MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aleph1 Structured version   Visualization version   GIF version

Theorem aleph1 10472
Description: The set exponentiation of 2 to the aleph-zero has cardinality of at least aleph-one. (If we were to assume the Continuum Hypothesis, their cardinalities would be the same.) (Contributed by NM, 7-Jul-2004.)
Assertion
Ref Expression
aleph1 (ℵ‘1o) ≼ (2om (ℵ‘∅))

Proof of Theorem aleph1
StepHypRef Expression
1 df-1o 8394 . . 3 1o = suc ∅
21fveq2i 6834 . 2 (ℵ‘1o) = (ℵ‘suc ∅)
3 alephsucpw 10471 . . 3 (ℵ‘suc ∅) ≼ 𝒫 (ℵ‘∅)
4 fvex 6844 . . . . 5 (ℵ‘∅) ∈ V
54pw2en 9007 . . . 4 𝒫 (ℵ‘∅) ≈ (2om (ℵ‘∅))
6 domen2 9043 . . . 4 (𝒫 (ℵ‘∅) ≈ (2om (ℵ‘∅)) → ((ℵ‘suc ∅) ≼ 𝒫 (ℵ‘∅) ↔ (ℵ‘suc ∅) ≼ (2om (ℵ‘∅))))
75, 6ax-mp 5 . . 3 ((ℵ‘suc ∅) ≼ 𝒫 (ℵ‘∅) ↔ (ℵ‘suc ∅) ≼ (2om (ℵ‘∅)))
83, 7mpbi 230 . 2 (ℵ‘suc ∅) ≼ (2om (ℵ‘∅))
92, 8eqbrtri 5116 1 (ℵ‘1o) ≼ (2om (ℵ‘∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  c0 4284  𝒫 cpw 4551   class class class wbr 5095  suc csuc 6316  cfv 6489  (class class class)co 7355  1oc1o 8387  2oc2o 8388  m cmap 8759  cen 8875  cdom 8876  cale 9839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-ac2 10364
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-oi 9406  df-har 9453  df-card 9842  df-aleph 9843  df-ac 10017
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator