![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnm1 | Structured version Visualization version GIF version |
Description: Multiply an element of ω by 1o. (Contributed by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
nnm1 | ⊢ (𝐴 ∈ ω → (𝐴 ·o 1o) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 7903 | . . 3 ⊢ 1o = suc ∅ | |
2 | 1 | oveq2i 6985 | . 2 ⊢ (𝐴 ·o 1o) = (𝐴 ·o suc ∅) |
3 | peano1 7414 | . . . 4 ⊢ ∅ ∈ ω | |
4 | nnmsuc 8032 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ∅ ∈ ω) → (𝐴 ·o suc ∅) = ((𝐴 ·o ∅) +o 𝐴)) | |
5 | 3, 4 | mpan2 679 | . . 3 ⊢ (𝐴 ∈ ω → (𝐴 ·o suc ∅) = ((𝐴 ·o ∅) +o 𝐴)) |
6 | nnm0 8030 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅) | |
7 | 6 | oveq1d 6989 | . . 3 ⊢ (𝐴 ∈ ω → ((𝐴 ·o ∅) +o 𝐴) = (∅ +o 𝐴)) |
8 | nna0r 8034 | . . 3 ⊢ (𝐴 ∈ ω → (∅ +o 𝐴) = 𝐴) | |
9 | 5, 7, 8 | 3eqtrd 2811 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 ·o suc ∅) = 𝐴) |
10 | 2, 9 | syl5eq 2819 | 1 ⊢ (𝐴 ∈ ω → (𝐴 ·o 1o) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1508 ∈ wcel 2051 ∅c0 4172 suc csuc 6028 (class class class)co 6974 ωcom 7394 1oc1o 7896 +o coa 7900 ·o comu 7901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-reu 3088 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-oadd 7907 df-omul 7908 |
This theorem is referenced by: nnm2 8074 mulidpi 10104 |
Copyright terms: Public domain | W3C validator |