MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oa1suc Structured version   Visualization version   GIF version

Theorem oa1suc 8543
Description: Addition with 1 is same as successor. Proposition 4.34(a) of [Mendelson] p. 266. Remark 2.4 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
oa1suc (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴)

Proof of Theorem oa1suc
StepHypRef Expression
1 df-1o 8480 . . . 4 1o = suc ∅
21oveq2i 7416 . . 3 (𝐴 +o 1o) = (𝐴 +o suc ∅)
3 peano1 7884 . . . 4 ∅ ∈ ω
4 onasuc 8540 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ ω) → (𝐴 +o suc ∅) = suc (𝐴 +o ∅))
53, 4mpan2 691 . . 3 (𝐴 ∈ On → (𝐴 +o suc ∅) = suc (𝐴 +o ∅))
62, 5eqtrid 2782 . 2 (𝐴 ∈ On → (𝐴 +o 1o) = suc (𝐴 +o ∅))
7 oa0 8528 . . 3 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
8 suceq 6419 . . 3 ((𝐴 +o ∅) = 𝐴 → suc (𝐴 +o ∅) = suc 𝐴)
97, 8syl 17 . 2 (𝐴 ∈ On → suc (𝐴 +o ∅) = suc 𝐴)
106, 9eqtrd 2770 1 (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  c0 4308  Oncon0 6352  suc csuc 6354  (class class class)co 7405  ωcom 7861  1oc1o 8473   +o coa 8477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484
This theorem is referenced by:  o1p1e2  8552  o2p2e4  8553  om1r  8555  omlimcl  8590  oneo  8593  oeeui  8614  nnneo  8667  nneob  8668  oancom  9665  ttrcltr  9730  indpi  10921  om2noseqlt  28245  oaabsb  43318  oa1un  43470  tr3dom  43552  sucomisnotcard  43568  nna1iscard  43569
  Copyright terms: Public domain W3C validator