Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oa1suc Structured version   Visualization version   GIF version

Theorem oa1suc 8142
 Description: Addition with 1 is same as successor. Proposition 4.34(a) of [Mendelson] p. 266. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
oa1suc (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴)

Proof of Theorem oa1suc
StepHypRef Expression
1 df-1o 8088 . . . 4 1o = suc ∅
21oveq2i 7147 . . 3 (𝐴 +o 1o) = (𝐴 +o suc ∅)
3 peano1 7584 . . . 4 ∅ ∈ ω
4 onasuc 8139 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ ω) → (𝐴 +o suc ∅) = suc (𝐴 +o ∅))
53, 4mpan2 690 . . 3 (𝐴 ∈ On → (𝐴 +o suc ∅) = suc (𝐴 +o ∅))
62, 5syl5eq 2845 . 2 (𝐴 ∈ On → (𝐴 +o 1o) = suc (𝐴 +o ∅))
7 oa0 8127 . . 3 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
8 suceq 6225 . . 3 ((𝐴 +o ∅) = 𝐴 → suc (𝐴 +o ∅) = suc 𝐴)
97, 8syl 17 . 2 (𝐴 ∈ On → suc (𝐴 +o ∅) = suc 𝐴)
106, 9eqtrd 2833 1 (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111  ∅c0 4243  Oncon0 6160  suc csuc 6162  (class class class)co 7136  ωcom 7563  1oc1o 8081   +o coa 8085 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092 This theorem is referenced by:  o1p1e2  8151  o2p2e4  8152  o2p2e4OLD  8153  om1r  8155  omlimcl  8190  oneo  8193  oeeui  8214  nnneo  8264  nneob  8265  oancom  9101  indpi  10321  tr3dom  40279
 Copyright terms: Public domain W3C validator