![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > aleph1re | Structured version Visualization version GIF version |
Description: There are at least aleph-one real numbers. (Contributed by NM, 2-Feb-2005.) |
Ref | Expression |
---|---|
aleph1re | ⊢ (ℵ‘1o) ≼ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aleph0 10056 | . . . . . 6 ⊢ (ℵ‘∅) = ω | |
2 | nnenom 13941 | . . . . . . 7 ⊢ ℕ ≈ ω | |
3 | 2 | ensymi 8995 | . . . . . 6 ⊢ ω ≈ ℕ |
4 | 1, 3 | eqbrtri 5159 | . . . . 5 ⊢ (ℵ‘∅) ≈ ℕ |
5 | ruc 16182 | . . . . 5 ⊢ ℕ ≺ ℝ | |
6 | ensdomtr 9108 | . . . . 5 ⊢ (((ℵ‘∅) ≈ ℕ ∧ ℕ ≺ ℝ) → (ℵ‘∅) ≺ ℝ) | |
7 | 4, 5, 6 | mp2an 689 | . . . 4 ⊢ (ℵ‘∅) ≺ ℝ |
8 | alephnbtwn2 10062 | . . . 4 ⊢ ¬ ((ℵ‘∅) ≺ ℝ ∧ ℝ ≺ (ℵ‘suc ∅)) | |
9 | 7, 8 | mptnan 1762 | . . 3 ⊢ ¬ ℝ ≺ (ℵ‘suc ∅) |
10 | df-1o 8461 | . . . . 5 ⊢ 1o = suc ∅ | |
11 | 10 | fveq2i 6884 | . . . 4 ⊢ (ℵ‘1o) = (ℵ‘suc ∅) |
12 | 11 | breq2i 5146 | . . 3 ⊢ (ℝ ≺ (ℵ‘1o) ↔ ℝ ≺ (ℵ‘suc ∅)) |
13 | 9, 12 | mtbir 323 | . 2 ⊢ ¬ ℝ ≺ (ℵ‘1o) |
14 | fvex 6894 | . . 3 ⊢ (ℵ‘1o) ∈ V | |
15 | reex 11196 | . . 3 ⊢ ℝ ∈ V | |
16 | domtri 10546 | . . 3 ⊢ (((ℵ‘1o) ∈ V ∧ ℝ ∈ V) → ((ℵ‘1o) ≼ ℝ ↔ ¬ ℝ ≺ (ℵ‘1o))) | |
17 | 14, 15, 16 | mp2an 689 | . 2 ⊢ ((ℵ‘1o) ≼ ℝ ↔ ¬ ℝ ≺ (ℵ‘1o)) |
18 | 13, 17 | mpbir 230 | 1 ⊢ (ℵ‘1o) ≼ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∈ wcel 2098 Vcvv 3466 ∅c0 4314 class class class wbr 5138 suc csuc 6356 ‘cfv 6533 ωcom 7848 1oc1o 8454 ≈ cen 8931 ≼ cdom 8932 ≺ csdm 8933 ℵcale 9926 ℝcr 11104 ℕcn 12208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9631 ax-ac2 10453 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-sup 9432 df-oi 9500 df-har 9547 df-card 9929 df-aleph 9930 df-ac 10106 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-seq 13963 |
This theorem is referenced by: aleph1irr 16185 |
Copyright terms: Public domain | W3C validator |