| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om1 | Structured version Visualization version GIF version | ||
| Description: Ordinal multiplication with 1. Proposition 8.18(2) of [TakeutiZaring] p. 63. Lemma 2.15 of [Schloeder] p. 5. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| om1 | ⊢ (𝐴 ∈ On → (𝐴 ·o 1o) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 8380 | . . . 4 ⊢ 1o = suc ∅ | |
| 2 | 1 | oveq2i 7352 | . . 3 ⊢ (𝐴 ·o 1o) = (𝐴 ·o suc ∅) |
| 3 | peano1 7814 | . . . 4 ⊢ ∅ ∈ ω | |
| 4 | onmsuc 8439 | . . . 4 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ ω) → (𝐴 ·o suc ∅) = ((𝐴 ·o ∅) +o 𝐴)) | |
| 5 | 3, 4 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ·o suc ∅) = ((𝐴 ·o ∅) +o 𝐴)) |
| 6 | 2, 5 | eqtrid 2778 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ·o 1o) = ((𝐴 ·o ∅) +o 𝐴)) |
| 7 | om0 8427 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = ∅) | |
| 8 | 7 | oveq1d 7356 | . 2 ⊢ (𝐴 ∈ On → ((𝐴 ·o ∅) +o 𝐴) = (∅ +o 𝐴)) |
| 9 | oa0r 8448 | . 2 ⊢ (𝐴 ∈ On → (∅ +o 𝐴) = 𝐴) | |
| 10 | 6, 8, 9 | 3eqtrd 2770 | 1 ⊢ (𝐴 ∈ On → (𝐴 ·o 1o) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∅c0 4278 Oncon0 6301 suc csuc 6303 (class class class)co 7341 ωcom 7791 1oc1o 8373 +o coa 8377 ·o comu 8378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-omul 8385 |
| This theorem is referenced by: oe1m 8455 omword1 8483 oeordi 8497 oeoalem 8506 oeoa 8507 oeeui 8512 oaabs2 8559 infxpenc 9904 om1om1r 43317 oaabsb 43327 oaomoencom 43350 cantnfresb 43357 omabs2 43365 omcl3g 43367 om2 43437 |
| Copyright terms: Public domain | W3C validator |