![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om1 | Structured version Visualization version GIF version |
Description: Ordinal multiplication with 1. Proposition 8.18(2) of [TakeutiZaring] p. 63. Lemma 2.15 of [Schloeder] p. 5. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
om1 | โข (๐ด โ On โ (๐ด ยทo 1o) = ๐ด) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8480 | . . . 4 โข 1o = suc โ | |
2 | 1 | oveq2i 7425 | . . 3 โข (๐ด ยทo 1o) = (๐ด ยทo suc โ ) |
3 | peano1 7888 | . . . 4 โข โ โ ฯ | |
4 | onmsuc 8543 | . . . 4 โข ((๐ด โ On โง โ โ ฯ) โ (๐ด ยทo suc โ ) = ((๐ด ยทo โ ) +o ๐ด)) | |
5 | 3, 4 | mpan2 690 | . . 3 โข (๐ด โ On โ (๐ด ยทo suc โ ) = ((๐ด ยทo โ ) +o ๐ด)) |
6 | 2, 5 | eqtrid 2779 | . 2 โข (๐ด โ On โ (๐ด ยทo 1o) = ((๐ด ยทo โ ) +o ๐ด)) |
7 | om0 8531 | . . 3 โข (๐ด โ On โ (๐ด ยทo โ ) = โ ) | |
8 | 7 | oveq1d 7429 | . 2 โข (๐ด โ On โ ((๐ด ยทo โ ) +o ๐ด) = (โ +o ๐ด)) |
9 | oa0r 8552 | . 2 โข (๐ด โ On โ (โ +o ๐ด) = ๐ด) | |
10 | 6, 8, 9 | 3eqtrd 2771 | 1 โข (๐ด โ On โ (๐ด ยทo 1o) = ๐ด) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1534 โ wcel 2099 โ c0 4318 Oncon0 6363 suc csuc 6365 (class class class)co 7414 ฯcom 7864 1oc1o 8473 +o coa 8477 ยทo comu 8478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-omul 8485 |
This theorem is referenced by: oe1m 8559 omword1 8587 oeordi 8601 oeoalem 8610 oeoa 8611 oeeui 8616 oaabs2 8663 infxpenc 10033 om1om1r 42636 oaabsb 42646 oaomoencom 42669 cantnfresb 42676 omabs2 42684 omcl3g 42686 om2 42757 |
Copyright terms: Public domain | W3C validator |