![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oa1suc | Structured version Visualization version GIF version |
Description: Addition with 1 is same as successor. Proposition 4.34(a) of [Mendelson] p. 266. Remark 2.4 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
oa1suc | ⊢ (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8470 | . . . 4 ⊢ 1o = suc ∅ | |
2 | 1 | oveq2i 7424 | . . 3 ⊢ (𝐴 +o 1o) = (𝐴 +o suc ∅) |
3 | peano1 7883 | . . . 4 ⊢ ∅ ∈ ω | |
4 | onasuc 8532 | . . . 4 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ ω) → (𝐴 +o suc ∅) = suc (𝐴 +o ∅)) | |
5 | 3, 4 | mpan2 687 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 +o suc ∅) = suc (𝐴 +o ∅)) |
6 | 2, 5 | eqtrid 2782 | . 2 ⊢ (𝐴 ∈ On → (𝐴 +o 1o) = suc (𝐴 +o ∅)) |
7 | oa0 8520 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) | |
8 | suceq 6431 | . . 3 ⊢ ((𝐴 +o ∅) = 𝐴 → suc (𝐴 +o ∅) = suc 𝐴) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝐴 ∈ On → suc (𝐴 +o ∅) = suc 𝐴) |
10 | 6, 9 | eqtrd 2770 | 1 ⊢ (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ∅c0 4323 Oncon0 6365 suc csuc 6367 (class class class)co 7413 ωcom 7859 1oc1o 8463 +o coa 8467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-oadd 8474 |
This theorem is referenced by: o1p1e2 8544 o2p2e4 8545 om1r 8547 omlimcl 8582 oneo 8585 oeeui 8606 nnneo 8658 nneob 8659 oancom 9650 ttrcltr 9715 indpi 10906 oaabsb 42348 oa1un 42501 tr3dom 42583 sucomisnotcard 42599 nna1iscard 42600 |
Copyright terms: Public domain | W3C validator |