Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oa1suc | Structured version Visualization version GIF version |
Description: Addition with 1 is same as successor. Proposition 4.34(a) of [Mendelson] p. 266. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
oa1suc | ⊢ (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8202 | . . . 4 ⊢ 1o = suc ∅ | |
2 | 1 | oveq2i 7224 | . . 3 ⊢ (𝐴 +o 1o) = (𝐴 +o suc ∅) |
3 | peano1 7667 | . . . 4 ⊢ ∅ ∈ ω | |
4 | onasuc 8255 | . . . 4 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ ω) → (𝐴 +o suc ∅) = suc (𝐴 +o ∅)) | |
5 | 3, 4 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 +o suc ∅) = suc (𝐴 +o ∅)) |
6 | 2, 5 | eqtrid 2789 | . 2 ⊢ (𝐴 ∈ On → (𝐴 +o 1o) = suc (𝐴 +o ∅)) |
7 | oa0 8243 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) | |
8 | suceq 6278 | . . 3 ⊢ ((𝐴 +o ∅) = 𝐴 → suc (𝐴 +o ∅) = suc 𝐴) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝐴 ∈ On → suc (𝐴 +o ∅) = suc 𝐴) |
10 | 6, 9 | eqtrd 2777 | 1 ⊢ (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ∅c0 4237 Oncon0 6213 suc csuc 6215 (class class class)co 7213 ωcom 7644 1oc1o 8195 +o coa 8199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-oadd 8206 |
This theorem is referenced by: o1p1e2 8267 o2p2e4 8268 o2p2e4OLD 8269 om1r 8271 omlimcl 8306 oneo 8309 oeeui 8330 nnneo 8380 nneob 8381 oancom 9266 indpi 10521 ttrcltr 33515 tr3dom 40820 |
Copyright terms: Public domain | W3C validator |