| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aleph1min | Structured version Visualization version GIF version | ||
| Description: (ℵ‘1o) is the least uncountable ordinal. (Contributed by RP, 18-Nov-2023.) |
| Ref | Expression |
|---|---|
| aleph1min | ⊢ (ℵ‘1o) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 8480 | . . 3 ⊢ 1o = suc ∅ | |
| 2 | 1 | fveq2i 6879 | . 2 ⊢ (ℵ‘1o) = (ℵ‘suc ∅) |
| 3 | 0elon 6407 | . . . . 5 ⊢ ∅ ∈ On | |
| 4 | alephsuc 10082 | . . . . 5 ⊢ (∅ ∈ On → (ℵ‘suc ∅) = (har‘(ℵ‘∅))) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (ℵ‘suc ∅) = (har‘(ℵ‘∅)) |
| 6 | aleph0 10080 | . . . . 5 ⊢ (ℵ‘∅) = ω | |
| 7 | 6 | fveq2i 6879 | . . . 4 ⊢ (har‘(ℵ‘∅)) = (har‘ω) |
| 8 | 5, 7 | eqtri 2758 | . . 3 ⊢ (ℵ‘suc ∅) = (har‘ω) |
| 9 | omelon 9660 | . . . . 5 ⊢ ω ∈ On | |
| 10 | onenon 9963 | . . . . 5 ⊢ (ω ∈ On → ω ∈ dom card) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ ω ∈ dom card |
| 12 | harval2 10011 | . . . 4 ⊢ (ω ∈ dom card → (har‘ω) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥}) | |
| 13 | 11, 12 | ax-mp 5 | . . 3 ⊢ (har‘ω) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} |
| 14 | 8, 13 | eqtri 2758 | . 2 ⊢ (ℵ‘suc ∅) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} |
| 15 | 2, 14 | eqtri 2758 | 1 ⊢ (ℵ‘1o) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 {crab 3415 ∅c0 4308 ∩ cint 4922 class class class wbr 5119 dom cdm 5654 Oncon0 6352 suc csuc 6354 ‘cfv 6531 ωcom 7861 1oc1o 8473 ≺ csdm 8958 harchar 9570 cardccrd 9949 ℵcale 9950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-oi 9524 df-har 9571 df-card 9953 df-aleph 9954 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |