MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucsect Structured version   Visualization version   GIF version

Theorem fucsect 17861
Description: Two natural transformations are in a section iff all the components are in a section relation. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
fuciso.q 𝑄 = (𝐶 FuncCat 𝐷)
fuciso.b 𝐵 = (Base‘𝐶)
fuciso.n 𝑁 = (𝐶 Nat 𝐷)
fuciso.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
fuciso.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
fucsect.s 𝑆 = (Sect‘𝑄)
fucsect.t 𝑇 = (Sect‘𝐷)
Assertion
Ref Expression
fucsect (𝜑 → (𝑈(𝐹𝑆𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹   𝑥,𝐺   𝑥,𝑁   𝑥,𝑉   𝜑,𝑥   𝑥,𝑄   𝑥,𝑈
Allowed substitution hints:   𝑆(𝑥)   𝑇(𝑥)

Proof of Theorem fucsect
StepHypRef Expression
1 fuciso.q . . . 4 𝑄 = (𝐶 FuncCat 𝐷)
21fucbas 17848 . . 3 (𝐶 Func 𝐷) = (Base‘𝑄)
3 fuciso.n . . . 4 𝑁 = (𝐶 Nat 𝐷)
41, 3fuchom 17849 . . 3 𝑁 = (Hom ‘𝑄)
5 eqid 2736 . . 3 (comp‘𝑄) = (comp‘𝑄)
6 eqid 2736 . . 3 (Id‘𝑄) = (Id‘𝑄)
7 fucsect.s . . 3 𝑆 = (Sect‘𝑄)
8 fuciso.f . . . . . 6 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
9 funcrcl 17749 . . . . . 6 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
108, 9syl 17 . . . . 5 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1110simpld 495 . . . 4 (𝜑𝐶 ∈ Cat)
1210simprd 496 . . . 4 (𝜑𝐷 ∈ Cat)
131, 11, 12fuccat 17859 . . 3 (𝜑𝑄 ∈ Cat)
14 fuciso.g . . 3 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
152, 4, 5, 6, 7, 13, 8, 14issect 17636 . 2 (𝜑 → (𝑈(𝐹𝑆𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹))))
16 ovex 7390 . . . . . . 7 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ∈ V
1716rgenw 3068 . . . . . 6 𝑥𝐵 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ∈ V
18 mpteqb 6967 . . . . . 6 (∀𝑥𝐵 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ∈ V → ((𝑥𝐵 ↦ ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥))) ↔ ∀𝑥𝐵 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
1917, 18mp1i 13 . . . . 5 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((𝑥𝐵 ↦ ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥))) ↔ ∀𝑥𝐵 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
20 fuciso.b . . . . . . 7 𝐵 = (Base‘𝐶)
21 eqid 2736 . . . . . . 7 (comp‘𝐷) = (comp‘𝐷)
22 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → 𝑈 ∈ (𝐹𝑁𝐺))
23 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → 𝑉 ∈ (𝐺𝑁𝐹))
241, 3, 20, 21, 5, 22, 23fucco 17851 . . . . . 6 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = (𝑥𝐵 ↦ ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
25 eqid 2736 . . . . . . . 8 (Id‘𝐷) = (Id‘𝐷)
268adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → 𝐹 ∈ (𝐶 Func 𝐷))
271, 6, 25, 26fucid 17860 . . . . . . 7 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((Id‘𝑄)‘𝐹) = ((Id‘𝐷) ∘ (1st𝐹)))
2812adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → 𝐷 ∈ Cat)
29 eqid 2736 . . . . . . . . . . 11 (Base‘𝐷) = (Base‘𝐷)
3029, 25cidfn 17559 . . . . . . . . . 10 (𝐷 ∈ Cat → (Id‘𝐷) Fn (Base‘𝐷))
3128, 30syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (Id‘𝐷) Fn (Base‘𝐷))
32 dffn2 6670 . . . . . . . . 9 ((Id‘𝐷) Fn (Base‘𝐷) ↔ (Id‘𝐷):(Base‘𝐷)⟶V)
3331, 32sylib 217 . . . . . . . 8 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (Id‘𝐷):(Base‘𝐷)⟶V)
34 relfunc 17748 . . . . . . . . . . 11 Rel (𝐶 Func 𝐷)
35 1st2ndbr 7974 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3634, 8, 35sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3720, 29, 36funcf1 17752 . . . . . . . . 9 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐷))
3837adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (1st𝐹):𝐵⟶(Base‘𝐷))
39 fcompt 7079 . . . . . . . 8 (((Id‘𝐷):(Base‘𝐷)⟶V ∧ (1st𝐹):𝐵⟶(Base‘𝐷)) → ((Id‘𝐷) ∘ (1st𝐹)) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
4033, 38, 39syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((Id‘𝐷) ∘ (1st𝐹)) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
4127, 40eqtrd 2776 . . . . . 6 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((Id‘𝑄)‘𝐹) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
4224, 41eqeq12d 2752 . . . . 5 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹) ↔ (𝑥𝐵 ↦ ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))) = (𝑥𝐵 ↦ ((Id‘𝐷)‘((1st𝐹)‘𝑥)))))
43 eqid 2736 . . . . . . 7 (Hom ‘𝐷) = (Hom ‘𝐷)
44 fucsect.t . . . . . . 7 𝑇 = (Sect‘𝐷)
4528adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝐷 ∈ Cat)
4638ffvelcdmda 7035 . . . . . . 7 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
47 1st2ndbr 7974 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
4834, 14, 47sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
4920, 29, 48funcf1 17752 . . . . . . . . 9 (𝜑 → (1st𝐺):𝐵⟶(Base‘𝐷))
5049adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (1st𝐺):𝐵⟶(Base‘𝐷))
5150ffvelcdmda 7035 . . . . . . 7 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
5222adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝑈 ∈ (𝐹𝑁𝐺))
533, 52nat1st2nd 17838 . . . . . . . 8 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝑈 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
54 simpr 485 . . . . . . . 8 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝑥𝐵)
553, 53, 20, 43, 54natcl 17840 . . . . . . 7 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → (𝑈𝑥) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)))
5623adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝑉 ∈ (𝐺𝑁𝐹))
573, 56nat1st2nd 17838 . . . . . . . 8 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → 𝑉 ∈ (⟨(1st𝐺), (2nd𝐺)⟩𝑁⟨(1st𝐹), (2nd𝐹)⟩))
583, 57, 20, 43, 54natcl 17840 . . . . . . 7 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → (𝑉𝑥) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
5929, 43, 21, 25, 44, 45, 46, 51, 55, 58issect2 17637 . . . . . 6 (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥𝐵) → ((𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥) ↔ ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
6059ralbidva 3172 . . . . 5 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥) ↔ ∀𝑥𝐵 ((𝑉𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥))))
6119, 42, 603bitr4d 310 . . . 4 ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹) ↔ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥)))
6261pm5.32da 579 . . 3 (𝜑 → (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥))))
63 df-3an 1089 . . 3 ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹)))
64 df-3an 1089 . . 3 ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥)))
6562, 63, 643bitr4g 313 . 2 (𝜑 → ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ (𝑉(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹)) ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥))))
6615, 65bitrd 278 1 (𝜑 → (𝑈(𝐹𝑆𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝑇((1st𝐺)‘𝑥))(𝑉𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  cop 4592   class class class wbr 5105  cmpt 5188  ccom 5637  Rel wrel 5638   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  Basecbs 17083  Hom chom 17144  compcco 17145  Catccat 17544  Idccid 17545  Sectcsect 17627   Func cfunc 17740   Nat cnat 17828   FuncCat cfuc 17829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-hom 17157  df-cco 17158  df-cat 17548  df-cid 17549  df-sect 17630  df-func 17744  df-nat 17830  df-fuc 17831
This theorem is referenced by:  fucinv  17862
  Copyright terms: Public domain W3C validator