MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucsect Structured version   Visualization version   GIF version

Theorem fucsect 17937
Description: Two natural transformations are in a section iff all the components are in a section relation. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
fuciso.q 𝑄 = (𝐶 FuncCat 𝐷)
fuciso.b 𝐵 = (Base‘𝐶)
fuciso.n 𝑁 = (𝐶 Nat 𝐷)
fuciso.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
fuciso.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
fucsect.s 𝑆 = (Sect‘𝑄)
fucsect.t 𝑇 = (Sect‘𝐷)
Assertion
Ref Expression
fucsect (𝜑 → (𝑈(𝐹𝑆𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹   𝑥,𝐺   𝑥,𝑁   𝑥,𝑉   𝜑,𝑥   𝑥,𝑄   𝑥,𝑈
Allowed substitution hints:   𝑆(𝑥)   𝑇(𝑥)

Proof of Theorem fucsect
StepHypRef Expression
1 fuciso.q . . . 4 𝑄 = (𝐶 FuncCat 𝐷)
21fucbas 17925 . . 3 (𝐶 Func 𝐷) = (Base‘𝑄)
3 fuciso.n . . . 4 𝑁 = (𝐶 Nat 𝐷)
41, 3fuchom 17926 . . 3 𝑁 = (Hom ‘𝑄)
5 eqid 2729 . . 3 (comp‘𝑄) = (comp‘𝑄)
6 eqid 2729 . . 3 (Id‘𝑄) = (Id‘𝑄)
7 fucsect.s . . 3 𝑆 = (Sect‘𝑄)
8 fuciso.f . . . . . 6 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
9 funcrcl 17825 . . . . . 6 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
108, 9syl 17 . . . . 5 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1110simpld 494 . . . 4 (𝜑𝐶 ∈ Cat)
1210simprd 495 . . . 4 (𝜑𝐷 ∈ Cat)
131, 11, 12fuccat 17935 . . 3 (𝜑𝑄 ∈ Cat)
14 fuciso.g . . 3 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
152, 4, 5, 6, 7, 13, 8, 14issect 17715 . 2 (𝜑 → (𝑈(𝐹𝑆𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹))))
16 ovex 7420 . . . . . . 7 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ∈ V
1716rgenw 3048 . . . . . 6 𝑥𝐵 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ∈ V
18 mpteqb 6987 . . . . . 6 (∀𝑥𝐵 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ∈ V → ((𝑥𝐵 ↦ ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥))) ↔ ∀𝑥𝐵 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
1917, 18mp1i 13 . . . . 5 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((𝑥𝐵 ↦ ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥))) ↔ ∀𝑥𝐵 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
20 fuciso.b . . . . . . 7 𝐵 = (Base‘𝐶)
21 eqid 2729 . . . . . . 7 (comp‘𝐷) = (comp‘𝐷)
22 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → 𝑈 ∈ (𝐹𝑁𝐺))
23 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → 𝑉 ∈ (𝐺𝑁𝐹))
241, 3, 20, 21, 5, 22, 23fucco 17927 . . . . . 6 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = (𝑥𝐵 ↦ ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
25 eqid 2729 . . . . . . . 8 (Id‘𝐷) = (Id‘𝐷)
268adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → 𝐹 ∈ (𝐶 Func 𝐷))
271, 6, 25, 26fucid 17936 . . . . . . 7 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((Id‘𝑄)‘𝐹) = ((Id‘𝐷) ∘ (1st𝐹)))
2812adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → 𝐷 ∈ Cat)
29 eqid 2729 . . . . . . . . . . 11 (Base‘𝐷) = (Base‘𝐷)
3029, 25cidfn 17640 . . . . . . . . . 10 (𝐷 ∈ Cat → (Id‘𝐷) Fn (Base‘𝐷))
3128, 30syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (Id‘𝐷) Fn (Base‘𝐷))
32 dffn2 6690 . . . . . . . . 9 ((Id‘𝐷) Fn (Base‘𝐷) ↔ (Id‘𝐷):(Base‘𝐷)⟶V)
3331, 32sylib 218 . . . . . . . 8 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (Id‘𝐷):(Base‘𝐷)⟶V)
34 relfunc 17824 . . . . . . . . . . 11 Rel (𝐶 Func 𝐷)
35 1st2ndbr 8021 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3634, 8, 35sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3720, 29, 36funcf1 17828 . . . . . . . . 9 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐷))
3837adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (1st𝐹):𝐵⟶(Base‘𝐷))
39 fcompt 7105 . . . . . . . 8 (((Id‘𝐷):(Base‘𝐷)⟶V ∧ (1st𝐹):𝐵⟶(Base‘𝐷)) → ((Id‘𝐷) ∘ (1st𝐹)) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
4033, 38, 39syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((Id‘𝐷) ∘ (1st𝐹)) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
4127, 40eqtrd 2764 . . . . . 6 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((Id‘𝑄)‘𝐹) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
4224, 41eqeq12d 2745 . . . . 5 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹) ↔ (𝑥𝐵 ↦ ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥)))))
43 eqid 2729 . . . . . . 7 (Hom ‘𝐷) = (Hom ‘𝐷)
44 fucsect.t . . . . . . 7 𝑇 = (Sect‘𝐷)
4528adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝐷 ∈ Cat)
4638ffvelcdmda 7056 . . . . . . 7 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
47 1st2ndbr 8021 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
4834, 14, 47sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
4920, 29, 48funcf1 17828 . . . . . . . . 9 (𝜑 → (1st𝐺):𝐵⟶(Base‘𝐷))
5049adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (1st𝐺):𝐵⟶(Base‘𝐷))
5150ffvelcdmda 7056 . . . . . . 7 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
5222adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝑈 ∈ (𝐹𝑁𝐺))
533, 52nat1st2nd 17916 . . . . . . . 8 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝑈 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
54 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝑥𝐵)
553, 53, 20, 43, 54natcl 17918 . . . . . . 7 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → (𝑈𝑥) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)))
5623adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝑉 ∈ (𝐺𝑁𝐹))
573, 56nat1st2nd 17916 . . . . . . . 8 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝑉 ∈ (⟨(1st𝐺), (2nd𝐺)⟩𝑁⟨(1st𝐹), (2nd𝐹)⟩))
583, 57, 20, 43, 54natcl 17918 . . . . . . 7 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → (𝑉𝑥) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
5929, 43, 21, 25, 44, 45, 46, 51, 55, 58issect2 17716 . . . . . 6 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → ((𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥) ↔ ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
6059ralbidva 3154 . . . . 5 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥) ↔ ∀𝑥𝐵 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
6119, 42, 603bitr4d 311 . . . 4 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹) ↔ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥)))
6261pm5.32da 579 . . 3 (𝜑 → (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥))))
63 df-3an 1088 . . 3 ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹)))
64 df-3an 1088 . . 3 ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥)))
6562, 63, 643bitr4g 314 . 2 (𝜑 → ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹)) ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥))))
6615, 65bitrd 279 1 (𝜑 → (𝑈(𝐹𝑆𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cop 4595   class class class wbr 5107  cmpt 5188  ccom 5642  Rel wrel 5643   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625  Idccid 17626  Sectcsect 17706   Func cfunc 17816   Nat cnat 17906   FuncCat cfuc 17907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-hom 17244  df-cco 17245  df-cat 17629  df-cid 17630  df-sect 17709  df-func 17820  df-nat 17908  df-fuc 17909
This theorem is referenced by:  fucinv  17938
  Copyright terms: Public domain W3C validator