Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aleph1min | Structured version Visualization version GIF version |
Description: (ℵ‘1o) is the least uncountable ordinal. (Contributed by RP, 18-Nov-2023.) |
Ref | Expression |
---|---|
aleph1min | ⊢ (ℵ‘1o) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8328 | . . 3 ⊢ 1o = suc ∅ | |
2 | 1 | fveq2i 6807 | . 2 ⊢ (ℵ‘1o) = (ℵ‘suc ∅) |
3 | 0elon 6334 | . . . . 5 ⊢ ∅ ∈ On | |
4 | alephsuc 9870 | . . . . 5 ⊢ (∅ ∈ On → (ℵ‘suc ∅) = (har‘(ℵ‘∅))) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (ℵ‘suc ∅) = (har‘(ℵ‘∅)) |
6 | aleph0 9868 | . . . . 5 ⊢ (ℵ‘∅) = ω | |
7 | 6 | fveq2i 6807 | . . . 4 ⊢ (har‘(ℵ‘∅)) = (har‘ω) |
8 | 5, 7 | eqtri 2764 | . . 3 ⊢ (ℵ‘suc ∅) = (har‘ω) |
9 | omelon 9448 | . . . . 5 ⊢ ω ∈ On | |
10 | onenon 9751 | . . . . 5 ⊢ (ω ∈ On → ω ∈ dom card) | |
11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ ω ∈ dom card |
12 | harval2 9799 | . . . 4 ⊢ (ω ∈ dom card → (har‘ω) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥}) | |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ (har‘ω) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} |
14 | 8, 13 | eqtri 2764 | . 2 ⊢ (ℵ‘suc ∅) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} |
15 | 2, 14 | eqtri 2764 | 1 ⊢ (ℵ‘1o) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 {crab 3284 ∅c0 4262 ∩ cint 4886 class class class wbr 5081 dom cdm 5600 Oncon0 6281 suc csuc 6283 ‘cfv 6458 ωcom 7744 1oc1o 8321 ≺ csdm 8763 harchar 9359 cardccrd 9737 ℵcale 9738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-oi 9313 df-har 9360 df-card 9741 df-aleph 9742 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |