MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curfcl Structured version   Visualization version   GIF version

Theorem curfcl 17474
Description: The curry functor of a functor 𝐹:𝐶 × 𝐷𝐸 is a functor curryF (𝐹):𝐶⟶(𝐷𝐸). (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
curfcl.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curfcl.q 𝑄 = (𝐷 FuncCat 𝐸)
curfcl.c (𝜑𝐶 ∈ Cat)
curfcl.d (𝜑𝐷 ∈ Cat)
curfcl.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
Assertion
Ref Expression
curfcl (𝜑𝐺 ∈ (𝐶 Func 𝑄))

Proof of Theorem curfcl
Dummy variables 𝑤 𝑔 𝑥 𝑦 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfcl.g . . . 4 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
2 eqid 2798 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3 curfcl.c . . . 4 (𝜑𝐶 ∈ Cat)
4 curfcl.d . . . 4 (𝜑𝐷 ∈ Cat)
5 curfcl.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
6 eqid 2798 . . . 4 (Base‘𝐷) = (Base‘𝐷)
7 eqid 2798 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
8 eqid 2798 . . . 4 (Id‘𝐶) = (Id‘𝐶)
9 eqid 2798 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
10 eqid 2798 . . . 4 (Id‘𝐷) = (Id‘𝐷)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10curfval 17465 . . 3 (𝜑𝐺 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩)
12 fvex 6658 . . . . . . 7 (Base‘𝐶) ∈ V
1312mptex 6963 . . . . . 6 (𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩) ∈ V
1412, 12mpoex 7760 . . . . . 6 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) ∈ V
1513, 14op1std 7681 . . . . 5 (𝐺 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩ → (1st𝐺) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩))
1611, 15syl 17 . . . 4 (𝜑 → (1st𝐺) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩))
1713, 14op2ndd 7682 . . . . 5 (𝐺 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩ → (2nd𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))))
1811, 17syl 17 . . . 4 (𝜑 → (2nd𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))))
1916, 18opeq12d 4773 . . 3 (𝜑 → ⟨(1st𝐺), (2nd𝐺)⟩ = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩)
2011, 19eqtr4d 2836 . 2 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
21 curfcl.q . . . . 5 𝑄 = (𝐷 FuncCat 𝐸)
2221fucbas 17222 . . . 4 (𝐷 Func 𝐸) = (Base‘𝑄)
23 eqid 2798 . . . . 5 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
2421, 23fuchom 17223 . . . 4 (𝐷 Nat 𝐸) = (Hom ‘𝑄)
25 eqid 2798 . . . 4 (Id‘𝑄) = (Id‘𝑄)
26 eqid 2798 . . . 4 (comp‘𝐶) = (comp‘𝐶)
27 eqid 2798 . . . 4 (comp‘𝑄) = (comp‘𝑄)
28 funcrcl 17125 . . . . . . 7 (𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸) → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
295, 28syl 17 . . . . . 6 (𝜑 → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
3029simprd 499 . . . . 5 (𝜑𝐸 ∈ Cat)
3121, 4, 30fuccat 17232 . . . 4 (𝜑𝑄 ∈ Cat)
32 opex 5321 . . . . . 6 ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩ ∈ V
3332a1i 11 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩ ∈ V)
343adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
354adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
365adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
37 simpr 488 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
38 eqid 2798 . . . . . 6 ((1st𝐺)‘𝑥) = ((1st𝐺)‘𝑥)
391, 2, 34, 35, 36, 6, 37, 38curf1cl 17470 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸))
4033, 16, 39fmpt2d 6864 . . . 4 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(𝐷 Func 𝐸))
41 eqid 2798 . . . . . 6 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))
42 ovex 7168 . . . . . . 7 (𝑥(Hom ‘𝐶)𝑦) ∈ V
4342mptex 6963 . . . . . 6 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))) ∈ V
4441, 43fnmpoi 7750 . . . . 5 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) Fn ((Base‘𝐶) × (Base‘𝐶))
4518fneq1d 6416 . . . . 5 (𝜑 → ((2nd𝐺) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) Fn ((Base‘𝐶) × (Base‘𝐶))))
4644, 45mpbiri 261 . . . 4 (𝜑 → (2nd𝐺) Fn ((Base‘𝐶) × (Base‘𝐶)))
47 fvex 6658 . . . . . . 7 (Base‘𝐷) ∈ V
4847mptex 6963 . . . . . 6 (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) ∈ V
4948a1i 11 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) ∈ V)
5018oveqd 7152 . . . . . 6 (𝜑 → (𝑥(2nd𝐺)𝑦) = (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))𝑦))
5141ovmpt4g 7276 . . . . . . 7 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))) ∈ V) → (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))𝑦) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))
5243, 51mp3an3 1447 . . . . . 6 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))𝑦) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))
5350, 52sylan9eq 2853 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐺)𝑦) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))
543ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐶 ∈ Cat)
554ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐷 ∈ Cat)
565ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
57 simplrl 776 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
58 simplrr 777 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
59 simpr 488 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))
60 eqid 2798 . . . . . 6 ((𝑥(2nd𝐺)𝑦)‘𝑔) = ((𝑥(2nd𝐺)𝑦)‘𝑔)
611, 2, 54, 55, 56, 6, 9, 10, 57, 58, 59, 60, 23curf2cl 17473 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐺)𝑦)‘𝑔) ∈ (((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
6249, 53, 61fmpt2d 6864 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
63 eqid 2798 . . . . . . . . . 10 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
6463, 2, 6xpcbas 17420 . . . . . . . . 9 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘(𝐶 ×c 𝐷))
65 eqid 2798 . . . . . . . . 9 (Id‘(𝐶 ×c 𝐷)) = (Id‘(𝐶 ×c 𝐷))
66 eqid 2798 . . . . . . . . 9 (Id‘𝐸) = (Id‘𝐸)
67 relfunc 17124 . . . . . . . . . . 11 Rel ((𝐶 ×c 𝐷) Func 𝐸)
68 1st2ndbr 7723 . . . . . . . . . . 11 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
6967, 5, 68sylancr 590 . . . . . . . . . 10 (𝜑 → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
7069ad2antrr 725 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
71 opelxpi 5556 . . . . . . . . . 10 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
7271adantll 713 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
7364, 65, 66, 70, 72funcid 17132 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑥, 𝑦⟩)) = ((Id‘𝐸)‘((1st𝐹)‘⟨𝑥, 𝑦⟩)))
743ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat)
754ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
7637adantr 484 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶))
77 simpr 488 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐷))
7863, 74, 75, 2, 6, 8, 10, 65, 76, 77xpcid 17431 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((Id‘(𝐶 ×c 𝐷))‘⟨𝑥, 𝑦⟩) = ⟨((Id‘𝐶)‘𝑥), ((Id‘𝐷)‘𝑦)⟩)
7978fveq2d 6649 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑥, 𝑦⟩)) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)‘⟨((Id‘𝐶)‘𝑥), ((Id‘𝐷)‘𝑦)⟩))
80 df-ov 7138 . . . . . . . . 9 (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦)) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)‘⟨((Id‘𝐶)‘𝑥), ((Id‘𝐷)‘𝑦)⟩)
8179, 80eqtr4di 2851 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑥, 𝑦⟩)) = (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦)))
825ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
831, 2, 74, 75, 82, 6, 76, 38, 77curf11 17468 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑥))‘𝑦) = (𝑥(1st𝐹)𝑦))
84 df-ov 7138 . . . . . . . . . 10 (𝑥(1st𝐹)𝑦) = ((1st𝐹)‘⟨𝑥, 𝑦⟩)
8583, 84eqtr2di 2850 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st𝐹)‘⟨𝑥, 𝑦⟩) = ((1st ‘((1st𝐺)‘𝑥))‘𝑦))
8685fveq2d 6649 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((Id‘𝐸)‘((1st𝐹)‘⟨𝑥, 𝑦⟩)) = ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑦)))
8773, 81, 863eqtr3d 2841 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦)) = ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑦)))
8887mpteq2dva 5125 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦))) = (𝑦 ∈ (Base‘𝐷) ↦ ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑦))))
8930adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
90 eqid 2798 . . . . . . . . . 10 (Base‘𝐸) = (Base‘𝐸)
9190, 66cidfn 16942 . . . . . . . . 9 (𝐸 ∈ Cat → (Id‘𝐸) Fn (Base‘𝐸))
9289, 91syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (Id‘𝐸) Fn (Base‘𝐸))
93 dffn2 6489 . . . . . . . 8 ((Id‘𝐸) Fn (Base‘𝐸) ↔ (Id‘𝐸):(Base‘𝐸)⟶V)
9492, 93sylib 221 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (Id‘𝐸):(Base‘𝐸)⟶V)
95 relfunc 17124 . . . . . . . . 9 Rel (𝐷 Func 𝐸)
96 1st2ndbr 7723 . . . . . . . . 9 ((Rel (𝐷 Func 𝐸) ∧ ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸)) → (1st ‘((1st𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑥)))
9795, 39, 96sylancr 590 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st ‘((1st𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑥)))
986, 90, 97funcf1 17128 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st ‘((1st𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸))
99 fcompt 6872 . . . . . . 7 (((Id‘𝐸):(Base‘𝐸)⟶V ∧ (1st ‘((1st𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸)) → ((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥))) = (𝑦 ∈ (Base‘𝐷) ↦ ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑦))))
10094, 98, 99syl2anc 587 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥))) = (𝑦 ∈ (Base‘𝐷) ↦ ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑦))))
10188, 100eqtr4d 2836 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦))) = ((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥))))
1022, 9, 8, 34, 37catidcl 16945 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
103 eqid 2798 . . . . . 6 ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥))
1041, 2, 34, 35, 36, 6, 9, 10, 37, 37, 102, 103curf2 17471 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = (𝑦 ∈ (Base‘𝐷) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦))))
10521, 25, 66, 39fucid 17233 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑄)‘((1st𝐺)‘𝑥)) = ((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥))))
106101, 104, 1053eqtr4d 2843 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝑄)‘((1st𝐺)‘𝑥)))
10733ad2ant1 1130 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐶 ∈ Cat)
108107adantr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat)
10943ad2ant1 1130 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐷 ∈ Cat)
110109adantr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
11153ad2ant1 1130 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
112111adantr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
113 simp21 1203 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥 ∈ (Base‘𝐶))
114113adantr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶))
115 simpr 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑤 ∈ (Base‘𝐷))
1161, 2, 108, 110, 112, 6, 114, 38, 115curf11 17468 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑥))‘𝑤) = (𝑥(1st𝐹)𝑤))
117 df-ov 7138 . . . . . . . . . . 11 (𝑥(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑥, 𝑤⟩)
118116, 117eqtrdi 2849 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑥))‘𝑤) = ((1st𝐹)‘⟨𝑥, 𝑤⟩))
119 simp22 1204 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦 ∈ (Base‘𝐶))
120119adantr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐶))
121 eqid 2798 . . . . . . . . . . . 12 ((1st𝐺)‘𝑦) = ((1st𝐺)‘𝑦)
1221, 2, 108, 110, 112, 6, 120, 121, 115curf11 17468 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑦))‘𝑤) = (𝑦(1st𝐹)𝑤))
123 df-ov 7138 . . . . . . . . . . 11 (𝑦(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑦, 𝑤⟩)
124122, 123eqtrdi 2849 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑦))‘𝑤) = ((1st𝐹)‘⟨𝑦, 𝑤⟩))
125118, 124opeq12d 4773 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩ = ⟨((1st𝐹)‘⟨𝑥, 𝑤⟩), ((1st𝐹)‘⟨𝑦, 𝑤⟩)⟩)
126 simp23 1205 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧 ∈ (Base‘𝐶))
127126adantr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑧 ∈ (Base‘𝐶))
128 eqid 2798 . . . . . . . . . . 11 ((1st𝐺)‘𝑧) = ((1st𝐺)‘𝑧)
1291, 2, 108, 110, 112, 6, 127, 128, 115curf11 17468 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑧))‘𝑤) = (𝑧(1st𝐹)𝑤))
130 df-ov 7138 . . . . . . . . . 10 (𝑧(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑧, 𝑤⟩)
131129, 130eqtrdi 2849 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑧))‘𝑤) = ((1st𝐹)‘⟨𝑧, 𝑤⟩))
132125, 131oveq12d 7153 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤)) = (⟨((1st𝐹)‘⟨𝑥, 𝑤⟩), ((1st𝐹)‘⟨𝑦, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩)))
133 simp3r 1199 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
134133adantr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
135 eqid 2798 . . . . . . . . . 10 ((𝑦(2nd𝐺)𝑧)‘𝑔) = ((𝑦(2nd𝐺)𝑧)‘𝑔)
1361, 2, 108, 110, 112, 6, 9, 10, 120, 127, 134, 135, 115curf2val 17472 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤) = (𝑔(⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)))
137 df-ov 7138 . . . . . . . . 9 (𝑔(⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)) = ((⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑔, ((Id‘𝐷)‘𝑤)⟩)
138136, 137eqtrdi 2849 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤) = ((⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑔, ((Id‘𝐷)‘𝑤)⟩))
139 simp3l 1198 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
140139adantr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
141 eqid 2798 . . . . . . . . . 10 ((𝑥(2nd𝐺)𝑦)‘𝑓) = ((𝑥(2nd𝐺)𝑦)‘𝑓)
1421, 2, 108, 110, 112, 6, 9, 10, 114, 120, 140, 141, 115curf2val 17472 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤) = (𝑓(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)((Id‘𝐷)‘𝑤)))
143 df-ov 7138 . . . . . . . . 9 (𝑓(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)((Id‘𝐷)‘𝑤)) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)
144142, 143eqtrdi 2849 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩))
145132, 138, 144oveq123d 7156 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))(((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤)) = (((⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑔, ((Id‘𝐷)‘𝑤)⟩)(⟨((1st𝐹)‘⟨𝑥, 𝑤⟩), ((1st𝐹)‘⟨𝑦, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩))((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)))
146 eqid 2798 . . . . . . . 8 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
147 eqid 2798 . . . . . . . 8 (comp‘(𝐶 ×c 𝐷)) = (comp‘(𝐶 ×c 𝐷))
148 eqid 2798 . . . . . . . 8 (comp‘𝐸) = (comp‘𝐸)
14967, 112, 68sylancr 590 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
150 opelxpi 5556 . . . . . . . . 9 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
151113, 150sylan 583 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
152 opelxpi 5556 . . . . . . . . 9 ((𝑦 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑦, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
153119, 152sylan 583 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑦, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
154 opelxpi 5556 . . . . . . . . 9 ((𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑧, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
155126, 154sylan 583 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑧, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
1566, 7, 10, 110, 115catidcl 16945 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((Id‘𝐷)‘𝑤) ∈ (𝑤(Hom ‘𝐷)𝑤))
157140, 156opelxpd 5557 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑓, ((Id‘𝐷)‘𝑤)⟩ ∈ ((𝑥(Hom ‘𝐶)𝑦) × (𝑤(Hom ‘𝐷)𝑤)))
15863, 2, 6, 9, 7, 114, 115, 120, 115, 146xpchom2 17428 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (⟨𝑥, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑤⟩) = ((𝑥(Hom ‘𝐶)𝑦) × (𝑤(Hom ‘𝐷)𝑤)))
159157, 158eleqtrrd 2893 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑓, ((Id‘𝐷)‘𝑤)⟩ ∈ (⟨𝑥, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑤⟩))
160134, 156opelxpd 5557 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑔, ((Id‘𝐷)‘𝑤)⟩ ∈ ((𝑦(Hom ‘𝐶)𝑧) × (𝑤(Hom ‘𝐷)𝑤)))
16163, 2, 6, 9, 7, 120, 115, 127, 115, 146xpchom2 17428 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (⟨𝑦, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩) = ((𝑦(Hom ‘𝐶)𝑧) × (𝑤(Hom ‘𝐷)𝑤)))
162160, 161eleqtrrd 2893 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑔, ((Id‘𝐷)‘𝑤)⟩ ∈ (⟨𝑦, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩))
16364, 146, 147, 148, 149, 151, 153, 155, 159, 162funcco 17133 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑔, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑤⟩, ⟨𝑦, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)) = (((⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑔, ((Id‘𝐷)‘𝑤)⟩)(⟨((1st𝐹)‘⟨𝑥, 𝑤⟩), ((1st𝐹)‘⟨𝑦, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩))((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)))
164 eqid 2798 . . . . . . . . . . 11 (comp‘𝐷) = (comp‘𝐷)
16563, 2, 6, 9, 7, 114, 115, 120, 115, 26, 164, 147, 127, 115, 140, 156, 134, 156xpcco2 17429 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (⟨𝑔, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑤⟩, ⟨𝑦, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨𝑓, ((Id‘𝐷)‘𝑤)⟩) = ⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), (((Id‘𝐷)‘𝑤)(⟨𝑤, 𝑤⟩(comp‘𝐷)𝑤)((Id‘𝐷)‘𝑤))⟩)
1666, 7, 10, 110, 115, 164, 115, 156catlid 16946 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((Id‘𝐷)‘𝑤)(⟨𝑤, 𝑤⟩(comp‘𝐷)𝑤)((Id‘𝐷)‘𝑤)) = ((Id‘𝐷)‘𝑤))
167166opeq2d 4772 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), (((Id‘𝐷)‘𝑤)(⟨𝑤, 𝑤⟩(comp‘𝐷)𝑤)((Id‘𝐷)‘𝑤))⟩ = ⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), ((Id‘𝐷)‘𝑤)⟩)
168165, 167eqtrd 2833 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (⟨𝑔, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑤⟩, ⟨𝑦, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨𝑓, ((Id‘𝐷)‘𝑤)⟩) = ⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), ((Id‘𝐷)‘𝑤)⟩)
169168fveq2d 6649 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑔, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑤⟩, ⟨𝑦, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), ((Id‘𝐷)‘𝑤)⟩))
170 df-ov 7138 . . . . . . . 8 ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), ((Id‘𝐷)‘𝑤)⟩)
171169, 170eqtr4di 2851 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑔, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑤⟩, ⟨𝑦, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)) = ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)))
172145, 163, 1713eqtr2rd 2840 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)) = ((((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))(((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤)))
173172mpteq2dva 5125 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑤 ∈ (Base‘𝐷) ↦ ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤))) = (𝑤 ∈ (Base‘𝐷) ↦ ((((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))(((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤))))
1742, 9, 26, 107, 113, 119, 126, 139, 133catcocl 16948 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
175 eqid 2798 . . . . . 6 ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))
1761, 2, 107, 109, 111, 6, 9, 10, 113, 126, 174, 175curf2 17471 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (𝑤 ∈ (Base‘𝐷) ↦ ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤))))
1771, 2, 107, 109, 111, 6, 9, 10, 113, 119, 139, 141, 23curf2cl 17473 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐺)𝑦)‘𝑓) ∈ (((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
1781, 2, 107, 109, 111, 6, 9, 10, 119, 126, 133, 135, 23curf2cl 17473 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐺)𝑧)‘𝑔) ∈ (((1st𝐺)‘𝑦)(𝐷 Nat 𝐸)((1st𝐺)‘𝑧)))
17921, 23, 6, 148, 27, 177, 178fucco 17224 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝐺)𝑧)‘𝑔)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝑄)((1st𝐺)‘𝑧))((𝑥(2nd𝐺)𝑦)‘𝑓)) = (𝑤 ∈ (Base‘𝐷) ↦ ((((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))(((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤))))
180173, 176, 1793eqtr4d 2843 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐺)𝑧)‘𝑔)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝑄)((1st𝐺)‘𝑧))((𝑥(2nd𝐺)𝑦)‘𝑓)))
1812, 22, 9, 24, 8, 25, 26, 27, 3, 31, 40, 46, 62, 106, 180isfuncd 17127 . . 3 (𝜑 → (1st𝐺)(𝐶 Func 𝑄)(2nd𝐺))
182 df-br 5031 . . 3 ((1st𝐺)(𝐶 Func 𝑄)(2nd𝐺) ↔ ⟨(1st𝐺), (2nd𝐺)⟩ ∈ (𝐶 Func 𝑄))
183181, 182sylib 221 . 2 (𝜑 → ⟨(1st𝐺), (2nd𝐺)⟩ ∈ (𝐶 Func 𝑄))
18420, 183eqeltrd 2890 1 (𝜑𝐺 ∈ (𝐶 Func 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  cop 4531   class class class wbr 5030  cmpt 5110   × cxp 5517  ccom 5523  Rel wrel 5524   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  1st c1st 7669  2nd c2nd 7670  Basecbs 16475  Hom chom 16568  compcco 16569  Catccat 16927  Idccid 16928   Func cfunc 17116   Nat cnat 17203   FuncCat cfuc 17204   ×c cxpc 17410   curryF ccurf 17452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-hom 16581  df-cco 16582  df-cat 16931  df-cid 16932  df-func 17120  df-nat 17205  df-fuc 17206  df-xpc 17414  df-curf 17456
This theorem is referenced by:  uncfcurf  17481  diagcl  17483  curf2ndf  17489  yoncl  17504
  Copyright terms: Public domain W3C validator