MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnecl Structured version   Visualization version   GIF version

Theorem nnecl 8652
Description: Closure of exponentiation of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. Theorem 2.20 of [Schloeder] p. 6. (Contributed by NM, 24-Mar-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnecl ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴o 𝐵) ∈ ω)

Proof of Theorem nnecl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7440 . . . . 5 (𝑥 = 𝐵 → (𝐴o 𝑥) = (𝐴o 𝐵))
21eleq1d 2825 . . . 4 (𝑥 = 𝐵 → ((𝐴o 𝑥) ∈ ω ↔ (𝐴o 𝐵) ∈ ω))
32imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴o 𝑥) ∈ ω) ↔ (𝐴 ∈ ω → (𝐴o 𝐵) ∈ ω)))
4 oveq2 7440 . . . . 5 (𝑥 = ∅ → (𝐴o 𝑥) = (𝐴o ∅))
54eleq1d 2825 . . . 4 (𝑥 = ∅ → ((𝐴o 𝑥) ∈ ω ↔ (𝐴o ∅) ∈ ω))
6 oveq2 7440 . . . . 5 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
76eleq1d 2825 . . . 4 (𝑥 = 𝑦 → ((𝐴o 𝑥) ∈ ω ↔ (𝐴o 𝑦) ∈ ω))
8 oveq2 7440 . . . . 5 (𝑥 = suc 𝑦 → (𝐴o 𝑥) = (𝐴o suc 𝑦))
98eleq1d 2825 . . . 4 (𝑥 = suc 𝑦 → ((𝐴o 𝑥) ∈ ω ↔ (𝐴o suc 𝑦) ∈ ω))
10 nnon 7894 . . . . . 6 (𝐴 ∈ ω → 𝐴 ∈ On)
11 oe0 8561 . . . . . 6 (𝐴 ∈ On → (𝐴o ∅) = 1o)
1210, 11syl 17 . . . . 5 (𝐴 ∈ ω → (𝐴o ∅) = 1o)
13 df-1o 8507 . . . . . 6 1o = suc ∅
14 peano1 7911 . . . . . . 7 ∅ ∈ ω
15 peano2 7913 . . . . . . 7 (∅ ∈ ω → suc ∅ ∈ ω)
1614, 15ax-mp 5 . . . . . 6 suc ∅ ∈ ω
1713, 16eqeltri 2836 . . . . 5 1o ∈ ω
1812, 17eqeltrdi 2848 . . . 4 (𝐴 ∈ ω → (𝐴o ∅) ∈ ω)
19 nnmcl 8651 . . . . . . . 8 (((𝐴o 𝑦) ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴o 𝑦) ·o 𝐴) ∈ ω)
2019expcom 413 . . . . . . 7 (𝐴 ∈ ω → ((𝐴o 𝑦) ∈ ω → ((𝐴o 𝑦) ·o 𝐴) ∈ ω))
2120adantr 480 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴o 𝑦) ∈ ω → ((𝐴o 𝑦) ·o 𝐴) ∈ ω))
22 nnesuc 8647 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴o suc 𝑦) = ((𝐴o 𝑦) ·o 𝐴))
2322eleq1d 2825 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴o suc 𝑦) ∈ ω ↔ ((𝐴o 𝑦) ·o 𝐴) ∈ ω))
2421, 23sylibrd 259 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴o 𝑦) ∈ ω → (𝐴o suc 𝑦) ∈ ω))
2524expcom 413 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴o 𝑦) ∈ ω → (𝐴o suc 𝑦) ∈ ω)))
265, 7, 9, 18, 25finds2 7921 . . 3 (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴o 𝑥) ∈ ω))
273, 26vtoclga 3576 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴o 𝐵) ∈ ω))
2827impcom 407 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴o 𝐵) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  c0 4332  Oncon0 6383  suc csuc 6385  (class class class)co 7432  ωcom 7888  1oc1o 8500   ·o comu 8505  o coe 8506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-oadd 8511  df-omul 8512  df-oexp 8513
This theorem is referenced by:  nnamecl  43305  nnoeomeqom  43330
  Copyright terms: Public domain W3C validator