MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oa1suc Structured version   Visualization version   GIF version

Theorem oa1suc 8587
Description: Addition with 1 is same as successor. Proposition 4.34(a) of [Mendelson] p. 266. Remark 2.4 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
oa1suc (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴)

Proof of Theorem oa1suc
StepHypRef Expression
1 df-1o 8522 . . . 4 1o = suc ∅
21oveq2i 7459 . . 3 (𝐴 +o 1o) = (𝐴 +o suc ∅)
3 peano1 7927 . . . 4 ∅ ∈ ω
4 onasuc 8584 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ ω) → (𝐴 +o suc ∅) = suc (𝐴 +o ∅))
53, 4mpan2 690 . . 3 (𝐴 ∈ On → (𝐴 +o suc ∅) = suc (𝐴 +o ∅))
62, 5eqtrid 2792 . 2 (𝐴 ∈ On → (𝐴 +o 1o) = suc (𝐴 +o ∅))
7 oa0 8572 . . 3 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
8 suceq 6461 . . 3 ((𝐴 +o ∅) = 𝐴 → suc (𝐴 +o ∅) = suc 𝐴)
97, 8syl 17 . 2 (𝐴 ∈ On → suc (𝐴 +o ∅) = suc 𝐴)
106, 9eqtrd 2780 1 (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  c0 4352  Oncon0 6395  suc csuc 6397  (class class class)co 7448  ωcom 7903  1oc1o 8515   +o coa 8519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526
This theorem is referenced by:  o1p1e2  8596  o2p2e4  8597  om1r  8599  omlimcl  8634  oneo  8637  oeeui  8658  nnneo  8711  nneob  8712  oancom  9720  ttrcltr  9785  indpi  10976  om2noseqlt  28323  oaabsb  43256  oa1un  43408  tr3dom  43490  sucomisnotcard  43506  nna1iscard  43507
  Copyright terms: Public domain W3C validator