MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oa1suc Structured version   Visualization version   GIF version

Theorem oa1suc 8527
Description: Addition with 1 is same as successor. Proposition 4.34(a) of [Mendelson] p. 266. Remark 2.4 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
oa1suc (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴)

Proof of Theorem oa1suc
StepHypRef Expression
1 df-1o 8462 . . . 4 1o = suc ∅
21oveq2i 7416 . . 3 (𝐴 +o 1o) = (𝐴 +o suc ∅)
3 peano1 7875 . . . 4 ∅ ∈ ω
4 onasuc 8524 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ ω) → (𝐴 +o suc ∅) = suc (𝐴 +o ∅))
53, 4mpan2 689 . . 3 (𝐴 ∈ On → (𝐴 +o suc ∅) = suc (𝐴 +o ∅))
62, 5eqtrid 2784 . 2 (𝐴 ∈ On → (𝐴 +o 1o) = suc (𝐴 +o ∅))
7 oa0 8512 . . 3 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
8 suceq 6427 . . 3 ((𝐴 +o ∅) = 𝐴 → suc (𝐴 +o ∅) = suc 𝐴)
97, 8syl 17 . 2 (𝐴 ∈ On → suc (𝐴 +o ∅) = suc 𝐴)
106, 9eqtrd 2772 1 (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  c0 4321  Oncon0 6361  suc csuc 6363  (class class class)co 7405  ωcom 7851  1oc1o 8455   +o coa 8459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466
This theorem is referenced by:  o1p1e2  8536  o2p2e4  8537  om1r  8539  omlimcl  8574  oneo  8577  oeeui  8598  nnneo  8650  nneob  8651  oancom  9642  ttrcltr  9707  indpi  10898  oaabsb  42029  oa1un  42182  tr3dom  42264  sucomisnotcard  42280  nna1iscard  42281
  Copyright terms: Public domain W3C validator