Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tposfn | Structured version Visualization version GIF version |
Description: Functionality of a transposition. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
tposfn | ⊢ (𝐹 Fn (𝐴 × 𝐵) → tpos 𝐹 Fn (𝐵 × 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposf 8144 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)⟶V → tpos 𝐹:(𝐵 × 𝐴)⟶V) | |
2 | dffn2 6657 | . 2 ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)⟶V) | |
3 | dffn2 6657 | . 2 ⊢ (tpos 𝐹 Fn (𝐵 × 𝐴) ↔ tpos 𝐹:(𝐵 × 𝐴)⟶V) | |
4 | 1, 2, 3 | 3imtr4i 292 | 1 ⊢ (𝐹 Fn (𝐴 × 𝐵) → tpos 𝐹 Fn (𝐵 × 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Vcvv 3442 × cxp 5622 Fn wfn 6478 ⟶wf 6479 tpos ctpos 8115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-fo 6489 df-fv 6491 df-tpos 8116 |
This theorem is referenced by: tpossym 8148 funcoppc 17687 |
Copyright terms: Public domain | W3C validator |