Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aleph1min Structured version   Visualization version   GIF version

Theorem aleph1min 41202
Description: (ℵ‘1o) is the least uncountable ordinal. (Contributed by RP, 18-Nov-2023.)
Assertion
Ref Expression
aleph1min (ℵ‘1o) = {𝑥 ∈ On ∣ ω ≺ 𝑥}

Proof of Theorem aleph1min
StepHypRef Expression
1 df-1o 8328 . . 3 1o = suc ∅
21fveq2i 6807 . 2 (ℵ‘1o) = (ℵ‘suc ∅)
3 0elon 6334 . . . . 5 ∅ ∈ On
4 alephsuc 9870 . . . . 5 (∅ ∈ On → (ℵ‘suc ∅) = (har‘(ℵ‘∅)))
53, 4ax-mp 5 . . . 4 (ℵ‘suc ∅) = (har‘(ℵ‘∅))
6 aleph0 9868 . . . . 5 (ℵ‘∅) = ω
76fveq2i 6807 . . . 4 (har‘(ℵ‘∅)) = (har‘ω)
85, 7eqtri 2764 . . 3 (ℵ‘suc ∅) = (har‘ω)
9 omelon 9448 . . . . 5 ω ∈ On
10 onenon 9751 . . . . 5 (ω ∈ On → ω ∈ dom card)
119, 10ax-mp 5 . . . 4 ω ∈ dom card
12 harval2 9799 . . . 4 (ω ∈ dom card → (har‘ω) = {𝑥 ∈ On ∣ ω ≺ 𝑥})
1311, 12ax-mp 5 . . 3 (har‘ω) = {𝑥 ∈ On ∣ ω ≺ 𝑥}
148, 13eqtri 2764 . 2 (ℵ‘suc ∅) = {𝑥 ∈ On ∣ ω ≺ 𝑥}
152, 14eqtri 2764 1 (ℵ‘1o) = {𝑥 ∈ On ∣ ω ≺ 𝑥}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2104  {crab 3284  c0 4262   cint 4886   class class class wbr 5081  dom cdm 5600  Oncon0 6281  suc csuc 6283  cfv 6458  ωcom 7744  1oc1o 8321  csdm 8763  harchar 9359  cardccrd 9737  cale 9738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9443
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-oi 9313  df-har 9360  df-card 9741  df-aleph 9742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator