Step | Hyp | Ref
| Expression |
1 | | orc 865 |
. . . . . . 7
⊢ (𝑣 = 𝑁 → (𝑣 = 𝑁 ∨ ((𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)) ↔ (𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣})))))) |
2 | 1 | a1d 25 |
. . . . . 6
⊢ (𝑣 = 𝑁 → (𝑁 ∈ 𝑉 → (𝑣 = 𝑁 ∨ ((𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)) ↔ (𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣}))))))) |
3 | | simpl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑉) → 𝑣 ≠ 𝑁) |
4 | 3 | anim1i 613 |
. . . . . . . . . . . . . 14
⊢ (((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑉) ∧ (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)) → (𝑣 ≠ 𝑁 ∧ (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒))) |
5 | | 3anass 1092 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ↔ (𝑣 ≠ 𝑁 ∧ (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒))) |
6 | 4, 5 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ (((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑉) ∧ (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)) → (𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)) |
7 | 6 | orcd 871 |
. . . . . . . . . . . 12
⊢ (((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑉) ∧ (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)) → ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣}))) |
8 | 7 | ex 411 |
. . . . . . . . . . 11
⊢ ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑉) → ((𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) → ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣})))) |
9 | | 3simpc 1147 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) → (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)) |
10 | 9 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑉) → ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) → (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒))) |
11 | | vsnid 4660 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑣 ∈ {𝑣} |
12 | | eleq2 2815 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑒 = {𝑣} → (𝑣 ∈ 𝑒 ↔ 𝑣 ∈ {𝑣})) |
13 | 11, 12 | mpbiri 257 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 = {𝑣} → 𝑣 ∈ 𝑒) |
14 | 13 | adantl 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 = 𝑁 ∧ 𝑒 = {𝑣}) → 𝑣 ∈ 𝑒) |
15 | | eleq1 2814 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑁 → (𝑣 ∈ 𝑒 ↔ 𝑁 ∈ 𝑒)) |
16 | 15 | adantr 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 = 𝑁 ∧ 𝑒 = {𝑣}) → (𝑣 ∈ 𝑒 ↔ 𝑁 ∈ 𝑒)) |
17 | 14, 16 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 = 𝑁 ∧ 𝑒 = {𝑣}) → 𝑁 ∈ 𝑒) |
18 | 17, 14 | jca 510 |
. . . . . . . . . . . . 13
⊢ ((𝑣 = 𝑁 ∧ 𝑒 = {𝑣}) → (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)) |
19 | 18 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑉) → ((𝑣 = 𝑁 ∧ 𝑒 = {𝑣}) → (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒))) |
20 | 10, 19 | jaod 857 |
. . . . . . . . . . 11
⊢ ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑉) → (((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣})) → (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒))) |
21 | 8, 20 | impbid 211 |
. . . . . . . . . 10
⊢ ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑉) → ((𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ↔ ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣})))) |
22 | 21 | rexbidv 3169 |
. . . . . . . . 9
⊢ ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑉) → (∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ↔ ∃𝑒 ∈ 𝐸 ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣})))) |
23 | 22 | anbi2d 628 |
. . . . . . . 8
⊢ ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑉) → ((𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)) ↔ (𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣}))))) |
24 | 23 | olcd 872 |
. . . . . . 7
⊢ ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑉) → (𝑣 = 𝑁 ∨ ((𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)) ↔ (𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣})))))) |
25 | 24 | ex 411 |
. . . . . 6
⊢ (𝑣 ≠ 𝑁 → (𝑁 ∈ 𝑉 → (𝑣 = 𝑁 ∨ ((𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)) ↔ (𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣}))))))) |
26 | 2, 25 | pm2.61ine 3015 |
. . . . 5
⊢ (𝑁 ∈ 𝑉 → (𝑣 = 𝑁 ∨ ((𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)) ↔ (𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣})))))) |
27 | | orbidi 950 |
. . . . 5
⊢ ((𝑣 = 𝑁 ∨ ((𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)) ↔ (𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣}))))) ↔ ((𝑣 = 𝑁 ∨ (𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒))) ↔ (𝑣 = 𝑁 ∨ (𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣})))))) |
28 | 26, 27 | sylib 217 |
. . . 4
⊢ (𝑁 ∈ 𝑉 → ((𝑣 = 𝑁 ∨ (𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒))) ↔ (𝑣 = 𝑁 ∨ (𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣})))))) |
29 | | elun 4145 |
. . . . 5
⊢ (𝑣 ∈ ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) ↔ (𝑣 ∈ {𝑁} ∨ 𝑣 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)})) |
30 | | velsn 4639 |
. . . . . 6
⊢ (𝑣 ∈ {𝑁} ↔ 𝑣 = 𝑁) |
31 | | eleq1 2814 |
. . . . . . . . 9
⊢ (𝑛 = 𝑣 → (𝑛 ∈ 𝑒 ↔ 𝑣 ∈ 𝑒)) |
32 | 31 | anbi2d 628 |
. . . . . . . 8
⊢ (𝑛 = 𝑣 → ((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒))) |
33 | 32 | rexbidv 3169 |
. . . . . . 7
⊢ (𝑛 = 𝑣 → (∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒))) |
34 | 33 | elrab 3680 |
. . . . . 6
⊢ (𝑣 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} ↔ (𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒))) |
35 | 30, 34 | orbi12i 912 |
. . . . 5
⊢ ((𝑣 ∈ {𝑁} ∨ 𝑣 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) ↔ (𝑣 = 𝑁 ∨ (𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)))) |
36 | 29, 35 | bitri 274 |
. . . 4
⊢ (𝑣 ∈ ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) ↔ (𝑣 = 𝑁 ∨ (𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)))) |
37 | | elun 4145 |
. . . . 5
⊢ (𝑣 ∈ ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))}) ↔ (𝑣 ∈ {𝑁} ∨ 𝑣 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))})) |
38 | | neeq1 2993 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑣 → (𝑛 ≠ 𝑁 ↔ 𝑣 ≠ 𝑁)) |
39 | 38, 31 | 3anbi13d 1435 |
. . . . . . . . 9
⊢ (𝑛 = 𝑣 → ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ (𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒))) |
40 | | eqeq1 2730 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑣 → (𝑛 = 𝑁 ↔ 𝑣 = 𝑁)) |
41 | | sneq 4633 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑣 → {𝑛} = {𝑣}) |
42 | 41 | eqeq2d 2737 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑣 → (𝑒 = {𝑛} ↔ 𝑒 = {𝑣})) |
43 | 40, 42 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑛 = 𝑣 → ((𝑛 = 𝑁 ∧ 𝑒 = {𝑛}) ↔ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣}))) |
44 | 39, 43 | orbi12d 916 |
. . . . . . . 8
⊢ (𝑛 = 𝑣 → (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ↔ ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣})))) |
45 | 44 | rexbidv 3169 |
. . . . . . 7
⊢ (𝑛 = 𝑣 → (∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ↔ ∃𝑒 ∈ 𝐸 ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣})))) |
46 | 45 | elrab 3680 |
. . . . . 6
⊢ (𝑣 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ↔ (𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣})))) |
47 | 30, 46 | orbi12i 912 |
. . . . 5
⊢ ((𝑣 ∈ {𝑁} ∨ 𝑣 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))}) ↔ (𝑣 = 𝑁 ∨ (𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣}))))) |
48 | 37, 47 | bitri 274 |
. . . 4
⊢ (𝑣 ∈ ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))}) ↔ (𝑣 = 𝑁 ∨ (𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣}))))) |
49 | 28, 36, 48 | 3bitr4g 313 |
. . 3
⊢ (𝑁 ∈ 𝑉 → (𝑣 ∈ ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) ↔ 𝑣 ∈ ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))}))) |
50 | 49 | eqrdv 2724 |
. 2
⊢ (𝑁 ∈ 𝑉 → ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))})) |
51 | | dfvopnbgr2.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
52 | | dfvopnbgr2.e |
. . 3
⊢ 𝐸 = (Edg‘𝐺) |
53 | 51, 52 | dfclnbgr2 47431 |
. 2
⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)})) |
54 | | dfvopnbgr2.u |
. . . 4
⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} |
55 | 51, 52, 54 | dfvopnbgr2 47456 |
. . 3
⊢ (𝑁 ∈ 𝑉 → 𝑈 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))}) |
56 | 55 | uneq2d 4160 |
. 2
⊢ (𝑁 ∈ 𝑉 → ({𝑁} ∪ 𝑈) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))})) |
57 | 50, 53, 56 | 3eqtr4d 2776 |
1
⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ 𝑈)) |