Proof of Theorem fucsect
Step | Hyp | Ref
| Expression |
1 | | fuciso.q |
. . . 4
⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
2 | 1 | fucbas 17593 |
. . 3
⊢ (𝐶 Func 𝐷) = (Base‘𝑄) |
3 | | fuciso.n |
. . . 4
⊢ 𝑁 = (𝐶 Nat 𝐷) |
4 | 1, 3 | fuchom 17594 |
. . 3
⊢ 𝑁 = (Hom ‘𝑄) |
5 | | eqid 2738 |
. . 3
⊢
(comp‘𝑄) =
(comp‘𝑄) |
6 | | eqid 2738 |
. . 3
⊢
(Id‘𝑄) =
(Id‘𝑄) |
7 | | fucsect.s |
. . 3
⊢ 𝑆 = (Sect‘𝑄) |
8 | | fuciso.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
9 | | funcrcl 17494 |
. . . . . 6
⊢ (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
10 | 8, 9 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
11 | 10 | simpld 494 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
12 | 10 | simprd 495 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ Cat) |
13 | 1, 11, 12 | fuccat 17604 |
. . 3
⊢ (𝜑 → 𝑄 ∈ Cat) |
14 | | fuciso.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) |
15 | 2, 4, 5, 6, 7, 13,
8, 14 | issect 17382 |
. 2
⊢ (𝜑 → (𝑈(𝐹𝑆𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ (𝑉(〈𝐹, 𝐺〉(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹)))) |
16 | | ovex 7288 |
. . . . . . 7
⊢ ((𝑉‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥)) ∈ V |
17 | 16 | rgenw 3075 |
. . . . . 6
⊢
∀𝑥 ∈
𝐵 ((𝑉‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥)) ∈ V |
18 | | mpteqb 6876 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐵 ((𝑉‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥)) ∈ V → ((𝑥 ∈ 𝐵 ↦ ((𝑉‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥))) = (𝑥 ∈ 𝐵 ↦ ((Id‘𝐷)‘((1st ‘𝐹)‘𝑥))) ↔ ∀𝑥 ∈ 𝐵 ((𝑉‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥)) = ((Id‘𝐷)‘((1st ‘𝐹)‘𝑥)))) |
19 | 17, 18 | mp1i 13 |
. . . . 5
⊢ ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((𝑥 ∈ 𝐵 ↦ ((𝑉‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥))) = (𝑥 ∈ 𝐵 ↦ ((Id‘𝐷)‘((1st ‘𝐹)‘𝑥))) ↔ ∀𝑥 ∈ 𝐵 ((𝑉‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥)) = ((Id‘𝐷)‘((1st ‘𝐹)‘𝑥)))) |
20 | | fuciso.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐶) |
21 | | eqid 2738 |
. . . . . . 7
⊢
(comp‘𝐷) =
(comp‘𝐷) |
22 | | simprl 767 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → 𝑈 ∈ (𝐹𝑁𝐺)) |
23 | | simprr 769 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → 𝑉 ∈ (𝐺𝑁𝐹)) |
24 | 1, 3, 20, 21, 5, 22, 23 | fucco 17596 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (𝑉(〈𝐹, 𝐺〉(comp‘𝑄)𝐹)𝑈) = (𝑥 ∈ 𝐵 ↦ ((𝑉‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥)))) |
25 | | eqid 2738 |
. . . . . . . 8
⊢
(Id‘𝐷) =
(Id‘𝐷) |
26 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → 𝐹 ∈ (𝐶 Func 𝐷)) |
27 | 1, 6, 25, 26 | fucid 17605 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((Id‘𝑄)‘𝐹) = ((Id‘𝐷) ∘ (1st ‘𝐹))) |
28 | 12 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → 𝐷 ∈ Cat) |
29 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝐷) =
(Base‘𝐷) |
30 | 29, 25 | cidfn 17305 |
. . . . . . . . . 10
⊢ (𝐷 ∈ Cat →
(Id‘𝐷) Fn
(Base‘𝐷)) |
31 | 28, 30 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (Id‘𝐷) Fn (Base‘𝐷)) |
32 | | dffn2 6586 |
. . . . . . . . 9
⊢
((Id‘𝐷) Fn
(Base‘𝐷) ↔
(Id‘𝐷):(Base‘𝐷)⟶V) |
33 | 31, 32 | sylib 217 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (Id‘𝐷):(Base‘𝐷)⟶V) |
34 | | relfunc 17493 |
. . . . . . . . . . 11
⊢ Rel
(𝐶 Func 𝐷) |
35 | | 1st2ndbr 7856 |
. . . . . . . . . . 11
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
36 | 34, 8, 35 | sylancr 586 |
. . . . . . . . . 10
⊢ (𝜑 → (1st
‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
37 | 20, 29, 36 | funcf1 17497 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘𝐹):𝐵⟶(Base‘𝐷)) |
38 | 37 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (1st ‘𝐹):𝐵⟶(Base‘𝐷)) |
39 | | fcompt 6987 |
. . . . . . . 8
⊢
(((Id‘𝐷):(Base‘𝐷)⟶V ∧ (1st
‘𝐹):𝐵⟶(Base‘𝐷)) → ((Id‘𝐷) ∘ (1st ‘𝐹)) = (𝑥 ∈ 𝐵 ↦ ((Id‘𝐷)‘((1st ‘𝐹)‘𝑥)))) |
40 | 33, 38, 39 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((Id‘𝐷) ∘ (1st ‘𝐹)) = (𝑥 ∈ 𝐵 ↦ ((Id‘𝐷)‘((1st ‘𝐹)‘𝑥)))) |
41 | 27, 40 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((Id‘𝑄)‘𝐹) = (𝑥 ∈ 𝐵 ↦ ((Id‘𝐷)‘((1st ‘𝐹)‘𝑥)))) |
42 | 24, 41 | eqeq12d 2754 |
. . . . 5
⊢ ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((𝑉(〈𝐹, 𝐺〉(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹) ↔ (𝑥 ∈ 𝐵 ↦ ((𝑉‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥))) = (𝑥 ∈ 𝐵 ↦ ((Id‘𝐷)‘((1st ‘𝐹)‘𝑥))))) |
43 | | eqid 2738 |
. . . . . . 7
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
44 | | fucsect.t |
. . . . . . 7
⊢ 𝑇 = (Sect‘𝐷) |
45 | 28 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ Cat) |
46 | 38 | ffvelrnda 6943 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥 ∈ 𝐵) → ((1st ‘𝐹)‘𝑥) ∈ (Base‘𝐷)) |
47 | | 1st2ndbr 7856 |
. . . . . . . . . . 11
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) |
48 | 34, 14, 47 | sylancr 586 |
. . . . . . . . . 10
⊢ (𝜑 → (1st
‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) |
49 | 20, 29, 48 | funcf1 17497 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘𝐺):𝐵⟶(Base‘𝐷)) |
50 | 49 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (1st ‘𝐺):𝐵⟶(Base‘𝐷)) |
51 | 50 | ffvelrnda 6943 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥 ∈ 𝐵) → ((1st ‘𝐺)‘𝑥) ∈ (Base‘𝐷)) |
52 | 22 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥 ∈ 𝐵) → 𝑈 ∈ (𝐹𝑁𝐺)) |
53 | 3, 52 | nat1st2nd 17583 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥 ∈ 𝐵) → 𝑈 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) |
54 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
55 | 3, 53, 20, 43, 54 | natcl 17585 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥 ∈ 𝐵) → (𝑈‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐺)‘𝑥))) |
56 | 23 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥 ∈ 𝐵) → 𝑉 ∈ (𝐺𝑁𝐹)) |
57 | 3, 56 | nat1st2nd 17583 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥 ∈ 𝐵) → 𝑉 ∈ (〈(1st ‘𝐺), (2nd ‘𝐺)〉𝑁〈(1st ‘𝐹), (2nd ‘𝐹)〉)) |
58 | 3, 57, 20, 43, 54 | natcl 17585 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥 ∈ 𝐵) → (𝑉‘𝑥) ∈ (((1st ‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥))) |
59 | 29, 43, 21, 25, 44, 45, 46, 51, 55, 58 | issect2 17383 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) ∧ 𝑥 ∈ 𝐵) → ((𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝑇((1st ‘𝐺)‘𝑥))(𝑉‘𝑥) ↔ ((𝑉‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥)) = ((Id‘𝐷)‘((1st ‘𝐹)‘𝑥)))) |
60 | 59 | ralbidva 3119 |
. . . . 5
⊢ ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → (∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝑇((1st ‘𝐺)‘𝑥))(𝑉‘𝑥) ↔ ∀𝑥 ∈ 𝐵 ((𝑉‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥)) = ((Id‘𝐷)‘((1st ‘𝐹)‘𝑥)))) |
61 | 19, 42, 60 | 3bitr4d 310 |
. . . 4
⊢ ((𝜑 ∧ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹))) → ((𝑉(〈𝐹, 𝐺〉(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹) ↔ ∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝑇((1st ‘𝐺)‘𝑥))(𝑉‘𝑥))) |
62 | 61 | pm5.32da 578 |
. . 3
⊢ (𝜑 → (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ (𝑉(〈𝐹, 𝐺〉(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝑇((1st ‘𝐺)‘𝑥))(𝑉‘𝑥)))) |
63 | | df-3an 1087 |
. . 3
⊢ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ (𝑉(〈𝐹, 𝐺〉(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ (𝑉(〈𝐹, 𝐺〉(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹))) |
64 | | df-3an 1087 |
. . 3
⊢ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝑇((1st ‘𝐺)‘𝑥))(𝑉‘𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝑇((1st ‘𝐺)‘𝑥))(𝑉‘𝑥))) |
65 | 62, 63, 64 | 3bitr4g 313 |
. 2
⊢ (𝜑 → ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ (𝑉(〈𝐹, 𝐺〉(comp‘𝑄)𝐹)𝑈) = ((Id‘𝑄)‘𝐹)) ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝑇((1st ‘𝐺)‘𝑥))(𝑉‘𝑥)))) |
66 | 15, 65 | bitrd 278 |
1
⊢ (𝜑 → (𝑈(𝐹𝑆𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝑇((1st ‘𝐺)‘𝑥))(𝑉‘𝑥)))) |