MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curfcl Structured version   Visualization version   GIF version

Theorem curfcl 18242
Description: The curry functor of a functor 𝐹:𝐶 × 𝐷𝐸 is a functor curryF (𝐹):𝐶⟶(𝐷𝐸). (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
curfcl.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curfcl.q 𝑄 = (𝐷 FuncCat 𝐸)
curfcl.c (𝜑𝐶 ∈ Cat)
curfcl.d (𝜑𝐷 ∈ Cat)
curfcl.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
Assertion
Ref Expression
curfcl (𝜑𝐺 ∈ (𝐶 Func 𝑄))

Proof of Theorem curfcl
Dummy variables 𝑤 𝑔 𝑥 𝑦 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfcl.g . . . 4 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
2 eqid 2735 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3 curfcl.c . . . 4 (𝜑𝐶 ∈ Cat)
4 curfcl.d . . . 4 (𝜑𝐷 ∈ Cat)
5 curfcl.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
6 eqid 2735 . . . 4 (Base‘𝐷) = (Base‘𝐷)
7 eqid 2735 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
8 eqid 2735 . . . 4 (Id‘𝐶) = (Id‘𝐶)
9 eqid 2735 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
10 eqid 2735 . . . 4 (Id‘𝐷) = (Id‘𝐷)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10curfval 18233 . . 3 (𝜑𝐺 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩)
12 fvex 6888 . . . . . . 7 (Base‘𝐶) ∈ V
1312mptex 7214 . . . . . 6 (𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩) ∈ V
1412, 12mpoex 8076 . . . . . 6 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) ∈ V
1513, 14op1std 7996 . . . . 5 (𝐺 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩ → (1st𝐺) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩))
1611, 15syl 17 . . . 4 (𝜑 → (1st𝐺) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩))
1713, 14op2ndd 7997 . . . . 5 (𝐺 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩ → (2nd𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))))
1811, 17syl 17 . . . 4 (𝜑 → (2nd𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))))
1916, 18opeq12d 4857 . . 3 (𝜑 → ⟨(1st𝐺), (2nd𝐺)⟩ = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩)
2011, 19eqtr4d 2773 . 2 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
21 curfcl.q . . . . 5 𝑄 = (𝐷 FuncCat 𝐸)
2221fucbas 17974 . . . 4 (𝐷 Func 𝐸) = (Base‘𝑄)
23 eqid 2735 . . . . 5 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
2421, 23fuchom 17975 . . . 4 (𝐷 Nat 𝐸) = (Hom ‘𝑄)
25 eqid 2735 . . . 4 (Id‘𝑄) = (Id‘𝑄)
26 eqid 2735 . . . 4 (comp‘𝐶) = (comp‘𝐶)
27 eqid 2735 . . . 4 (comp‘𝑄) = (comp‘𝑄)
28 funcrcl 17874 . . . . . . 7 (𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸) → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
295, 28syl 17 . . . . . 6 (𝜑 → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
3029simprd 495 . . . . 5 (𝜑𝐸 ∈ Cat)
3121, 4, 30fuccat 17984 . . . 4 (𝜑𝑄 ∈ Cat)
32 opex 5439 . . . . . 6 ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩ ∈ V
3332a1i 11 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩ ∈ V)
343adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
354adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
365adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
37 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
38 eqid 2735 . . . . . 6 ((1st𝐺)‘𝑥) = ((1st𝐺)‘𝑥)
391, 2, 34, 35, 36, 6, 37, 38curf1cl 18238 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸))
4033, 16, 39fmpt2d 7113 . . . 4 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(𝐷 Func 𝐸))
41 eqid 2735 . . . . . 6 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))
42 ovex 7436 . . . . . . 7 (𝑥(Hom ‘𝐶)𝑦) ∈ V
4342mptex 7214 . . . . . 6 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))) ∈ V
4441, 43fnmpoi 8067 . . . . 5 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) Fn ((Base‘𝐶) × (Base‘𝐶))
4518fneq1d 6630 . . . . 5 (𝜑 → ((2nd𝐺) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) Fn ((Base‘𝐶) × (Base‘𝐶))))
4644, 45mpbiri 258 . . . 4 (𝜑 → (2nd𝐺) Fn ((Base‘𝐶) × (Base‘𝐶)))
47 fvex 6888 . . . . . . 7 (Base‘𝐷) ∈ V
4847mptex 7214 . . . . . 6 (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) ∈ V
4948a1i 11 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) ∈ V)
5018oveqd 7420 . . . . . 6 (𝜑 → (𝑥(2nd𝐺)𝑦) = (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))𝑦))
5141ovmpt4g 7552 . . . . . . 7 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))) ∈ V) → (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))𝑦) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))
5243, 51mp3an3 1452 . . . . . 6 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))𝑦) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))
5350, 52sylan9eq 2790 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐺)𝑦) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))
543ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐶 ∈ Cat)
554ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐷 ∈ Cat)
565ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
57 simplrl 776 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
58 simplrr 777 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
59 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))
60 eqid 2735 . . . . . 6 ((𝑥(2nd𝐺)𝑦)‘𝑔) = ((𝑥(2nd𝐺)𝑦)‘𝑔)
611, 2, 54, 55, 56, 6, 9, 10, 57, 58, 59, 60, 23curf2cl 18241 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐺)𝑦)‘𝑔) ∈ (((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
6249, 53, 61fmpt2d 7113 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
63 eqid 2735 . . . . . . . . . 10 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
6463, 2, 6xpcbas 18188 . . . . . . . . 9 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘(𝐶 ×c 𝐷))
65 eqid 2735 . . . . . . . . 9 (Id‘(𝐶 ×c 𝐷)) = (Id‘(𝐶 ×c 𝐷))
66 eqid 2735 . . . . . . . . 9 (Id‘𝐸) = (Id‘𝐸)
67 relfunc 17873 . . . . . . . . . . 11 Rel ((𝐶 ×c 𝐷) Func 𝐸)
68 1st2ndbr 8039 . . . . . . . . . . 11 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
6967, 5, 68sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
7069ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
71 opelxpi 5691 . . . . . . . . . 10 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
7271adantll 714 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
7364, 65, 66, 70, 72funcid 17881 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑥, 𝑦⟩)) = ((Id‘𝐸)‘((1st𝐹)‘⟨𝑥, 𝑦⟩)))
743ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat)
754ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
7637adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶))
77 simpr 484 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐷))
7863, 74, 75, 2, 6, 8, 10, 65, 76, 77xpcid 18199 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((Id‘(𝐶 ×c 𝐷))‘⟨𝑥, 𝑦⟩) = ⟨((Id‘𝐶)‘𝑥), ((Id‘𝐷)‘𝑦)⟩)
7978fveq2d 6879 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑥, 𝑦⟩)) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)‘⟨((Id‘𝐶)‘𝑥), ((Id‘𝐷)‘𝑦)⟩))
80 df-ov 7406 . . . . . . . . 9 (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦)) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)‘⟨((Id‘𝐶)‘𝑥), ((Id‘𝐷)‘𝑦)⟩)
8179, 80eqtr4di 2788 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑥, 𝑦⟩)) = (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦)))
825ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
831, 2, 74, 75, 82, 6, 76, 38, 77curf11 18236 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑥))‘𝑦) = (𝑥(1st𝐹)𝑦))
84 df-ov 7406 . . . . . . . . . 10 (𝑥(1st𝐹)𝑦) = ((1st𝐹)‘⟨𝑥, 𝑦⟩)
8583, 84eqtr2di 2787 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st𝐹)‘⟨𝑥, 𝑦⟩) = ((1st ‘((1st𝐺)‘𝑥))‘𝑦))
8685fveq2d 6879 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((Id‘𝐸)‘((1st𝐹)‘⟨𝑥, 𝑦⟩)) = ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑦)))
8773, 81, 863eqtr3d 2778 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦)) = ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑦)))
8887mpteq2dva 5214 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦))) = (𝑦 ∈ (Base‘𝐷) ↦ ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑦))))
8930adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
90 eqid 2735 . . . . . . . . . 10 (Base‘𝐸) = (Base‘𝐸)
9190, 66cidfn 17689 . . . . . . . . 9 (𝐸 ∈ Cat → (Id‘𝐸) Fn (Base‘𝐸))
9289, 91syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (Id‘𝐸) Fn (Base‘𝐸))
93 dffn2 6707 . . . . . . . 8 ((Id‘𝐸) Fn (Base‘𝐸) ↔ (Id‘𝐸):(Base‘𝐸)⟶V)
9492, 93sylib 218 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (Id‘𝐸):(Base‘𝐸)⟶V)
95 relfunc 17873 . . . . . . . . 9 Rel (𝐷 Func 𝐸)
96 1st2ndbr 8039 . . . . . . . . 9 ((Rel (𝐷 Func 𝐸) ∧ ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸)) → (1st ‘((1st𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑥)))
9795, 39, 96sylancr 587 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st ‘((1st𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑥)))
986, 90, 97funcf1 17877 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st ‘((1st𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸))
99 fcompt 7122 . . . . . . 7 (((Id‘𝐸):(Base‘𝐸)⟶V ∧ (1st ‘((1st𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸)) → ((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥))) = (𝑦 ∈ (Base‘𝐷) ↦ ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑦))))
10094, 98, 99syl2anc 584 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥))) = (𝑦 ∈ (Base‘𝐷) ↦ ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑦))))
10188, 100eqtr4d 2773 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦))) = ((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥))))
1022, 9, 8, 34, 37catidcl 17692 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
103 eqid 2735 . . . . . 6 ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥))
1041, 2, 34, 35, 36, 6, 9, 10, 37, 37, 102, 103curf2 18239 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = (𝑦 ∈ (Base‘𝐷) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦))))
10521, 25, 66, 39fucid 17985 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑄)‘((1st𝐺)‘𝑥)) = ((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥))))
106101, 104, 1053eqtr4d 2780 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝑄)‘((1st𝐺)‘𝑥)))
10733ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐶 ∈ Cat)
108107adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat)
10943ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐷 ∈ Cat)
110109adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
11153ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
112111adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
113 simp21 1207 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥 ∈ (Base‘𝐶))
114113adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶))
115 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑤 ∈ (Base‘𝐷))
1161, 2, 108, 110, 112, 6, 114, 38, 115curf11 18236 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑥))‘𝑤) = (𝑥(1st𝐹)𝑤))
117 df-ov 7406 . . . . . . . . . . 11 (𝑥(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑥, 𝑤⟩)
118116, 117eqtrdi 2786 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑥))‘𝑤) = ((1st𝐹)‘⟨𝑥, 𝑤⟩))
119 simp22 1208 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦 ∈ (Base‘𝐶))
120119adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐶))
121 eqid 2735 . . . . . . . . . . . 12 ((1st𝐺)‘𝑦) = ((1st𝐺)‘𝑦)
1221, 2, 108, 110, 112, 6, 120, 121, 115curf11 18236 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑦))‘𝑤) = (𝑦(1st𝐹)𝑤))
123 df-ov 7406 . . . . . . . . . . 11 (𝑦(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑦, 𝑤⟩)
124122, 123eqtrdi 2786 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑦))‘𝑤) = ((1st𝐹)‘⟨𝑦, 𝑤⟩))
125118, 124opeq12d 4857 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩ = ⟨((1st𝐹)‘⟨𝑥, 𝑤⟩), ((1st𝐹)‘⟨𝑦, 𝑤⟩)⟩)
126 simp23 1209 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧 ∈ (Base‘𝐶))
127126adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑧 ∈ (Base‘𝐶))
128 eqid 2735 . . . . . . . . . . 11 ((1st𝐺)‘𝑧) = ((1st𝐺)‘𝑧)
1291, 2, 108, 110, 112, 6, 127, 128, 115curf11 18236 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑧))‘𝑤) = (𝑧(1st𝐹)𝑤))
130 df-ov 7406 . . . . . . . . . 10 (𝑧(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑧, 𝑤⟩)
131129, 130eqtrdi 2786 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑧))‘𝑤) = ((1st𝐹)‘⟨𝑧, 𝑤⟩))
132125, 131oveq12d 7421 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤)) = (⟨((1st𝐹)‘⟨𝑥, 𝑤⟩), ((1st𝐹)‘⟨𝑦, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩)))
133 simp3r 1203 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
134133adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
135 eqid 2735 . . . . . . . . . 10 ((𝑦(2nd𝐺)𝑧)‘𝑔) = ((𝑦(2nd𝐺)𝑧)‘𝑔)
1361, 2, 108, 110, 112, 6, 9, 10, 120, 127, 134, 135, 115curf2val 18240 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤) = (𝑔(⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)))
137 df-ov 7406 . . . . . . . . 9 (𝑔(⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)) = ((⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑔, ((Id‘𝐷)‘𝑤)⟩)
138136, 137eqtrdi 2786 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤) = ((⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑔, ((Id‘𝐷)‘𝑤)⟩))
139 simp3l 1202 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
140139adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
141 eqid 2735 . . . . . . . . . 10 ((𝑥(2nd𝐺)𝑦)‘𝑓) = ((𝑥(2nd𝐺)𝑦)‘𝑓)
1421, 2, 108, 110, 112, 6, 9, 10, 114, 120, 140, 141, 115curf2val 18240 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤) = (𝑓(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)((Id‘𝐷)‘𝑤)))
143 df-ov 7406 . . . . . . . . 9 (𝑓(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)((Id‘𝐷)‘𝑤)) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)
144142, 143eqtrdi 2786 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩))
145132, 138, 144oveq123d 7424 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))(((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤)) = (((⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑔, ((Id‘𝐷)‘𝑤)⟩)(⟨((1st𝐹)‘⟨𝑥, 𝑤⟩), ((1st𝐹)‘⟨𝑦, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩))((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)))
146 eqid 2735 . . . . . . . 8 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
147 eqid 2735 . . . . . . . 8 (comp‘(𝐶 ×c 𝐷)) = (comp‘(𝐶 ×c 𝐷))
148 eqid 2735 . . . . . . . 8 (comp‘𝐸) = (comp‘𝐸)
14967, 112, 68sylancr 587 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
150 opelxpi 5691 . . . . . . . . 9 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
151113, 150sylan 580 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
152 opelxpi 5691 . . . . . . . . 9 ((𝑦 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑦, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
153119, 152sylan 580 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑦, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
154 opelxpi 5691 . . . . . . . . 9 ((𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑧, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
155126, 154sylan 580 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑧, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
1566, 7, 10, 110, 115catidcl 17692 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((Id‘𝐷)‘𝑤) ∈ (𝑤(Hom ‘𝐷)𝑤))
157140, 156opelxpd 5693 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑓, ((Id‘𝐷)‘𝑤)⟩ ∈ ((𝑥(Hom ‘𝐶)𝑦) × (𝑤(Hom ‘𝐷)𝑤)))
15863, 2, 6, 9, 7, 114, 115, 120, 115, 146xpchom2 18196 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (⟨𝑥, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑤⟩) = ((𝑥(Hom ‘𝐶)𝑦) × (𝑤(Hom ‘𝐷)𝑤)))
159157, 158eleqtrrd 2837 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑓, ((Id‘𝐷)‘𝑤)⟩ ∈ (⟨𝑥, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑤⟩))
160134, 156opelxpd 5693 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑔, ((Id‘𝐷)‘𝑤)⟩ ∈ ((𝑦(Hom ‘𝐶)𝑧) × (𝑤(Hom ‘𝐷)𝑤)))
16163, 2, 6, 9, 7, 120, 115, 127, 115, 146xpchom2 18196 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (⟨𝑦, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩) = ((𝑦(Hom ‘𝐶)𝑧) × (𝑤(Hom ‘𝐷)𝑤)))
162160, 161eleqtrrd 2837 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑔, ((Id‘𝐷)‘𝑤)⟩ ∈ (⟨𝑦, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩))
16364, 146, 147, 148, 149, 151, 153, 155, 159, 162funcco 17882 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑔, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑤⟩, ⟨𝑦, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)) = (((⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑔, ((Id‘𝐷)‘𝑤)⟩)(⟨((1st𝐹)‘⟨𝑥, 𝑤⟩), ((1st𝐹)‘⟨𝑦, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩))((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)))
164 eqid 2735 . . . . . . . . . . 11 (comp‘𝐷) = (comp‘𝐷)
16563, 2, 6, 9, 7, 114, 115, 120, 115, 26, 164, 147, 127, 115, 140, 156, 134, 156xpcco2 18197 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (⟨𝑔, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑤⟩, ⟨𝑦, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨𝑓, ((Id‘𝐷)‘𝑤)⟩) = ⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), (((Id‘𝐷)‘𝑤)(⟨𝑤, 𝑤⟩(comp‘𝐷)𝑤)((Id‘𝐷)‘𝑤))⟩)
1666, 7, 10, 110, 115, 164, 115, 156catlid 17693 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((Id‘𝐷)‘𝑤)(⟨𝑤, 𝑤⟩(comp‘𝐷)𝑤)((Id‘𝐷)‘𝑤)) = ((Id‘𝐷)‘𝑤))
167166opeq2d 4856 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), (((Id‘𝐷)‘𝑤)(⟨𝑤, 𝑤⟩(comp‘𝐷)𝑤)((Id‘𝐷)‘𝑤))⟩ = ⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), ((Id‘𝐷)‘𝑤)⟩)
168165, 167eqtrd 2770 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (⟨𝑔, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑤⟩, ⟨𝑦, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨𝑓, ((Id‘𝐷)‘𝑤)⟩) = ⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), ((Id‘𝐷)‘𝑤)⟩)
169168fveq2d 6879 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑔, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑤⟩, ⟨𝑦, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), ((Id‘𝐷)‘𝑤)⟩))
170 df-ov 7406 . . . . . . . 8 ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), ((Id‘𝐷)‘𝑤)⟩)
171169, 170eqtr4di 2788 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑔, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑤⟩, ⟨𝑦, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)) = ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)))
172145, 163, 1713eqtr2rd 2777 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)) = ((((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))(((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤)))
173172mpteq2dva 5214 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑤 ∈ (Base‘𝐷) ↦ ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤))) = (𝑤 ∈ (Base‘𝐷) ↦ ((((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))(((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤))))
1742, 9, 26, 107, 113, 119, 126, 139, 133catcocl 17695 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
175 eqid 2735 . . . . . 6 ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))
1761, 2, 107, 109, 111, 6, 9, 10, 113, 126, 174, 175curf2 18239 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (𝑤 ∈ (Base‘𝐷) ↦ ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤))))
1771, 2, 107, 109, 111, 6, 9, 10, 113, 119, 139, 141, 23curf2cl 18241 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐺)𝑦)‘𝑓) ∈ (((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
1781, 2, 107, 109, 111, 6, 9, 10, 119, 126, 133, 135, 23curf2cl 18241 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐺)𝑧)‘𝑔) ∈ (((1st𝐺)‘𝑦)(𝐷 Nat 𝐸)((1st𝐺)‘𝑧)))
17921, 23, 6, 148, 27, 177, 178fucco 17976 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝐺)𝑧)‘𝑔)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝑄)((1st𝐺)‘𝑧))((𝑥(2nd𝐺)𝑦)‘𝑓)) = (𝑤 ∈ (Base‘𝐷) ↦ ((((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))(((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤))))
180173, 176, 1793eqtr4d 2780 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐺)𝑧)‘𝑔)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝑄)((1st𝐺)‘𝑧))((𝑥(2nd𝐺)𝑦)‘𝑓)))
1812, 22, 9, 24, 8, 25, 26, 27, 3, 31, 40, 46, 62, 106, 180isfuncd 17876 . . 3 (𝜑 → (1st𝐺)(𝐶 Func 𝑄)(2nd𝐺))
182 df-br 5120 . . 3 ((1st𝐺)(𝐶 Func 𝑄)(2nd𝐺) ↔ ⟨(1st𝐺), (2nd𝐺)⟩ ∈ (𝐶 Func 𝑄))
183181, 182sylib 218 . 2 (𝜑 → ⟨(1st𝐺), (2nd𝐺)⟩ ∈ (𝐶 Func 𝑄))
18420, 183eqeltrd 2834 1 (𝜑𝐺 ∈ (𝐶 Func 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  cop 4607   class class class wbr 5119  cmpt 5201   × cxp 5652  ccom 5658  Rel wrel 5659   Fn wfn 6525  wf 6526  cfv 6530  (class class class)co 7403  cmpo 7405  1st c1st 7984  2nd c2nd 7985  Basecbs 17226  Hom chom 17280  compcco 17281  Catccat 17674  Idccid 17675   Func cfunc 17865   Nat cnat 17955   FuncCat cfuc 17956   ×c cxpc 18178   curryF ccurf 18220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-struct 17164  df-slot 17199  df-ndx 17211  df-base 17227  df-hom 17293  df-cco 17294  df-cat 17678  df-cid 17679  df-func 17869  df-nat 17957  df-fuc 17958  df-xpc 18182  df-curf 18224
This theorem is referenced by:  uncfcurf  18249  diagcl  18251  curf2ndf  18257  yoncl  18272  tposcurfcl  49162
  Copyright terms: Public domain W3C validator