| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aleph1min | Structured version Visualization version GIF version | ||
| Description: (ℵ‘1o) is the least uncountable ordinal. (Contributed by RP, 18-Nov-2023.) |
| Ref | Expression |
|---|---|
| aleph1min | ⊢ (ℵ‘1o) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 8434 | . . 3 ⊢ 1o = suc ∅ | |
| 2 | 1 | fveq2i 6861 | . 2 ⊢ (ℵ‘1o) = (ℵ‘suc ∅) |
| 3 | 0elon 6387 | . . . . 5 ⊢ ∅ ∈ On | |
| 4 | alephsuc 10021 | . . . . 5 ⊢ (∅ ∈ On → (ℵ‘suc ∅) = (har‘(ℵ‘∅))) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (ℵ‘suc ∅) = (har‘(ℵ‘∅)) |
| 6 | aleph0 10019 | . . . . 5 ⊢ (ℵ‘∅) = ω | |
| 7 | 6 | fveq2i 6861 | . . . 4 ⊢ (har‘(ℵ‘∅)) = (har‘ω) |
| 8 | 5, 7 | eqtri 2752 | . . 3 ⊢ (ℵ‘suc ∅) = (har‘ω) |
| 9 | omelon 9599 | . . . . 5 ⊢ ω ∈ On | |
| 10 | onenon 9902 | . . . . 5 ⊢ (ω ∈ On → ω ∈ dom card) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ ω ∈ dom card |
| 12 | harval2 9950 | . . . 4 ⊢ (ω ∈ dom card → (har‘ω) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥}) | |
| 13 | 11, 12 | ax-mp 5 | . . 3 ⊢ (har‘ω) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} |
| 14 | 8, 13 | eqtri 2752 | . 2 ⊢ (ℵ‘suc ∅) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} |
| 15 | 2, 14 | eqtri 2752 | 1 ⊢ (ℵ‘1o) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {crab 3405 ∅c0 4296 ∩ cint 4910 class class class wbr 5107 dom cdm 5638 Oncon0 6332 suc csuc 6334 ‘cfv 6511 ωcom 7842 1oc1o 8427 ≺ csdm 8917 harchar 9509 cardccrd 9888 ℵcale 9889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-oi 9463 df-har 9510 df-card 9892 df-aleph 9893 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |