MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucsect Structured version   Visualization version   GIF version

Theorem fucsect 17690
Description: Two natural transformations are in a section iff all the components are in a section relation. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
fuciso.q 𝑄 = (𝐶 FuncCat 𝐷)
fuciso.b 𝐵 = (Base‘𝐶)
fuciso.n 𝑁 = (𝐶 Nat 𝐷)
fuciso.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
fuciso.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
fucsect.s 𝑆 = (Sect‘𝑄)
fucsect.t 𝑇 = (Sect‘𝐷)
Assertion
Ref Expression
fucsect (𝜑 → (𝑈(𝐹𝑆𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹   𝑥,𝐺   𝑥,𝑁   𝑥,𝑉   𝜑,𝑥   𝑥,𝑄   𝑥,𝑈
Allowed substitution hints:   𝑆(𝑥)   𝑇(𝑥)

Proof of Theorem fucsect
StepHypRef Expression
1 fuciso.q . . . 4 𝑄 = (𝐶 FuncCat 𝐷)
21fucbas 17677 . . 3 (𝐶 Func 𝐷) = (Base‘𝑄)
3 fuciso.n . . . 4 𝑁 = (𝐶 Nat 𝐷)
41, 3fuchom 17678 . . 3 𝑁 = (Hom ‘𝑄)
5 eqid 2738 . . 3 (comp‘𝑄) = (comp‘𝑄)
6 eqid 2738 . . 3 (Id‘𝑄) = (Id‘𝑄)
7 fucsect.s . . 3 𝑆 = (Sect‘𝑄)
8 fuciso.f . . . . . 6 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
9 funcrcl 17578 . . . . . 6 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
108, 9syl 17 . . . . 5 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1110simpld 495 . . . 4 (𝜑𝐶 ∈ Cat)
1210simprd 496 . . . 4 (𝜑𝐷 ∈ Cat)
131, 11, 12fuccat 17688 . . 3 (𝜑𝑄 ∈ Cat)
14 fuciso.g . . 3 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
152, 4, 5, 6, 7, 13, 8, 14issect 17465 . 2 (𝜑 → (𝑈(𝐹𝑆𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹))))
16 ovex 7308 . . . . . . 7 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ∈ V
1716rgenw 3076 . . . . . 6 𝑥𝐵 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ∈ V
18 mpteqb 6894 . . . . . 6 (∀𝑥𝐵 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ∈ V → ((𝑥𝐵 ↦ ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥))) ↔ ∀𝑥𝐵 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
1917, 18mp1i 13 . . . . 5 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((𝑥𝐵 ↦ ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥))) ↔ ∀𝑥𝐵 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
20 fuciso.b . . . . . . 7 𝐵 = (Base‘𝐶)
21 eqid 2738 . . . . . . 7 (comp‘𝐷) = (comp‘𝐷)
22 simprl 768 . . . . . . 7 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → 𝑈 ∈ (𝐹𝑁𝐺))
23 simprr 770 . . . . . . 7 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → 𝑉 ∈ (𝐺𝑁𝐹))
241, 3, 20, 21, 5, 22, 23fucco 17680 . . . . . 6 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = (𝑥𝐵 ↦ ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
25 eqid 2738 . . . . . . . 8 (Id‘𝐷) = (Id‘𝐷)
268adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → 𝐹 ∈ (𝐶 Func 𝐷))
271, 6, 25, 26fucid 17689 . . . . . . 7 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((Id‘𝑄)‘𝐹) = ((Id‘𝐷) ∘ (1st𝐹)))
2812adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → 𝐷 ∈ Cat)
29 eqid 2738 . . . . . . . . . . 11 (Base‘𝐷) = (Base‘𝐷)
3029, 25cidfn 17388 . . . . . . . . . 10 (𝐷 ∈ Cat → (Id‘𝐷) Fn (Base‘𝐷))
3128, 30syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (Id‘𝐷) Fn (Base‘𝐷))
32 dffn2 6602 . . . . . . . . 9 ((Id‘𝐷) Fn (Base‘𝐷) ↔ (Id‘𝐷):(Base‘𝐷)⟶V)
3331, 32sylib 217 . . . . . . . 8 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (Id‘𝐷):(Base‘𝐷)⟶V)
34 relfunc 17577 . . . . . . . . . . 11 Rel (𝐶 Func 𝐷)
35 1st2ndbr 7883 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3634, 8, 35sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3720, 29, 36funcf1 17581 . . . . . . . . 9 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐷))
3837adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (1st𝐹):𝐵⟶(Base‘𝐷))
39 fcompt 7005 . . . . . . . 8 (((Id‘𝐷):(Base‘𝐷)⟶V ∧ (1st𝐹):𝐵⟶(Base‘𝐷)) → ((Id‘𝐷) ∘ (1st𝐹)) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
4033, 38, 39syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((Id‘𝐷) ∘ (1st𝐹)) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
4127, 40eqtrd 2778 . . . . . 6 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((Id‘𝑄)‘𝐹) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
4224, 41eqeq12d 2754 . . . . 5 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹) ↔ (𝑥𝐵 ↦ ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥)))))
43 eqid 2738 . . . . . . 7 (Hom ‘𝐷) = (Hom ‘𝐷)
44 fucsect.t . . . . . . 7 𝑇 = (Sect‘𝐷)
4528adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝐷 ∈ Cat)
4638ffvelrnda 6961 . . . . . . 7 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
47 1st2ndbr 7883 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
4834, 14, 47sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
4920, 29, 48funcf1 17581 . . . . . . . . 9 (𝜑 → (1st𝐺):𝐵⟶(Base‘𝐷))
5049adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (1st𝐺):𝐵⟶(Base‘𝐷))
5150ffvelrnda 6961 . . . . . . 7 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
5222adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝑈 ∈ (𝐹𝑁𝐺))
533, 52nat1st2nd 17667 . . . . . . . 8 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝑈 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
54 simpr 485 . . . . . . . 8 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝑥𝐵)
553, 53, 20, 43, 54natcl 17669 . . . . . . 7 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → (𝑈𝑥) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)))
5623adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝑉 ∈ (𝐺𝑁𝐹))
573, 56nat1st2nd 17667 . . . . . . . 8 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝑉 ∈ (⟨(1st𝐺), (2nd𝐺)⟩𝑁⟨(1st𝐹), (2nd𝐹)⟩))
583, 57, 20, 43, 54natcl 17669 . . . . . . 7 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → (𝑉𝑥) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
5929, 43, 21, 25, 44, 45, 46, 51, 55, 58issect2 17466 . . . . . 6 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → ((𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥) ↔ ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
6059ralbidva 3111 . . . . 5 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥) ↔ ∀𝑥𝐵 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
6119, 42, 603bitr4d 311 . . . 4 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹) ↔ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥)))
6261pm5.32da 579 . . 3 (𝜑 → (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥))))
63 df-3an 1088 . . 3 ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹)))
64 df-3an 1088 . . 3 ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥)))
6562, 63, 643bitr4g 314 . 2 (𝜑 → ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹)) ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥))))
6615, 65bitrd 278 1 (𝜑 → (𝑈(𝐹𝑆𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cop 4567   class class class wbr 5074  cmpt 5157  ccom 5593  Rel wrel 5594   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  Basecbs 16912  Hom chom 16973  compcco 16974  Catccat 17373  Idccid 17374  Sectcsect 17456   Func cfunc 17569   Nat cnat 17657   FuncCat cfuc 17658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-hom 16986  df-cco 16987  df-cat 17377  df-cid 17378  df-sect 17459  df-func 17573  df-nat 17659  df-fuc 17660
This theorem is referenced by:  fucinv  17691
  Copyright terms: Public domain W3C validator