![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om1 | Structured version Visualization version GIF version |
Description: Ordinal multiplication with 1. Proposition 8.18(2) of [TakeutiZaring] p. 63. Lemma 2.15 of [Schloeder] p. 5. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
om1 | โข (๐ด โ On โ (๐ด ยทo 1o) = ๐ด) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8465 | . . . 4 โข 1o = suc โ | |
2 | 1 | oveq2i 7419 | . . 3 โข (๐ด ยทo 1o) = (๐ด ยทo suc โ ) |
3 | peano1 7878 | . . . 4 โข โ โ ฯ | |
4 | onmsuc 8528 | . . . 4 โข ((๐ด โ On โง โ โ ฯ) โ (๐ด ยทo suc โ ) = ((๐ด ยทo โ ) +o ๐ด)) | |
5 | 3, 4 | mpan2 689 | . . 3 โข (๐ด โ On โ (๐ด ยทo suc โ ) = ((๐ด ยทo โ ) +o ๐ด)) |
6 | 2, 5 | eqtrid 2784 | . 2 โข (๐ด โ On โ (๐ด ยทo 1o) = ((๐ด ยทo โ ) +o ๐ด)) |
7 | om0 8516 | . . 3 โข (๐ด โ On โ (๐ด ยทo โ ) = โ ) | |
8 | 7 | oveq1d 7423 | . 2 โข (๐ด โ On โ ((๐ด ยทo โ ) +o ๐ด) = (โ +o ๐ด)) |
9 | oa0r 8537 | . 2 โข (๐ด โ On โ (โ +o ๐ด) = ๐ด) | |
10 | 6, 8, 9 | 3eqtrd 2776 | 1 โข (๐ด โ On โ (๐ด ยทo 1o) = ๐ด) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1541 โ wcel 2106 โ c0 4322 Oncon0 6364 suc csuc 6366 (class class class)co 7408 ฯcom 7854 1oc1o 8458 +o coa 8462 ยทo comu 8463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-oadd 8469 df-omul 8470 |
This theorem is referenced by: oe1m 8544 omword1 8572 oeordi 8586 oeoalem 8595 oeoa 8596 oeeui 8601 oaabs2 8647 infxpenc 10012 om1om1r 42024 oaabsb 42034 oaomoencom 42057 cantnfresb 42064 omabs2 42072 omcl3g 42074 om2 42145 |
Copyright terms: Public domain | W3C validator |