Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oa1suc | Structured version Visualization version GIF version |
Description: Addition with 1 is same as successor. Proposition 4.34(a) of [Mendelson] p. 266. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
oa1suc | ⊢ (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8267 | . . . 4 ⊢ 1o = suc ∅ | |
2 | 1 | oveq2i 7266 | . . 3 ⊢ (𝐴 +o 1o) = (𝐴 +o suc ∅) |
3 | peano1 7710 | . . . 4 ⊢ ∅ ∈ ω | |
4 | onasuc 8320 | . . . 4 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ ω) → (𝐴 +o suc ∅) = suc (𝐴 +o ∅)) | |
5 | 3, 4 | mpan2 687 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 +o suc ∅) = suc (𝐴 +o ∅)) |
6 | 2, 5 | eqtrid 2790 | . 2 ⊢ (𝐴 ∈ On → (𝐴 +o 1o) = suc (𝐴 +o ∅)) |
7 | oa0 8308 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) | |
8 | suceq 6316 | . . 3 ⊢ ((𝐴 +o ∅) = 𝐴 → suc (𝐴 +o ∅) = suc 𝐴) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝐴 ∈ On → suc (𝐴 +o ∅) = suc 𝐴) |
10 | 6, 9 | eqtrd 2778 | 1 ⊢ (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∅c0 4253 Oncon0 6251 suc csuc 6253 (class class class)co 7255 ωcom 7687 1oc1o 8260 +o coa 8264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 |
This theorem is referenced by: o1p1e2 8332 o2p2e4 8333 o2p2e4OLD 8334 om1r 8336 omlimcl 8371 oneo 8374 oeeui 8395 nnneo 8445 nneob 8446 oancom 9339 indpi 10594 ttrcltr 33702 tr3dom 41033 |
Copyright terms: Public domain | W3C validator |