MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe1 Structured version   Visualization version   GIF version

Theorem oe1 8581
Description: Ordinal exponentiation with an exponent of 1. Lemma 2.16 of [Schloeder] p. 6. (Contributed by NM, 2-Jan-2005.)
Assertion
Ref Expression
oe1 (𝐴 ∈ On → (𝐴o 1o) = 𝐴)

Proof of Theorem oe1
StepHypRef Expression
1 df-1o 8505 . . . 4 1o = suc ∅
21oveq2i 7442 . . 3 (𝐴o 1o) = (𝐴o suc ∅)
3 peano1 7911 . . . 4 ∅ ∈ ω
4 onesuc 8567 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ ω) → (𝐴o suc ∅) = ((𝐴o ∅) ·o 𝐴))
53, 4mpan2 691 . . 3 (𝐴 ∈ On → (𝐴o suc ∅) = ((𝐴o ∅) ·o 𝐴))
62, 5eqtrid 2787 . 2 (𝐴 ∈ On → (𝐴o 1o) = ((𝐴o ∅) ·o 𝐴))
7 oe0 8559 . . 3 (𝐴 ∈ On → (𝐴o ∅) = 1o)
87oveq1d 7446 . 2 (𝐴 ∈ On → ((𝐴o ∅) ·o 𝐴) = (1o ·o 𝐴))
9 om1r 8580 . 2 (𝐴 ∈ On → (1o ·o 𝐴) = 𝐴)
106, 8, 93eqtrd 2779 1 (𝐴 ∈ On → (𝐴o 1o) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  c0 4339  Oncon0 6386  suc csuc 6388  (class class class)co 7431  ωcom 7887  1oc1o 8498   ·o comu 8503  o coe 8504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-omul 8510  df-oexp 8511
This theorem is referenced by:  omabs  8688  cnfcom3lem  9741  infxpenc2  10060  oege1  43296  oaomoencom  43307  oenassex  43308  omabs2  43322  oe2  43396
  Copyright terms: Public domain W3C validator