Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfclnbgr6 Structured version   Visualization version   GIF version

Theorem dfclnbgr6 47728
Description: Alternate definition of the closed neighborhood of a vertex as union of the vertex with its semiopen neighborhood. (Contributed by AV, 17-May-2025.)
Hypotheses
Ref Expression
dfvopnbgr2.v 𝑉 = (Vtx‘𝐺)
dfvopnbgr2.e 𝐸 = (Edg‘𝐺)
dfvopnbgr2.u 𝑈 = {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))}
Assertion
Ref Expression
dfclnbgr6 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ 𝑈))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁,𝑛   𝑒,𝑉,𝑛   𝑛,𝐸   𝑛,𝐺
Allowed substitution hints:   𝑈(𝑒,𝑛)

Proof of Theorem dfclnbgr6
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 orc 866 . . . . . . 7 (𝑣 = 𝑁 → (𝑣 = 𝑁 ∨ ((𝑣𝑉 ∧ ∃𝑒𝐸 (𝑁𝑒𝑣𝑒)) ↔ (𝑣𝑉 ∧ ∃𝑒𝐸 ((𝑣𝑁𝑁𝑒𝑣𝑒) ∨ (𝑣 = 𝑁𝑒 = {𝑣}))))))
21a1d 25 . . . . . 6 (𝑣 = 𝑁 → (𝑁𝑉 → (𝑣 = 𝑁 ∨ ((𝑣𝑉 ∧ ∃𝑒𝐸 (𝑁𝑒𝑣𝑒)) ↔ (𝑣𝑉 ∧ ∃𝑒𝐸 ((𝑣𝑁𝑁𝑒𝑣𝑒) ∨ (𝑣 = 𝑁𝑒 = {𝑣})))))))
3 simpl 482 . . . . . . . . . . . . . . 15 ((𝑣𝑁𝑁𝑉) → 𝑣𝑁)
43anim1i 614 . . . . . . . . . . . . . 14 (((𝑣𝑁𝑁𝑉) ∧ (𝑁𝑒𝑣𝑒)) → (𝑣𝑁 ∧ (𝑁𝑒𝑣𝑒)))
5 3anass 1095 . . . . . . . . . . . . . 14 ((𝑣𝑁𝑁𝑒𝑣𝑒) ↔ (𝑣𝑁 ∧ (𝑁𝑒𝑣𝑒)))
64, 5sylibr 234 . . . . . . . . . . . . 13 (((𝑣𝑁𝑁𝑉) ∧ (𝑁𝑒𝑣𝑒)) → (𝑣𝑁𝑁𝑒𝑣𝑒))
76orcd 872 . . . . . . . . . . . 12 (((𝑣𝑁𝑁𝑉) ∧ (𝑁𝑒𝑣𝑒)) → ((𝑣𝑁𝑁𝑒𝑣𝑒) ∨ (𝑣 = 𝑁𝑒 = {𝑣})))
87ex 412 . . . . . . . . . . 11 ((𝑣𝑁𝑁𝑉) → ((𝑁𝑒𝑣𝑒) → ((𝑣𝑁𝑁𝑒𝑣𝑒) ∨ (𝑣 = 𝑁𝑒 = {𝑣}))))
9 3simpc 1150 . . . . . . . . . . . . 13 ((𝑣𝑁𝑁𝑒𝑣𝑒) → (𝑁𝑒𝑣𝑒))
109a1i 11 . . . . . . . . . . . 12 ((𝑣𝑁𝑁𝑉) → ((𝑣𝑁𝑁𝑒𝑣𝑒) → (𝑁𝑒𝑣𝑒)))
11 vsnid 4685 . . . . . . . . . . . . . . . . 17 𝑣 ∈ {𝑣}
12 eleq2 2833 . . . . . . . . . . . . . . . . 17 (𝑒 = {𝑣} → (𝑣𝑒𝑣 ∈ {𝑣}))
1311, 12mpbiri 258 . . . . . . . . . . . . . . . 16 (𝑒 = {𝑣} → 𝑣𝑒)
1413adantl 481 . . . . . . . . . . . . . . 15 ((𝑣 = 𝑁𝑒 = {𝑣}) → 𝑣𝑒)
15 eleq1 2832 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑁 → (𝑣𝑒𝑁𝑒))
1615adantr 480 . . . . . . . . . . . . . . 15 ((𝑣 = 𝑁𝑒 = {𝑣}) → (𝑣𝑒𝑁𝑒))
1714, 16mpbid 232 . . . . . . . . . . . . . 14 ((𝑣 = 𝑁𝑒 = {𝑣}) → 𝑁𝑒)
1817, 14jca 511 . . . . . . . . . . . . 13 ((𝑣 = 𝑁𝑒 = {𝑣}) → (𝑁𝑒𝑣𝑒))
1918a1i 11 . . . . . . . . . . . 12 ((𝑣𝑁𝑁𝑉) → ((𝑣 = 𝑁𝑒 = {𝑣}) → (𝑁𝑒𝑣𝑒)))
2010, 19jaod 858 . . . . . . . . . . 11 ((𝑣𝑁𝑁𝑉) → (((𝑣𝑁𝑁𝑒𝑣𝑒) ∨ (𝑣 = 𝑁𝑒 = {𝑣})) → (𝑁𝑒𝑣𝑒)))
218, 20impbid 212 . . . . . . . . . 10 ((𝑣𝑁𝑁𝑉) → ((𝑁𝑒𝑣𝑒) ↔ ((𝑣𝑁𝑁𝑒𝑣𝑒) ∨ (𝑣 = 𝑁𝑒 = {𝑣}))))
2221rexbidv 3185 . . . . . . . . 9 ((𝑣𝑁𝑁𝑉) → (∃𝑒𝐸 (𝑁𝑒𝑣𝑒) ↔ ∃𝑒𝐸 ((𝑣𝑁𝑁𝑒𝑣𝑒) ∨ (𝑣 = 𝑁𝑒 = {𝑣}))))
2322anbi2d 629 . . . . . . . 8 ((𝑣𝑁𝑁𝑉) → ((𝑣𝑉 ∧ ∃𝑒𝐸 (𝑁𝑒𝑣𝑒)) ↔ (𝑣𝑉 ∧ ∃𝑒𝐸 ((𝑣𝑁𝑁𝑒𝑣𝑒) ∨ (𝑣 = 𝑁𝑒 = {𝑣})))))
2423olcd 873 . . . . . . 7 ((𝑣𝑁𝑁𝑉) → (𝑣 = 𝑁 ∨ ((𝑣𝑉 ∧ ∃𝑒𝐸 (𝑁𝑒𝑣𝑒)) ↔ (𝑣𝑉 ∧ ∃𝑒𝐸 ((𝑣𝑁𝑁𝑒𝑣𝑒) ∨ (𝑣 = 𝑁𝑒 = {𝑣}))))))
2524ex 412 . . . . . 6 (𝑣𝑁 → (𝑁𝑉 → (𝑣 = 𝑁 ∨ ((𝑣𝑉 ∧ ∃𝑒𝐸 (𝑁𝑒𝑣𝑒)) ↔ (𝑣𝑉 ∧ ∃𝑒𝐸 ((𝑣𝑁𝑁𝑒𝑣𝑒) ∨ (𝑣 = 𝑁𝑒 = {𝑣})))))))
262, 25pm2.61ine 3031 . . . . 5 (𝑁𝑉 → (𝑣 = 𝑁 ∨ ((𝑣𝑉 ∧ ∃𝑒𝐸 (𝑁𝑒𝑣𝑒)) ↔ (𝑣𝑉 ∧ ∃𝑒𝐸 ((𝑣𝑁𝑁𝑒𝑣𝑒) ∨ (𝑣 = 𝑁𝑒 = {𝑣}))))))
27 orbidi 953 . . . . 5 ((𝑣 = 𝑁 ∨ ((𝑣𝑉 ∧ ∃𝑒𝐸 (𝑁𝑒𝑣𝑒)) ↔ (𝑣𝑉 ∧ ∃𝑒𝐸 ((𝑣𝑁𝑁𝑒𝑣𝑒) ∨ (𝑣 = 𝑁𝑒 = {𝑣}))))) ↔ ((𝑣 = 𝑁 ∨ (𝑣𝑉 ∧ ∃𝑒𝐸 (𝑁𝑒𝑣𝑒))) ↔ (𝑣 = 𝑁 ∨ (𝑣𝑉 ∧ ∃𝑒𝐸 ((𝑣𝑁𝑁𝑒𝑣𝑒) ∨ (𝑣 = 𝑁𝑒 = {𝑣}))))))
2826, 27sylib 218 . . . 4 (𝑁𝑉 → ((𝑣 = 𝑁 ∨ (𝑣𝑉 ∧ ∃𝑒𝐸 (𝑁𝑒𝑣𝑒))) ↔ (𝑣 = 𝑁 ∨ (𝑣𝑉 ∧ ∃𝑒𝐸 ((𝑣𝑁𝑁𝑒𝑣𝑒) ∨ (𝑣 = 𝑁𝑒 = {𝑣}))))))
29 elun 4176 . . . . 5 (𝑣 ∈ ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)}) ↔ (𝑣 ∈ {𝑁} ∨ 𝑣 ∈ {𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)}))
30 velsn 4664 . . . . . 6 (𝑣 ∈ {𝑁} ↔ 𝑣 = 𝑁)
31 eleq1 2832 . . . . . . . . 9 (𝑛 = 𝑣 → (𝑛𝑒𝑣𝑒))
3231anbi2d 629 . . . . . . . 8 (𝑛 = 𝑣 → ((𝑁𝑒𝑛𝑒) ↔ (𝑁𝑒𝑣𝑒)))
3332rexbidv 3185 . . . . . . 7 (𝑛 = 𝑣 → (∃𝑒𝐸 (𝑁𝑒𝑛𝑒) ↔ ∃𝑒𝐸 (𝑁𝑒𝑣𝑒)))
3433elrab 3708 . . . . . 6 (𝑣 ∈ {𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)} ↔ (𝑣𝑉 ∧ ∃𝑒𝐸 (𝑁𝑒𝑣𝑒)))
3530, 34orbi12i 913 . . . . 5 ((𝑣 ∈ {𝑁} ∨ 𝑣 ∈ {𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)}) ↔ (𝑣 = 𝑁 ∨ (𝑣𝑉 ∧ ∃𝑒𝐸 (𝑁𝑒𝑣𝑒))))
3629, 35bitri 275 . . . 4 (𝑣 ∈ ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)}) ↔ (𝑣 = 𝑁 ∨ (𝑣𝑉 ∧ ∃𝑒𝐸 (𝑁𝑒𝑣𝑒))))
37 elun 4176 . . . . 5 (𝑣 ∈ ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))}) ↔ (𝑣 ∈ {𝑁} ∨ 𝑣 ∈ {𝑛𝑉 ∣ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))}))
38 neeq1 3009 . . . . . . . . . 10 (𝑛 = 𝑣 → (𝑛𝑁𝑣𝑁))
3938, 313anbi13d 1438 . . . . . . . . 9 (𝑛 = 𝑣 → ((𝑛𝑁𝑁𝑒𝑛𝑒) ↔ (𝑣𝑁𝑁𝑒𝑣𝑒)))
40 eqeq1 2744 . . . . . . . . . 10 (𝑛 = 𝑣 → (𝑛 = 𝑁𝑣 = 𝑁))
41 sneq 4658 . . . . . . . . . . 11 (𝑛 = 𝑣 → {𝑛} = {𝑣})
4241eqeq2d 2751 . . . . . . . . . 10 (𝑛 = 𝑣 → (𝑒 = {𝑛} ↔ 𝑒 = {𝑣}))
4340, 42anbi12d 631 . . . . . . . . 9 (𝑛 = 𝑣 → ((𝑛 = 𝑁𝑒 = {𝑛}) ↔ (𝑣 = 𝑁𝑒 = {𝑣})))
4439, 43orbi12d 917 . . . . . . . 8 (𝑛 = 𝑣 → (((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})) ↔ ((𝑣𝑁𝑁𝑒𝑣𝑒) ∨ (𝑣 = 𝑁𝑒 = {𝑣}))))
4544rexbidv 3185 . . . . . . 7 (𝑛 = 𝑣 → (∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})) ↔ ∃𝑒𝐸 ((𝑣𝑁𝑁𝑒𝑣𝑒) ∨ (𝑣 = 𝑁𝑒 = {𝑣}))))
4645elrab 3708 . . . . . 6 (𝑣 ∈ {𝑛𝑉 ∣ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))} ↔ (𝑣𝑉 ∧ ∃𝑒𝐸 ((𝑣𝑁𝑁𝑒𝑣𝑒) ∨ (𝑣 = 𝑁𝑒 = {𝑣}))))
4730, 46orbi12i 913 . . . . 5 ((𝑣 ∈ {𝑁} ∨ 𝑣 ∈ {𝑛𝑉 ∣ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))}) ↔ (𝑣 = 𝑁 ∨ (𝑣𝑉 ∧ ∃𝑒𝐸 ((𝑣𝑁𝑁𝑒𝑣𝑒) ∨ (𝑣 = 𝑁𝑒 = {𝑣})))))
4837, 47bitri 275 . . . 4 (𝑣 ∈ ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))}) ↔ (𝑣 = 𝑁 ∨ (𝑣𝑉 ∧ ∃𝑒𝐸 ((𝑣𝑁𝑁𝑒𝑣𝑒) ∨ (𝑣 = 𝑁𝑒 = {𝑣})))))
4928, 36, 483bitr4g 314 . . 3 (𝑁𝑉 → (𝑣 ∈ ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)}) ↔ 𝑣 ∈ ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))})))
5049eqrdv 2738 . 2 (𝑁𝑉 → ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)}) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))}))
51 dfvopnbgr2.v . . 3 𝑉 = (Vtx‘𝐺)
52 dfvopnbgr2.e . . 3 𝐸 = (Edg‘𝐺)
5351, 52dfclnbgr2 47697 . 2 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)}))
54 dfvopnbgr2.u . . . 4 𝑈 = {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))}
5551, 52, 54dfvopnbgr2 47725 . . 3 (𝑁𝑉𝑈 = {𝑛𝑉 ∣ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))})
5655uneq2d 4191 . 2 (𝑁𝑉 → ({𝑁} ∪ 𝑈) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))}))
5750, 53, 563eqtr4d 2790 1 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  {crab 3443  cun 3974  {csn 4648  cfv 6573  (class class class)co 7448  Vtxcvtx 29031  Edgcedg 29082   NeighbVtx cnbgr 29367   ClNeighbVtx cclnbgr 47692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-nbgr 29368  df-clnbgr 47693
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator