MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe1 Structured version   Visualization version   GIF version

Theorem oe1 8181
Description: Ordinal exponentiation with an exponent of 1. (Contributed by NM, 2-Jan-2005.)
Assertion
Ref Expression
oe1 (𝐴 ∈ On → (𝐴o 1o) = 𝐴)

Proof of Theorem oe1
StepHypRef Expression
1 df-1o 8113 . . . 4 1o = suc ∅
21oveq2i 7162 . . 3 (𝐴o 1o) = (𝐴o suc ∅)
3 peano1 7601 . . . 4 ∅ ∈ ω
4 onesuc 8166 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ ω) → (𝐴o suc ∅) = ((𝐴o ∅) ·o 𝐴))
53, 4mpan2 691 . . 3 (𝐴 ∈ On → (𝐴o suc ∅) = ((𝐴o ∅) ·o 𝐴))
62, 5syl5eq 2806 . 2 (𝐴 ∈ On → (𝐴o 1o) = ((𝐴o ∅) ·o 𝐴))
7 oe0 8158 . . 3 (𝐴 ∈ On → (𝐴o ∅) = 1o)
87oveq1d 7166 . 2 (𝐴 ∈ On → ((𝐴o ∅) ·o 𝐴) = (1o ·o 𝐴))
9 om1r 8180 . 2 (𝐴 ∈ On → (1o ·o 𝐴) = 𝐴)
106, 8, 93eqtrd 2798 1 (𝐴 ∈ On → (𝐴o 1o) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2112  c0 4226  Oncon0 6170  suc csuc 6172  (class class class)co 7151  ωcom 7580  1oc1o 8106   ·o comu 8111  o coe 8112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pr 5299  ax-un 7460
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-oadd 8117  df-omul 8118  df-oexp 8119
This theorem is referenced by:  omabs  8285  cnfcom3lem  9192  infxpenc2  9475
  Copyright terms: Public domain W3C validator