-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nnecl | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ↑o 𝐵) ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7263 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ↑o 𝑥) = (𝐴 ↑o 𝐵)) | |
2 | 1 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ↑o 𝑥) ∈ ω ↔ (𝐴 ↑o 𝐵) ∈ ω)) |
3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴 ↑o 𝑥) ∈ ω) ↔ (𝐴 ∈ ω → (𝐴 ↑o 𝐵) ∈ ω))) |
4 | oveq2 7263 | . . . . 5 ⊢ (𝑥 = ∅ → (𝐴 ↑o 𝑥) = (𝐴 ↑o ∅)) | |
5 | 4 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = ∅ → ((𝐴 ↑o 𝑥) ∈ ω ↔ (𝐴 ↑o ∅) ∈ ω)) |
6 | oveq2 7263 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 ↑o 𝑥) = (𝐴 ↑o 𝑦)) | |
7 | 6 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐴 ↑o 𝑥) ∈ ω ↔ (𝐴 ↑o 𝑦) ∈ ω)) |
8 | oveq2 7263 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → (𝐴 ↑o 𝑥) = (𝐴 ↑o suc 𝑦)) | |
9 | 8 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = suc 𝑦 → ((𝐴 ↑o 𝑥) ∈ ω ↔ (𝐴 ↑o suc 𝑦) ∈ ω)) |
10 | nnon 7693 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
11 | oe0 8314 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝐴 ↑o ∅) = 1o) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐴 ↑o ∅) = 1o) |
13 | df-1o 8267 | . . . . . 6 ⊢ 1o = suc ∅ | |
14 | peano1 7710 | . . . . . . 7 ⊢ ∅ ∈ ω | |
15 | peano2 7711 | . . . . . . 7 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ suc ∅ ∈ ω |
17 | 13, 16 | eqeltri 2835 | . . . . 5 ⊢ 1o ∈ ω |
18 | 12, 17 | eqeltrdi 2847 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ↑o ∅) ∈ ω) |
19 | nnmcl 8405 | . . . . . . . 8 ⊢ (((𝐴 ↑o 𝑦) ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴 ↑o 𝑦) ·o 𝐴) ∈ ω) | |
20 | 19 | expcom 413 | . . . . . . 7 ⊢ (𝐴 ∈ ω → ((𝐴 ↑o 𝑦) ∈ ω → ((𝐴 ↑o 𝑦) ·o 𝐴) ∈ ω)) |
21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ↑o 𝑦) ∈ ω → ((𝐴 ↑o 𝑦) ·o 𝐴) ∈ ω)) |
22 | nnesuc 8401 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ↑o suc 𝑦) = ((𝐴 ↑o 𝑦) ·o 𝐴)) | |
23 | 22 | eleq1d 2823 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ↑o suc 𝑦) ∈ ω ↔ ((𝐴 ↑o 𝑦) ·o 𝐴) ∈ ω)) |
24 | 21, 23 | sylibrd 258 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ↑o 𝑦) ∈ ω → (𝐴 ↑o suc 𝑦) ∈ ω)) |
25 | 24 | expcom 413 | . . . 4 ⊢ (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 ↑o 𝑦) ∈ ω → (𝐴 ↑o suc 𝑦) ∈ ω))) |
26 | 5, 7, 9, 18, 25 | finds2 7721 | . . 3 ⊢ (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴 ↑o 𝑥) ∈ ω)) |
27 | 3, 26 | vtoclga 3503 | . 2 ⊢ (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 ↑o 𝐵) ∈ ω)) |
28 | 27 | impcom 407 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ↑o 𝐵) ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∅c0 4253 Oncon0 6251 suc csuc 6253 (class class class)co 7255 ωcom 7687 1oc1o 8260 ·o comu 8265 ↑o coe 8266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-oexp 8273 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |