![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aleph1min | Structured version Visualization version GIF version |
Description: (ℵ‘1o) is the least uncountable ordinal. (Contributed by RP, 18-Nov-2023.) |
Ref | Expression |
---|---|
aleph1min | ⊢ (ℵ‘1o) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8480 | . . 3 ⊢ 1o = suc ∅ | |
2 | 1 | fveq2i 6894 | . 2 ⊢ (ℵ‘1o) = (ℵ‘suc ∅) |
3 | 0elon 6417 | . . . . 5 ⊢ ∅ ∈ On | |
4 | alephsuc 10083 | . . . . 5 ⊢ (∅ ∈ On → (ℵ‘suc ∅) = (har‘(ℵ‘∅))) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (ℵ‘suc ∅) = (har‘(ℵ‘∅)) |
6 | aleph0 10081 | . . . . 5 ⊢ (ℵ‘∅) = ω | |
7 | 6 | fveq2i 6894 | . . . 4 ⊢ (har‘(ℵ‘∅)) = (har‘ω) |
8 | 5, 7 | eqtri 2755 | . . 3 ⊢ (ℵ‘suc ∅) = (har‘ω) |
9 | omelon 9661 | . . . . 5 ⊢ ω ∈ On | |
10 | onenon 9964 | . . . . 5 ⊢ (ω ∈ On → ω ∈ dom card) | |
11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ ω ∈ dom card |
12 | harval2 10012 | . . . 4 ⊢ (ω ∈ dom card → (har‘ω) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥}) | |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ (har‘ω) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} |
14 | 8, 13 | eqtri 2755 | . 2 ⊢ (ℵ‘suc ∅) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} |
15 | 2, 14 | eqtri 2755 | 1 ⊢ (ℵ‘1o) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 {crab 3427 ∅c0 4318 ∩ cint 4944 class class class wbr 5142 dom cdm 5672 Oncon0 6363 suc csuc 6365 ‘cfv 6542 ωcom 7864 1oc1o 8473 ≺ csdm 8954 harchar 9571 cardccrd 9950 ℵcale 9951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-oi 9525 df-har 9572 df-card 9954 df-aleph 9955 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |