Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > aleph1 | Structured version Visualization version GIF version |
Description: The set exponentiation of 2 to the aleph-zero has cardinality of at least aleph-one. (If we were to assume the Continuum Hypothesis, their cardinalities would be the same.) (Contributed by NM, 7-Jul-2004.) |
Ref | Expression |
---|---|
aleph1 | ⊢ (ℵ‘1o) ≼ (2o ↑m (ℵ‘∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8297 | . . 3 ⊢ 1o = suc ∅ | |
2 | 1 | fveq2i 6777 | . 2 ⊢ (ℵ‘1o) = (ℵ‘suc ∅) |
3 | alephsucpw 10326 | . . 3 ⊢ (ℵ‘suc ∅) ≼ 𝒫 (ℵ‘∅) | |
4 | fvex 6787 | . . . . 5 ⊢ (ℵ‘∅) ∈ V | |
5 | 4 | pw2en 8866 | . . . 4 ⊢ 𝒫 (ℵ‘∅) ≈ (2o ↑m (ℵ‘∅)) |
6 | domen2 8907 | . . . 4 ⊢ (𝒫 (ℵ‘∅) ≈ (2o ↑m (ℵ‘∅)) → ((ℵ‘suc ∅) ≼ 𝒫 (ℵ‘∅) ↔ (ℵ‘suc ∅) ≼ (2o ↑m (ℵ‘∅)))) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ ((ℵ‘suc ∅) ≼ 𝒫 (ℵ‘∅) ↔ (ℵ‘suc ∅) ≼ (2o ↑m (ℵ‘∅))) |
8 | 3, 7 | mpbi 229 | . 2 ⊢ (ℵ‘suc ∅) ≼ (2o ↑m (ℵ‘∅)) |
9 | 2, 8 | eqbrtri 5095 | 1 ⊢ (ℵ‘1o) ≼ (2o ↑m (ℵ‘∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∅c0 4256 𝒫 cpw 4533 class class class wbr 5074 suc csuc 6268 ‘cfv 6433 (class class class)co 7275 1oc1o 8290 2oc2o 8291 ↑m cmap 8615 ≈ cen 8730 ≼ cdom 8731 ℵcale 9694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-ac2 10219 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-oi 9269 df-har 9316 df-card 9697 df-aleph 9698 df-ac 9872 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |