Step | Hyp | Ref
| Expression |
1 | | curfcl.g |
. . . 4
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) |
2 | | eqid 2738 |
. . . 4
⊢
(Base‘𝐶) =
(Base‘𝐶) |
3 | | curfcl.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
4 | | curfcl.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ Cat) |
5 | | curfcl.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
6 | | eqid 2738 |
. . . 4
⊢
(Base‘𝐷) =
(Base‘𝐷) |
7 | | eqid 2738 |
. . . 4
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
8 | | eqid 2738 |
. . . 4
⊢
(Id‘𝐶) =
(Id‘𝐶) |
9 | | eqid 2738 |
. . . 4
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
10 | | eqid 2738 |
. . . 4
⊢
(Id‘𝐷) =
(Id‘𝐷) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | curfval 17857 |
. . 3
⊢ (𝜑 → 𝐺 = 〈(𝑥 ∈ (Base‘𝐶) ↦ 〈(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)))))〉) |
12 | | fvex 6769 |
. . . . . . 7
⊢
(Base‘𝐶)
∈ V |
13 | 12 | mptex 7081 |
. . . . . 6
⊢ (𝑥 ∈ (Base‘𝐶) ↦ 〈(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉) ∈ V |
14 | 12, 12 | mpoex 7893 |
. . . . . 6
⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧))))) ∈ V |
15 | 13, 14 | op1std 7814 |
. . . . 5
⊢ (𝐺 = 〈(𝑥 ∈ (Base‘𝐶) ↦ 〈(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)))))〉 → (1st
‘𝐺) = (𝑥 ∈ (Base‘𝐶) ↦ 〈(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉)) |
16 | 11, 15 | syl 17 |
. . . 4
⊢ (𝜑 → (1st
‘𝐺) = (𝑥 ∈ (Base‘𝐶) ↦ 〈(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉)) |
17 | 13, 14 | op2ndd 7815 |
. . . . 5
⊢ (𝐺 = 〈(𝑥 ∈ (Base‘𝐶) ↦ 〈(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)))))〉 → (2nd
‘𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)))))) |
18 | 11, 17 | syl 17 |
. . . 4
⊢ (𝜑 → (2nd
‘𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)))))) |
19 | 16, 18 | opeq12d 4809 |
. . 3
⊢ (𝜑 → 〈(1st
‘𝐺), (2nd
‘𝐺)〉 =
〈(𝑥 ∈
(Base‘𝐶) ↦
〈(𝑦 ∈
(Base‘𝐷) ↦
(𝑥(1st
‘𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)))))〉) |
20 | 11, 19 | eqtr4d 2781 |
. 2
⊢ (𝜑 → 𝐺 = 〈(1st ‘𝐺), (2nd ‘𝐺)〉) |
21 | | curfcl.q |
. . . . 5
⊢ 𝑄 = (𝐷 FuncCat 𝐸) |
22 | 21 | fucbas 17593 |
. . . 4
⊢ (𝐷 Func 𝐸) = (Base‘𝑄) |
23 | | eqid 2738 |
. . . . 5
⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) |
24 | 21, 23 | fuchom 17594 |
. . . 4
⊢ (𝐷 Nat 𝐸) = (Hom ‘𝑄) |
25 | | eqid 2738 |
. . . 4
⊢
(Id‘𝑄) =
(Id‘𝑄) |
26 | | eqid 2738 |
. . . 4
⊢
(comp‘𝐶) =
(comp‘𝐶) |
27 | | eqid 2738 |
. . . 4
⊢
(comp‘𝑄) =
(comp‘𝑄) |
28 | | funcrcl 17494 |
. . . . . . 7
⊢ (𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸) → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat)) |
29 | 5, 28 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat)) |
30 | 29 | simprd 495 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ Cat) |
31 | 21, 4, 30 | fuccat 17604 |
. . . 4
⊢ (𝜑 → 𝑄 ∈ Cat) |
32 | | opex 5373 |
. . . . . 6
⊢
〈(𝑦 ∈
(Base‘𝐷) ↦
(𝑥(1st
‘𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉 ∈ V |
33 | 32 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 〈(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉 ∈ V) |
34 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat) |
35 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat) |
36 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
37 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) |
38 | | eqid 2738 |
. . . . . 6
⊢
((1st ‘𝐺)‘𝑥) = ((1st ‘𝐺)‘𝑥) |
39 | 1, 2, 34, 35, 36, 6, 37, 38 | curf1cl 17862 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐺)‘𝑥) ∈ (𝐷 Func 𝐸)) |
40 | 33, 16, 39 | fmpt2d 6979 |
. . . 4
⊢ (𝜑 → (1st
‘𝐺):(Base‘𝐶)⟶(𝐷 Func 𝐸)) |
41 | | eqid 2738 |
. . . . . 6
⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧))))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧))))) |
42 | | ovex 7288 |
. . . . . . 7
⊢ (𝑥(Hom ‘𝐶)𝑦) ∈ V |
43 | 42 | mptex 7081 |
. . . . . 6
⊢ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)))) ∈ V |
44 | 41, 43 | fnmpoi 7883 |
. . . . 5
⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧))))) Fn ((Base‘𝐶) × (Base‘𝐶)) |
45 | 18 | fneq1d 6510 |
. . . . 5
⊢ (𝜑 → ((2nd
‘𝐺) Fn
((Base‘𝐶) ×
(Base‘𝐶)) ↔
(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧))))) Fn ((Base‘𝐶) × (Base‘𝐶)))) |
46 | 44, 45 | mpbiri 257 |
. . . 4
⊢ (𝜑 → (2nd
‘𝐺) Fn
((Base‘𝐶) ×
(Base‘𝐶))) |
47 | | fvex 6769 |
. . . . . . 7
⊢
(Base‘𝐷)
∈ V |
48 | 47 | mptex 7081 |
. . . . . 6
⊢ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧))) ∈ V |
49 | 48 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧))) ∈ V) |
50 | 18 | oveqd 7272 |
. . . . . 6
⊢ (𝜑 → (𝑥(2nd ‘𝐺)𝑦) = (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)))))𝑦)) |
51 | 41 | ovmpt4g 7398 |
. . . . . . 7
⊢ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)))) ∈ V) → (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)))))𝑦) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧))))) |
52 | 43, 51 | mp3an3 1448 |
. . . . . 6
⊢ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)))))𝑦) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧))))) |
53 | 50, 52 | sylan9eq 2799 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘𝐺)𝑦) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧))))) |
54 | 3 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐶 ∈ Cat) |
55 | 4 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐷 ∈ Cat) |
56 | 5 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
57 | | simplrl 773 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶)) |
58 | | simplrr 774 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶)) |
59 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
60 | | eqid 2738 |
. . . . . 6
⊢ ((𝑥(2nd ‘𝐺)𝑦)‘𝑔) = ((𝑥(2nd ‘𝐺)𝑦)‘𝑔) |
61 | 1, 2, 54, 55, 56, 6, 9, 10, 57, 58, 59, 60, 23 | curf2cl 17865 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘𝐺)𝑦)‘𝑔) ∈ (((1st ‘𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st ‘𝐺)‘𝑦))) |
62 | 49, 53, 61 | fmpt2d 6979 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st ‘𝐺)‘𝑦))) |
63 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝐶 ×c
𝐷) = (𝐶 ×c 𝐷) |
64 | 63, 2, 6 | xpcbas 17811 |
. . . . . . . . 9
⊢
((Base‘𝐶)
× (Base‘𝐷)) =
(Base‘(𝐶
×c 𝐷)) |
65 | | eqid 2738 |
. . . . . . . . 9
⊢
(Id‘(𝐶
×c 𝐷)) = (Id‘(𝐶 ×c 𝐷)) |
66 | | eqid 2738 |
. . . . . . . . 9
⊢
(Id‘𝐸) =
(Id‘𝐸) |
67 | | relfunc 17493 |
. . . . . . . . . . 11
⊢ Rel
((𝐶
×c 𝐷) Func 𝐸) |
68 | | 1st2ndbr 7856 |
. . . . . . . . . . 11
⊢ ((Rel
((𝐶
×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (1st ‘𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘𝐹)) |
69 | 67, 5, 68 | sylancr 586 |
. . . . . . . . . 10
⊢ (𝜑 → (1st
‘𝐹)((𝐶 ×c
𝐷) Func 𝐸)(2nd ‘𝐹)) |
70 | 69 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → (1st ‘𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘𝐹)) |
71 | | opelxpi 5617 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷)) → 〈𝑥, 𝑦〉 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
72 | 71 | adantll 710 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 〈𝑥, 𝑦〉 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
73 | 64, 65, 66, 70, 72 | funcid 17501 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑦〉)‘((Id‘(𝐶 ×c 𝐷))‘〈𝑥, 𝑦〉)) = ((Id‘𝐸)‘((1st ‘𝐹)‘〈𝑥, 𝑦〉))) |
74 | 3 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat) |
75 | 4 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat) |
76 | 37 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶)) |
77 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐷)) |
78 | 63, 74, 75, 2, 6, 8,
10, 65, 76, 77 | xpcid 17822 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((Id‘(𝐶 ×c 𝐷))‘〈𝑥, 𝑦〉) = 〈((Id‘𝐶)‘𝑥), ((Id‘𝐷)‘𝑦)〉) |
79 | 78 | fveq2d 6760 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑦〉)‘((Id‘(𝐶 ×c 𝐷))‘〈𝑥, 𝑦〉)) = ((〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑦〉)‘〈((Id‘𝐶)‘𝑥), ((Id‘𝐷)‘𝑦)〉)) |
80 | | df-ov 7258 |
. . . . . . . . 9
⊢
(((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑦〉)((Id‘𝐷)‘𝑦)) = ((〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑦〉)‘〈((Id‘𝐶)‘𝑥), ((Id‘𝐷)‘𝑦)〉) |
81 | 79, 80 | eqtr4di 2797 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑦〉)‘((Id‘(𝐶 ×c 𝐷))‘〈𝑥, 𝑦〉)) = (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑦〉)((Id‘𝐷)‘𝑦))) |
82 | 5 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
83 | 1, 2, 74, 75, 82, 6, 76, 38, 77 | curf11 17860 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦) = (𝑥(1st ‘𝐹)𝑦)) |
84 | | df-ov 7258 |
. . . . . . . . . 10
⊢ (𝑥(1st ‘𝐹)𝑦) = ((1st ‘𝐹)‘〈𝑥, 𝑦〉) |
85 | 83, 84 | eqtr2di 2796 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st ‘𝐹)‘〈𝑥, 𝑦〉) = ((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦)) |
86 | 85 | fveq2d 6760 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((Id‘𝐸)‘((1st ‘𝐹)‘〈𝑥, 𝑦〉)) = ((Id‘𝐸)‘((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦))) |
87 | 73, 81, 86 | 3eqtr3d 2786 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑦〉)((Id‘𝐷)‘𝑦)) = ((Id‘𝐸)‘((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦))) |
88 | 87 | mpteq2dva 5170 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑦〉)((Id‘𝐷)‘𝑦))) = (𝑦 ∈ (Base‘𝐷) ↦ ((Id‘𝐸)‘((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦)))) |
89 | 30 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat) |
90 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝐸) =
(Base‘𝐸) |
91 | 90, 66 | cidfn 17305 |
. . . . . . . . 9
⊢ (𝐸 ∈ Cat →
(Id‘𝐸) Fn
(Base‘𝐸)) |
92 | 89, 91 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (Id‘𝐸) Fn (Base‘𝐸)) |
93 | | dffn2 6586 |
. . . . . . . 8
⊢
((Id‘𝐸) Fn
(Base‘𝐸) ↔
(Id‘𝐸):(Base‘𝐸)⟶V) |
94 | 92, 93 | sylib 217 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (Id‘𝐸):(Base‘𝐸)⟶V) |
95 | | relfunc 17493 |
. . . . . . . . 9
⊢ Rel
(𝐷 Func 𝐸) |
96 | | 1st2ndbr 7856 |
. . . . . . . . 9
⊢ ((Rel
(𝐷 Func 𝐸) ∧ ((1st ‘𝐺)‘𝑥) ∈ (𝐷 Func 𝐸)) → (1st
‘((1st ‘𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st
‘𝐺)‘𝑥))) |
97 | 95, 39, 96 | sylancr 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (1st
‘((1st ‘𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st
‘𝐺)‘𝑥))) |
98 | 6, 90, 97 | funcf1 17497 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (1st
‘((1st ‘𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸)) |
99 | | fcompt 6987 |
. . . . . . 7
⊢
(((Id‘𝐸):(Base‘𝐸)⟶V ∧ (1st
‘((1st ‘𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸)) → ((Id‘𝐸) ∘ (1st
‘((1st ‘𝐺)‘𝑥))) = (𝑦 ∈ (Base‘𝐷) ↦ ((Id‘𝐸)‘((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦)))) |
100 | 94, 98, 99 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐸) ∘ (1st
‘((1st ‘𝐺)‘𝑥))) = (𝑦 ∈ (Base‘𝐷) ↦ ((Id‘𝐸)‘((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦)))) |
101 | 88, 100 | eqtr4d 2781 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑦〉)((Id‘𝐷)‘𝑦))) = ((Id‘𝐸) ∘ (1st
‘((1st ‘𝐺)‘𝑥)))) |
102 | 2, 9, 8, 34, 37 | catidcl 17308 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥)) |
103 | | eqid 2738 |
. . . . . 6
⊢ ((𝑥(2nd ‘𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = ((𝑥(2nd ‘𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) |
104 | 1, 2, 34, 35, 36, 6, 9, 10, 37, 37, 102, 103 | curf2 17863 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd ‘𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = (𝑦 ∈ (Base‘𝐷) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑦〉)((Id‘𝐷)‘𝑦)))) |
105 | 21, 25, 66, 39 | fucid 17605 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑄)‘((1st ‘𝐺)‘𝑥)) = ((Id‘𝐸) ∘ (1st
‘((1st ‘𝐺)‘𝑥)))) |
106 | 101, 104,
105 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd ‘𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝑄)‘((1st ‘𝐺)‘𝑥))) |
107 | 3 | 3ad2ant1 1131 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐶 ∈ Cat) |
108 | 107 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat) |
109 | 4 | 3ad2ant1 1131 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐷 ∈ Cat) |
110 | 109 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat) |
111 | 5 | 3ad2ant1 1131 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
112 | 111 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
113 | | simp21 1204 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥 ∈ (Base‘𝐶)) |
114 | 113 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶)) |
115 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑤 ∈ (Base‘𝐷)) |
116 | 1, 2, 108, 110, 112, 6, 114, 38, 115 | curf11 17860 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st
‘((1st ‘𝐺)‘𝑥))‘𝑤) = (𝑥(1st ‘𝐹)𝑤)) |
117 | | df-ov 7258 |
. . . . . . . . . . 11
⊢ (𝑥(1st ‘𝐹)𝑤) = ((1st ‘𝐹)‘〈𝑥, 𝑤〉) |
118 | 116, 117 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st
‘((1st ‘𝐺)‘𝑥))‘𝑤) = ((1st ‘𝐹)‘〈𝑥, 𝑤〉)) |
119 | | simp22 1205 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦 ∈ (Base‘𝐶)) |
120 | 119 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐶)) |
121 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
((1st ‘𝐺)‘𝑦) = ((1st ‘𝐺)‘𝑦) |
122 | 1, 2, 108, 110, 112, 6, 120, 121, 115 | curf11 17860 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st
‘((1st ‘𝐺)‘𝑦))‘𝑤) = (𝑦(1st ‘𝐹)𝑤)) |
123 | | df-ov 7258 |
. . . . . . . . . . 11
⊢ (𝑦(1st ‘𝐹)𝑤) = ((1st ‘𝐹)‘〈𝑦, 𝑤〉) |
124 | 122, 123 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st
‘((1st ‘𝐺)‘𝑦))‘𝑤) = ((1st ‘𝐹)‘〈𝑦, 𝑤〉)) |
125 | 118, 124 | opeq12d 4809 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 〈((1st
‘((1st ‘𝐺)‘𝑥))‘𝑤), ((1st ‘((1st
‘𝐺)‘𝑦))‘𝑤)〉 = 〈((1st ‘𝐹)‘〈𝑥, 𝑤〉), ((1st ‘𝐹)‘〈𝑦, 𝑤〉)〉) |
126 | | simp23 1206 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧 ∈ (Base‘𝐶)) |
127 | 126 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑧 ∈ (Base‘𝐶)) |
128 | | eqid 2738 |
. . . . . . . . . . 11
⊢
((1st ‘𝐺)‘𝑧) = ((1st ‘𝐺)‘𝑧) |
129 | 1, 2, 108, 110, 112, 6, 127, 128, 115 | curf11 17860 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st
‘((1st ‘𝐺)‘𝑧))‘𝑤) = (𝑧(1st ‘𝐹)𝑤)) |
130 | | df-ov 7258 |
. . . . . . . . . 10
⊢ (𝑧(1st ‘𝐹)𝑤) = ((1st ‘𝐹)‘〈𝑧, 𝑤〉) |
131 | 129, 130 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st
‘((1st ‘𝐺)‘𝑧))‘𝑤) = ((1st ‘𝐹)‘〈𝑧, 𝑤〉)) |
132 | 125, 131 | oveq12d 7273 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (〈((1st
‘((1st ‘𝐺)‘𝑥))‘𝑤), ((1st ‘((1st
‘𝐺)‘𝑦))‘𝑤)〉(comp‘𝐸)((1st ‘((1st
‘𝐺)‘𝑧))‘𝑤)) = (〈((1st ‘𝐹)‘〈𝑥, 𝑤〉), ((1st ‘𝐹)‘〈𝑦, 𝑤〉)〉(comp‘𝐸)((1st ‘𝐹)‘〈𝑧, 𝑤〉))) |
133 | | simp3r 1200 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) |
134 | 133 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) |
135 | | eqid 2738 |
. . . . . . . . . 10
⊢ ((𝑦(2nd ‘𝐺)𝑧)‘𝑔) = ((𝑦(2nd ‘𝐺)𝑧)‘𝑔) |
136 | 1, 2, 108, 110, 112, 6, 9, 10, 120, 127, 134, 135, 115 | curf2val 17864 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((𝑦(2nd ‘𝐺)𝑧)‘𝑔)‘𝑤) = (𝑔(〈𝑦, 𝑤〉(2nd ‘𝐹)〈𝑧, 𝑤〉)((Id‘𝐷)‘𝑤))) |
137 | | df-ov 7258 |
. . . . . . . . 9
⊢ (𝑔(〈𝑦, 𝑤〉(2nd ‘𝐹)〈𝑧, 𝑤〉)((Id‘𝐷)‘𝑤)) = ((〈𝑦, 𝑤〉(2nd ‘𝐹)〈𝑧, 𝑤〉)‘〈𝑔, ((Id‘𝐷)‘𝑤)〉) |
138 | 136, 137 | eqtrdi 2795 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((𝑦(2nd ‘𝐺)𝑧)‘𝑔)‘𝑤) = ((〈𝑦, 𝑤〉(2nd ‘𝐹)〈𝑧, 𝑤〉)‘〈𝑔, ((Id‘𝐷)‘𝑤)〉)) |
139 | | simp3l 1199 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
140 | 139 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
141 | | eqid 2738 |
. . . . . . . . . 10
⊢ ((𝑥(2nd ‘𝐺)𝑦)‘𝑓) = ((𝑥(2nd ‘𝐺)𝑦)‘𝑓) |
142 | 1, 2, 108, 110, 112, 6, 9, 10, 114, 120, 140, 141, 115 | curf2val 17864 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((𝑥(2nd ‘𝐺)𝑦)‘𝑓)‘𝑤) = (𝑓(〈𝑥, 𝑤〉(2nd ‘𝐹)〈𝑦, 𝑤〉)((Id‘𝐷)‘𝑤))) |
143 | | df-ov 7258 |
. . . . . . . . 9
⊢ (𝑓(〈𝑥, 𝑤〉(2nd ‘𝐹)〈𝑦, 𝑤〉)((Id‘𝐷)‘𝑤)) = ((〈𝑥, 𝑤〉(2nd ‘𝐹)〈𝑦, 𝑤〉)‘〈𝑓, ((Id‘𝐷)‘𝑤)〉) |
144 | 142, 143 | eqtrdi 2795 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((𝑥(2nd ‘𝐺)𝑦)‘𝑓)‘𝑤) = ((〈𝑥, 𝑤〉(2nd ‘𝐹)〈𝑦, 𝑤〉)‘〈𝑓, ((Id‘𝐷)‘𝑤)〉)) |
145 | 132, 138,
144 | oveq123d 7276 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((((𝑦(2nd ‘𝐺)𝑧)‘𝑔)‘𝑤)(〈((1st
‘((1st ‘𝐺)‘𝑥))‘𝑤), ((1st ‘((1st
‘𝐺)‘𝑦))‘𝑤)〉(comp‘𝐸)((1st ‘((1st
‘𝐺)‘𝑧))‘𝑤))(((𝑥(2nd ‘𝐺)𝑦)‘𝑓)‘𝑤)) = (((〈𝑦, 𝑤〉(2nd ‘𝐹)〈𝑧, 𝑤〉)‘〈𝑔, ((Id‘𝐷)‘𝑤)〉)(〈((1st ‘𝐹)‘〈𝑥, 𝑤〉), ((1st ‘𝐹)‘〈𝑦, 𝑤〉)〉(comp‘𝐸)((1st ‘𝐹)‘〈𝑧, 𝑤〉))((〈𝑥, 𝑤〉(2nd ‘𝐹)〈𝑦, 𝑤〉)‘〈𝑓, ((Id‘𝐷)‘𝑤)〉))) |
146 | | eqid 2738 |
. . . . . . . 8
⊢ (Hom
‘(𝐶
×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷)) |
147 | | eqid 2738 |
. . . . . . . 8
⊢
(comp‘(𝐶
×c 𝐷)) = (comp‘(𝐶 ×c 𝐷)) |
148 | | eqid 2738 |
. . . . . . . 8
⊢
(comp‘𝐸) =
(comp‘𝐸) |
149 | 67, 112, 68 | sylancr 586 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (1st ‘𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘𝐹)) |
150 | | opelxpi 5617 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷)) → 〈𝑥, 𝑤〉 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
151 | 113, 150 | sylan 579 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 〈𝑥, 𝑤〉 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
152 | | opelxpi 5617 |
. . . . . . . . 9
⊢ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷)) → 〈𝑦, 𝑤〉 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
153 | 119, 152 | sylan 579 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 〈𝑦, 𝑤〉 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
154 | | opelxpi 5617 |
. . . . . . . . 9
⊢ ((𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷)) → 〈𝑧, 𝑤〉 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
155 | 126, 154 | sylan 579 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 〈𝑧, 𝑤〉 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
156 | 6, 7, 10, 110, 115 | catidcl 17308 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((Id‘𝐷)‘𝑤) ∈ (𝑤(Hom ‘𝐷)𝑤)) |
157 | 140, 156 | opelxpd 5618 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 〈𝑓, ((Id‘𝐷)‘𝑤)〉 ∈ ((𝑥(Hom ‘𝐶)𝑦) × (𝑤(Hom ‘𝐷)𝑤))) |
158 | 63, 2, 6, 9, 7, 114, 115, 120, 115, 146 | xpchom2 17819 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (〈𝑥, 𝑤〉(Hom ‘(𝐶 ×c 𝐷))〈𝑦, 𝑤〉) = ((𝑥(Hom ‘𝐶)𝑦) × (𝑤(Hom ‘𝐷)𝑤))) |
159 | 157, 158 | eleqtrrd 2842 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 〈𝑓, ((Id‘𝐷)‘𝑤)〉 ∈ (〈𝑥, 𝑤〉(Hom ‘(𝐶 ×c 𝐷))〈𝑦, 𝑤〉)) |
160 | 134, 156 | opelxpd 5618 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 〈𝑔, ((Id‘𝐷)‘𝑤)〉 ∈ ((𝑦(Hom ‘𝐶)𝑧) × (𝑤(Hom ‘𝐷)𝑤))) |
161 | 63, 2, 6, 9, 7, 120, 115, 127, 115, 146 | xpchom2 17819 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (〈𝑦, 𝑤〉(Hom ‘(𝐶 ×c 𝐷))〈𝑧, 𝑤〉) = ((𝑦(Hom ‘𝐶)𝑧) × (𝑤(Hom ‘𝐷)𝑤))) |
162 | 160, 161 | eleqtrrd 2842 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 〈𝑔, ((Id‘𝐷)‘𝑤)〉 ∈ (〈𝑦, 𝑤〉(Hom ‘(𝐶 ×c 𝐷))〈𝑧, 𝑤〉)) |
163 | 64, 146, 147, 148, 149, 151, 153, 155, 159, 162 | funcco 17502 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((〈𝑥, 𝑤〉(2nd ‘𝐹)〈𝑧, 𝑤〉)‘(〈𝑔, ((Id‘𝐷)‘𝑤)〉(〈〈𝑥, 𝑤〉, 〈𝑦, 𝑤〉〉(comp‘(𝐶 ×c 𝐷))〈𝑧, 𝑤〉)〈𝑓, ((Id‘𝐷)‘𝑤)〉)) = (((〈𝑦, 𝑤〉(2nd ‘𝐹)〈𝑧, 𝑤〉)‘〈𝑔, ((Id‘𝐷)‘𝑤)〉)(〈((1st ‘𝐹)‘〈𝑥, 𝑤〉), ((1st ‘𝐹)‘〈𝑦, 𝑤〉)〉(comp‘𝐸)((1st ‘𝐹)‘〈𝑧, 𝑤〉))((〈𝑥, 𝑤〉(2nd ‘𝐹)〈𝑦, 𝑤〉)‘〈𝑓, ((Id‘𝐷)‘𝑤)〉))) |
164 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(comp‘𝐷) =
(comp‘𝐷) |
165 | 63, 2, 6, 9, 7, 114, 115, 120, 115, 26, 164, 147, 127, 115, 140, 156, 134, 156 | xpcco2 17820 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (〈𝑔, ((Id‘𝐷)‘𝑤)〉(〈〈𝑥, 𝑤〉, 〈𝑦, 𝑤〉〉(comp‘(𝐶 ×c 𝐷))〈𝑧, 𝑤〉)〈𝑓, ((Id‘𝐷)‘𝑤)〉) = 〈(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓), (((Id‘𝐷)‘𝑤)(〈𝑤, 𝑤〉(comp‘𝐷)𝑤)((Id‘𝐷)‘𝑤))〉) |
166 | 6, 7, 10, 110, 115, 164, 115, 156 | catlid 17309 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((Id‘𝐷)‘𝑤)(〈𝑤, 𝑤〉(comp‘𝐷)𝑤)((Id‘𝐷)‘𝑤)) = ((Id‘𝐷)‘𝑤)) |
167 | 166 | opeq2d 4808 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 〈(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓), (((Id‘𝐷)‘𝑤)(〈𝑤, 𝑤〉(comp‘𝐷)𝑤)((Id‘𝐷)‘𝑤))〉 = 〈(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓), ((Id‘𝐷)‘𝑤)〉) |
168 | 165, 167 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (〈𝑔, ((Id‘𝐷)‘𝑤)〉(〈〈𝑥, 𝑤〉, 〈𝑦, 𝑤〉〉(comp‘(𝐶 ×c 𝐷))〈𝑧, 𝑤〉)〈𝑓, ((Id‘𝐷)‘𝑤)〉) = 〈(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓), ((Id‘𝐷)‘𝑤)〉) |
169 | 168 | fveq2d 6760 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((〈𝑥, 𝑤〉(2nd ‘𝐹)〈𝑧, 𝑤〉)‘(〈𝑔, ((Id‘𝐷)‘𝑤)〉(〈〈𝑥, 𝑤〉, 〈𝑦, 𝑤〉〉(comp‘(𝐶 ×c 𝐷))〈𝑧, 𝑤〉)〈𝑓, ((Id‘𝐷)‘𝑤)〉)) = ((〈𝑥, 𝑤〉(2nd ‘𝐹)〈𝑧, 𝑤〉)‘〈(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓), ((Id‘𝐷)‘𝑤)〉)) |
170 | | df-ov 7258 |
. . . . . . . 8
⊢ ((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)(〈𝑥, 𝑤〉(2nd ‘𝐹)〈𝑧, 𝑤〉)((Id‘𝐷)‘𝑤)) = ((〈𝑥, 𝑤〉(2nd ‘𝐹)〈𝑧, 𝑤〉)‘〈(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓), ((Id‘𝐷)‘𝑤)〉) |
171 | 169, 170 | eqtr4di 2797 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((〈𝑥, 𝑤〉(2nd ‘𝐹)〈𝑧, 𝑤〉)‘(〈𝑔, ((Id‘𝐷)‘𝑤)〉(〈〈𝑥, 𝑤〉, 〈𝑦, 𝑤〉〉(comp‘(𝐶 ×c 𝐷))〈𝑧, 𝑤〉)〈𝑓, ((Id‘𝐷)‘𝑤)〉)) = ((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)(〈𝑥, 𝑤〉(2nd ‘𝐹)〈𝑧, 𝑤〉)((Id‘𝐷)‘𝑤))) |
172 | 145, 163,
171 | 3eqtr2rd 2785 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)(〈𝑥, 𝑤〉(2nd ‘𝐹)〈𝑧, 𝑤〉)((Id‘𝐷)‘𝑤)) = ((((𝑦(2nd ‘𝐺)𝑧)‘𝑔)‘𝑤)(〈((1st
‘((1st ‘𝐺)‘𝑥))‘𝑤), ((1st ‘((1st
‘𝐺)‘𝑦))‘𝑤)〉(comp‘𝐸)((1st ‘((1st
‘𝐺)‘𝑧))‘𝑤))(((𝑥(2nd ‘𝐺)𝑦)‘𝑓)‘𝑤))) |
173 | 172 | mpteq2dva 5170 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑤 ∈ (Base‘𝐷) ↦ ((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)(〈𝑥, 𝑤〉(2nd ‘𝐹)〈𝑧, 𝑤〉)((Id‘𝐷)‘𝑤))) = (𝑤 ∈ (Base‘𝐷) ↦ ((((𝑦(2nd ‘𝐺)𝑧)‘𝑔)‘𝑤)(〈((1st
‘((1st ‘𝐺)‘𝑥))‘𝑤), ((1st ‘((1st
‘𝐺)‘𝑦))‘𝑤)〉(comp‘𝐸)((1st ‘((1st
‘𝐺)‘𝑧))‘𝑤))(((𝑥(2nd ‘𝐺)𝑦)‘𝑓)‘𝑤)))) |
174 | 2, 9, 26, 107, 113, 119, 126, 139, 133 | catcocl 17311 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) |
175 | | eqid 2738 |
. . . . . 6
⊢ ((𝑥(2nd ‘𝐺)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) = ((𝑥(2nd ‘𝐺)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) |
176 | 1, 2, 107, 109, 111, 6, 9, 10, 113, 126, 174, 175 | curf2 17863 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd ‘𝐺)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) = (𝑤 ∈ (Base‘𝐷) ↦ ((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)(〈𝑥, 𝑤〉(2nd ‘𝐹)〈𝑧, 𝑤〉)((Id‘𝐷)‘𝑤)))) |
177 | 1, 2, 107, 109, 111, 6, 9, 10, 113, 119, 139, 141, 23 | curf2cl 17865 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd ‘𝐺)𝑦)‘𝑓) ∈ (((1st ‘𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st ‘𝐺)‘𝑦))) |
178 | 1, 2, 107, 109, 111, 6, 9, 10, 119, 126, 133, 135, 23 | curf2cl 17865 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd ‘𝐺)𝑧)‘𝑔) ∈ (((1st ‘𝐺)‘𝑦)(𝐷 Nat 𝐸)((1st ‘𝐺)‘𝑧))) |
179 | 21, 23, 6, 148, 27, 177, 178 | fucco 17596 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd ‘𝐺)𝑧)‘𝑔)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐺)‘𝑦)〉(comp‘𝑄)((1st ‘𝐺)‘𝑧))((𝑥(2nd ‘𝐺)𝑦)‘𝑓)) = (𝑤 ∈ (Base‘𝐷) ↦ ((((𝑦(2nd ‘𝐺)𝑧)‘𝑔)‘𝑤)(〈((1st
‘((1st ‘𝐺)‘𝑥))‘𝑤), ((1st ‘((1st
‘𝐺)‘𝑦))‘𝑤)〉(comp‘𝐸)((1st ‘((1st
‘𝐺)‘𝑧))‘𝑤))(((𝑥(2nd ‘𝐺)𝑦)‘𝑓)‘𝑤)))) |
180 | 173, 176,
179 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd ‘𝐺)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘𝐺)𝑧)‘𝑔)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐺)‘𝑦)〉(comp‘𝑄)((1st ‘𝐺)‘𝑧))((𝑥(2nd ‘𝐺)𝑦)‘𝑓))) |
181 | 2, 22, 9, 24, 8, 25, 26, 27, 3, 31, 40, 46, 62, 106, 180 | isfuncd 17496 |
. . 3
⊢ (𝜑 → (1st
‘𝐺)(𝐶 Func 𝑄)(2nd ‘𝐺)) |
182 | | df-br 5071 |
. . 3
⊢
((1st ‘𝐺)(𝐶 Func 𝑄)(2nd ‘𝐺) ↔ 〈(1st ‘𝐺), (2nd ‘𝐺)〉 ∈ (𝐶 Func 𝑄)) |
183 | 181, 182 | sylib 217 |
. 2
⊢ (𝜑 → 〈(1st
‘𝐺), (2nd
‘𝐺)〉 ∈
(𝐶 Func 𝑄)) |
184 | 20, 183 | eqeltrd 2839 |
1
⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝑄)) |