MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucsect Structured version   Visualization version   GIF version

Theorem fucsect 17934
Description: Two natural transformations are in a section iff all the components are in a section relation. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
fuciso.q 𝑄 = (𝐶 FuncCat 𝐷)
fuciso.b 𝐵 = (Base‘𝐶)
fuciso.n 𝑁 = (𝐶 Nat 𝐷)
fuciso.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
fuciso.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
fucsect.s 𝑆 = (Sect‘𝑄)
fucsect.t 𝑇 = (Sect‘𝐷)
Assertion
Ref Expression
fucsect (𝜑 → (𝑈(𝐹𝑆𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹   𝑥,𝐺   𝑥,𝑁   𝑥,𝑉   𝜑,𝑥   𝑥,𝑄   𝑥,𝑈
Allowed substitution hints:   𝑆(𝑥)   𝑇(𝑥)

Proof of Theorem fucsect
StepHypRef Expression
1 fuciso.q . . . 4 𝑄 = (𝐶 FuncCat 𝐷)
21fucbas 17921 . . 3 (𝐶 Func 𝐷) = (Base‘𝑄)
3 fuciso.n . . . 4 𝑁 = (𝐶 Nat 𝐷)
41, 3fuchom 17922 . . 3 𝑁 = (Hom ‘𝑄)
5 eqid 2726 . . 3 (comp‘𝑄) = (comp‘𝑄)
6 eqid 2726 . . 3 (Id‘𝑄) = (Id‘𝑄)
7 fucsect.s . . 3 𝑆 = (Sect‘𝑄)
8 fuciso.f . . . . . 6 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
9 funcrcl 17819 . . . . . 6 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
108, 9syl 17 . . . . 5 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1110simpld 494 . . . 4 (𝜑𝐶 ∈ Cat)
1210simprd 495 . . . 4 (𝜑𝐷 ∈ Cat)
131, 11, 12fuccat 17932 . . 3 (𝜑𝑄 ∈ Cat)
14 fuciso.g . . 3 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
152, 4, 5, 6, 7, 13, 8, 14issect 17706 . 2 (𝜑 → (𝑈(𝐹𝑆𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹))))
16 ovex 7437 . . . . . . 7 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ∈ V
1716rgenw 3059 . . . . . 6 𝑥𝐵 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ∈ V
18 mpteqb 7010 . . . . . 6 (∀𝑥𝐵 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ∈ V → ((𝑥𝐵 ↦ ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥))) ↔ ∀𝑥𝐵 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
1917, 18mp1i 13 . . . . 5 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((𝑥𝐵 ↦ ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥))) ↔ ∀𝑥𝐵 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
20 fuciso.b . . . . . . 7 𝐵 = (Base‘𝐶)
21 eqid 2726 . . . . . . 7 (comp‘𝐷) = (comp‘𝐷)
22 simprl 768 . . . . . . 7 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → 𝑈 ∈ (𝐹𝑁𝐺))
23 simprr 770 . . . . . . 7 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → 𝑉 ∈ (𝐺𝑁𝐹))
241, 3, 20, 21, 5, 22, 23fucco 17924 . . . . . 6 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = (𝑥𝐵 ↦ ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
25 eqid 2726 . . . . . . . 8 (Id‘𝐷) = (Id‘𝐷)
268adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → 𝐹 ∈ (𝐶 Func 𝐷))
271, 6, 25, 26fucid 17933 . . . . . . 7 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((Id‘𝑄)‘𝐹) = ((Id‘𝐷) ∘ (1st𝐹)))
2812adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → 𝐷 ∈ Cat)
29 eqid 2726 . . . . . . . . . . 11 (Base‘𝐷) = (Base‘𝐷)
3029, 25cidfn 17629 . . . . . . . . . 10 (𝐷 ∈ Cat → (Id‘𝐷) Fn (Base‘𝐷))
3128, 30syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (Id‘𝐷) Fn (Base‘𝐷))
32 dffn2 6712 . . . . . . . . 9 ((Id‘𝐷) Fn (Base‘𝐷) ↔ (Id‘𝐷):(Base‘𝐷)⟶V)
3331, 32sylib 217 . . . . . . . 8 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (Id‘𝐷):(Base‘𝐷)⟶V)
34 relfunc 17818 . . . . . . . . . . 11 Rel (𝐶 Func 𝐷)
35 1st2ndbr 8024 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3634, 8, 35sylancr 586 . . . . . . . . . 10 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3720, 29, 36funcf1 17822 . . . . . . . . 9 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐷))
3837adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (1st𝐹):𝐵⟶(Base‘𝐷))
39 fcompt 7126 . . . . . . . 8 (((Id‘𝐷):(Base‘𝐷)⟶V ∧ (1st𝐹):𝐵⟶(Base‘𝐷)) → ((Id‘𝐷) ∘ (1st𝐹)) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
4033, 38, 39syl2anc 583 . . . . . . 7 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((Id‘𝐷) ∘ (1st𝐹)) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
4127, 40eqtrd 2766 . . . . . 6 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((Id‘𝑄)‘𝐹) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
4224, 41eqeq12d 2742 . . . . 5 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹) ↔ (𝑥𝐵 ↦ ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥)))))
43 eqid 2726 . . . . . . 7 (Hom ‘𝐷) = (Hom ‘𝐷)
44 fucsect.t . . . . . . 7 𝑇 = (Sect‘𝐷)
4528adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝐷 ∈ Cat)
4638ffvelcdmda 7079 . . . . . . 7 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
47 1st2ndbr 8024 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
4834, 14, 47sylancr 586 . . . . . . . . . 10 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
4920, 29, 48funcf1 17822 . . . . . . . . 9 (𝜑 → (1st𝐺):𝐵⟶(Base‘𝐷))
5049adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (1st𝐺):𝐵⟶(Base‘𝐷))
5150ffvelcdmda 7079 . . . . . . 7 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
5222adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝑈 ∈ (𝐹𝑁𝐺))
533, 52nat1st2nd 17911 . . . . . . . 8 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝑈 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
54 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝑥𝐵)
553, 53, 20, 43, 54natcl 17913 . . . . . . 7 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → (𝑈𝑥) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)))
5623adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝑉 ∈ (𝐺𝑁𝐹))
573, 56nat1st2nd 17911 . . . . . . . 8 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝑉 ∈ (⟨(1st𝐺), (2nd𝐺)⟩𝑁⟨(1st𝐹), (2nd𝐹)⟩))
583, 57, 20, 43, 54natcl 17913 . . . . . . 7 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → (𝑉𝑥) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
5929, 43, 21, 25, 44, 45, 46, 51, 55, 58issect2 17707 . . . . . 6 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → ((𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥) ↔ ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
6059ralbidva 3169 . . . . 5 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥) ↔ ∀𝑥𝐵 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
6119, 42, 603bitr4d 311 . . . 4 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹) ↔ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥)))
6261pm5.32da 578 . . 3 (𝜑 → (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥))))
63 df-3an 1086 . . 3 ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹)))
64 df-3an 1086 . . 3 ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥)))
6562, 63, 643bitr4g 314 . 2 (𝜑 → ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹)) ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥))))
6615, 65bitrd 279 1 (𝜑 → (𝑈(𝐹𝑆𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3055  Vcvv 3468  cop 4629   class class class wbr 5141  cmpt 5224  ccom 5673  Rel wrel 5674   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7404  1st c1st 7969  2nd c2nd 7970  Basecbs 17150  Hom chom 17214  compcco 17215  Catccat 17614  Idccid 17615  Sectcsect 17697   Func cfunc 17810   Nat cnat 17901   FuncCat cfuc 17902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-map 8821  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-3 12277  df-4 12278  df-5 12279  df-6 12280  df-7 12281  df-8 12282  df-9 12283  df-n0 12474  df-z 12560  df-dec 12679  df-uz 12824  df-fz 13488  df-struct 17086  df-slot 17121  df-ndx 17133  df-base 17151  df-hom 17227  df-cco 17228  df-cat 17618  df-cid 17619  df-sect 17700  df-func 17814  df-nat 17903  df-fuc 17904
This theorem is referenced by:  fucinv  17935
  Copyright terms: Public domain W3C validator