| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om1 | Structured version Visualization version GIF version | ||
| Description: Ordinal multiplication with 1. Proposition 8.18(2) of [TakeutiZaring] p. 63. Lemma 2.15 of [Schloeder] p. 5. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| om1 | ⊢ (𝐴 ∈ On → (𝐴 ·o 1o) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 8480 | . . . 4 ⊢ 1o = suc ∅ | |
| 2 | 1 | oveq2i 7416 | . . 3 ⊢ (𝐴 ·o 1o) = (𝐴 ·o suc ∅) |
| 3 | peano1 7884 | . . . 4 ⊢ ∅ ∈ ω | |
| 4 | onmsuc 8541 | . . . 4 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ ω) → (𝐴 ·o suc ∅) = ((𝐴 ·o ∅) +o 𝐴)) | |
| 5 | 3, 4 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ·o suc ∅) = ((𝐴 ·o ∅) +o 𝐴)) |
| 6 | 2, 5 | eqtrid 2782 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ·o 1o) = ((𝐴 ·o ∅) +o 𝐴)) |
| 7 | om0 8529 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = ∅) | |
| 8 | 7 | oveq1d 7420 | . 2 ⊢ (𝐴 ∈ On → ((𝐴 ·o ∅) +o 𝐴) = (∅ +o 𝐴)) |
| 9 | oa0r 8550 | . 2 ⊢ (𝐴 ∈ On → (∅ +o 𝐴) = 𝐴) | |
| 10 | 6, 8, 9 | 3eqtrd 2774 | 1 ⊢ (𝐴 ∈ On → (𝐴 ·o 1o) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∅c0 4308 Oncon0 6352 suc csuc 6354 (class class class)co 7405 ωcom 7861 1oc1o 8473 +o coa 8477 ·o comu 8478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-omul 8485 |
| This theorem is referenced by: oe1m 8557 omword1 8585 oeordi 8599 oeoalem 8608 oeoa 8609 oeeui 8614 oaabs2 8661 infxpenc 10032 om1om1r 43308 oaabsb 43318 oaomoencom 43341 cantnfresb 43348 omabs2 43356 omcl3g 43358 om2 43428 |
| Copyright terms: Public domain | W3C validator |