Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aleph1min | Structured version Visualization version GIF version |
Description: (ℵ‘1o) is the least uncountable ordinal. (Contributed by RP, 18-Nov-2023.) |
Ref | Expression |
---|---|
aleph1min | ⊢ (ℵ‘1o) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8281 | . . 3 ⊢ 1o = suc ∅ | |
2 | 1 | fveq2i 6771 | . 2 ⊢ (ℵ‘1o) = (ℵ‘suc ∅) |
3 | 0elon 6316 | . . . . 5 ⊢ ∅ ∈ On | |
4 | alephsuc 9808 | . . . . 5 ⊢ (∅ ∈ On → (ℵ‘suc ∅) = (har‘(ℵ‘∅))) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (ℵ‘suc ∅) = (har‘(ℵ‘∅)) |
6 | aleph0 9806 | . . . . 5 ⊢ (ℵ‘∅) = ω | |
7 | 6 | fveq2i 6771 | . . . 4 ⊢ (har‘(ℵ‘∅)) = (har‘ω) |
8 | 5, 7 | eqtri 2767 | . . 3 ⊢ (ℵ‘suc ∅) = (har‘ω) |
9 | omelon 9365 | . . . . 5 ⊢ ω ∈ On | |
10 | onenon 9691 | . . . . 5 ⊢ (ω ∈ On → ω ∈ dom card) | |
11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ ω ∈ dom card |
12 | harval2 9739 | . . . 4 ⊢ (ω ∈ dom card → (har‘ω) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥}) | |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ (har‘ω) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} |
14 | 8, 13 | eqtri 2767 | . 2 ⊢ (ℵ‘suc ∅) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} |
15 | 2, 14 | eqtri 2767 | 1 ⊢ (ℵ‘1o) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 {crab 3069 ∅c0 4261 ∩ cint 4884 class class class wbr 5078 dom cdm 5588 Oncon0 6263 suc csuc 6265 ‘cfv 6430 ωcom 7700 1oc1o 8274 ≺ csdm 8706 harchar 9276 cardccrd 9677 ℵcale 9678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-oi 9230 df-har 9277 df-card 9681 df-aleph 9682 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |