| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oa1suc | Structured version Visualization version GIF version | ||
| Description: Addition with 1 is same as successor. Proposition 4.34(a) of [Mendelson] p. 266. Remark 2.4 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| oa1suc | ⊢ (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 8411 | . . . 4 ⊢ 1o = suc ∅ | |
| 2 | 1 | oveq2i 7380 | . . 3 ⊢ (𝐴 +o 1o) = (𝐴 +o suc ∅) |
| 3 | peano1 7845 | . . . 4 ⊢ ∅ ∈ ω | |
| 4 | onasuc 8469 | . . . 4 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ ω) → (𝐴 +o suc ∅) = suc (𝐴 +o ∅)) | |
| 5 | 3, 4 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 +o suc ∅) = suc (𝐴 +o ∅)) |
| 6 | 2, 5 | eqtrid 2776 | . 2 ⊢ (𝐴 ∈ On → (𝐴 +o 1o) = suc (𝐴 +o ∅)) |
| 7 | oa0 8457 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) | |
| 8 | suceq 6388 | . . 3 ⊢ ((𝐴 +o ∅) = 𝐴 → suc (𝐴 +o ∅) = suc 𝐴) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝐴 ∈ On → suc (𝐴 +o ∅) = suc 𝐴) |
| 10 | 6, 9 | eqtrd 2764 | 1 ⊢ (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4292 Oncon0 6320 suc csuc 6322 (class class class)co 7369 ωcom 7822 1oc1o 8404 +o coa 8408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 |
| This theorem is referenced by: o1p1e2 8481 o2p2e4 8482 om1r 8484 omlimcl 8519 oneo 8522 oeeui 8543 nnneo 8596 nneob 8597 oancom 9580 ttrcltr 9645 indpi 10836 om2noseqlt 28169 oaabsb 43256 oa1un 43408 tr3dom 43490 sucomisnotcard 43506 nna1iscard 43507 |
| Copyright terms: Public domain | W3C validator |