MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om1 Structured version   Visualization version   GIF version

Theorem om1 7827
Description: Ordinal multiplication with 1. Proposition 8.18(2) of [TakeutiZaring] p. 63. (Contributed by NM, 29-Oct-1995.)
Assertion
Ref Expression
om1 (𝐴 ∈ On → (𝐴 ·𝑜 1𝑜) = 𝐴)

Proof of Theorem om1
StepHypRef Expression
1 df-1o 7764 . . . 4 1𝑜 = suc ∅
21oveq2i 6853 . . 3 (𝐴 ·𝑜 1𝑜) = (𝐴 ·𝑜 suc ∅)
3 peano1 7283 . . . 4 ∅ ∈ ω
4 onmsuc 7814 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ ω) → (𝐴 ·𝑜 suc ∅) = ((𝐴 ·𝑜 ∅) +𝑜 𝐴))
53, 4mpan2 682 . . 3 (𝐴 ∈ On → (𝐴 ·𝑜 suc ∅) = ((𝐴 ·𝑜 ∅) +𝑜 𝐴))
62, 5syl5eq 2811 . 2 (𝐴 ∈ On → (𝐴 ·𝑜 1𝑜) = ((𝐴 ·𝑜 ∅) +𝑜 𝐴))
7 om0 7802 . . 3 (𝐴 ∈ On → (𝐴 ·𝑜 ∅) = ∅)
87oveq1d 6857 . 2 (𝐴 ∈ On → ((𝐴 ·𝑜 ∅) +𝑜 𝐴) = (∅ +𝑜 𝐴))
9 oa0r 7823 . 2 (𝐴 ∈ On → (∅ +𝑜 𝐴) = 𝐴)
106, 8, 93eqtrd 2803 1 (𝐴 ∈ On → (𝐴 ·𝑜 1𝑜) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1652  wcel 2155  c0 4079  Oncon0 5908  suc csuc 5910  (class class class)co 6842  ωcom 7263  1𝑜c1o 7757   +𝑜 coa 7761   ·𝑜 comu 7762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-omul 7769
This theorem is referenced by:  oe1m  7830  omword1  7858  oeordi  7872  oeoalem  7881  oeoa  7882  oeeui  7887  oaabs2  7930  infxpenc  9092
  Copyright terms: Public domain W3C validator