MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curfcl Structured version   Visualization version   GIF version

Theorem curfcl 18195
Description: The curry functor of a functor 𝐹:𝐶 × 𝐷𝐸 is a functor curryF (𝐹):𝐶⟶(𝐷𝐸). (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
curfcl.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curfcl.q 𝑄 = (𝐷 FuncCat 𝐸)
curfcl.c (𝜑𝐶 ∈ Cat)
curfcl.d (𝜑𝐷 ∈ Cat)
curfcl.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
Assertion
Ref Expression
curfcl (𝜑𝐺 ∈ (𝐶 Func 𝑄))

Proof of Theorem curfcl
Dummy variables 𝑤 𝑔 𝑥 𝑦 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfcl.g . . . 4 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
2 eqid 2731 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3 curfcl.c . . . 4 (𝜑𝐶 ∈ Cat)
4 curfcl.d . . . 4 (𝜑𝐷 ∈ Cat)
5 curfcl.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
6 eqid 2731 . . . 4 (Base‘𝐷) = (Base‘𝐷)
7 eqid 2731 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
8 eqid 2731 . . . 4 (Id‘𝐶) = (Id‘𝐶)
9 eqid 2731 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
10 eqid 2731 . . . 4 (Id‘𝐷) = (Id‘𝐷)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10curfval 18186 . . 3 (𝜑𝐺 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩)
12 fvex 6904 . . . . . . 7 (Base‘𝐶) ∈ V
1312mptex 7227 . . . . . 6 (𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩) ∈ V
1412, 12mpoex 8070 . . . . . 6 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) ∈ V
1513, 14op1std 7989 . . . . 5 (𝐺 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩ → (1st𝐺) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩))
1611, 15syl 17 . . . 4 (𝜑 → (1st𝐺) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩))
1713, 14op2ndd 7990 . . . . 5 (𝐺 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩ → (2nd𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))))
1811, 17syl 17 . . . 4 (𝜑 → (2nd𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))))
1916, 18opeq12d 4881 . . 3 (𝜑 → ⟨(1st𝐺), (2nd𝐺)⟩ = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩)
2011, 19eqtr4d 2774 . 2 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
21 curfcl.q . . . . 5 𝑄 = (𝐷 FuncCat 𝐸)
2221fucbas 17922 . . . 4 (𝐷 Func 𝐸) = (Base‘𝑄)
23 eqid 2731 . . . . 5 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
2421, 23fuchom 17923 . . . 4 (𝐷 Nat 𝐸) = (Hom ‘𝑄)
25 eqid 2731 . . . 4 (Id‘𝑄) = (Id‘𝑄)
26 eqid 2731 . . . 4 (comp‘𝐶) = (comp‘𝐶)
27 eqid 2731 . . . 4 (comp‘𝑄) = (comp‘𝑄)
28 funcrcl 17820 . . . . . . 7 (𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸) → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
295, 28syl 17 . . . . . 6 (𝜑 → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
3029simprd 495 . . . . 5 (𝜑𝐸 ∈ Cat)
3121, 4, 30fuccat 17933 . . . 4 (𝜑𝑄 ∈ Cat)
32 opex 5464 . . . . . 6 ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩ ∈ V
3332a1i 11 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩ ∈ V)
343adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
354adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
365adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
37 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
38 eqid 2731 . . . . . 6 ((1st𝐺)‘𝑥) = ((1st𝐺)‘𝑥)
391, 2, 34, 35, 36, 6, 37, 38curf1cl 18191 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸))
4033, 16, 39fmpt2d 7125 . . . 4 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(𝐷 Func 𝐸))
41 eqid 2731 . . . . . 6 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))
42 ovex 7445 . . . . . . 7 (𝑥(Hom ‘𝐶)𝑦) ∈ V
4342mptex 7227 . . . . . 6 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))) ∈ V
4441, 43fnmpoi 8060 . . . . 5 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) Fn ((Base‘𝐶) × (Base‘𝐶))
4518fneq1d 6642 . . . . 5 (𝜑 → ((2nd𝐺) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) Fn ((Base‘𝐶) × (Base‘𝐶))))
4644, 45mpbiri 258 . . . 4 (𝜑 → (2nd𝐺) Fn ((Base‘𝐶) × (Base‘𝐶)))
47 fvex 6904 . . . . . . 7 (Base‘𝐷) ∈ V
4847mptex 7227 . . . . . 6 (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) ∈ V
4948a1i 11 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) ∈ V)
5018oveqd 7429 . . . . . 6 (𝜑 → (𝑥(2nd𝐺)𝑦) = (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))𝑦))
5141ovmpt4g 7558 . . . . . . 7 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))) ∈ V) → (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))𝑦) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))
5243, 51mp3an3 1449 . . . . . 6 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))𝑦) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))
5350, 52sylan9eq 2791 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐺)𝑦) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))
543ad2antrr 723 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐶 ∈ Cat)
554ad2antrr 723 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐷 ∈ Cat)
565ad2antrr 723 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
57 simplrl 774 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
58 simplrr 775 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
59 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))
60 eqid 2731 . . . . . 6 ((𝑥(2nd𝐺)𝑦)‘𝑔) = ((𝑥(2nd𝐺)𝑦)‘𝑔)
611, 2, 54, 55, 56, 6, 9, 10, 57, 58, 59, 60, 23curf2cl 18194 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐺)𝑦)‘𝑔) ∈ (((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
6249, 53, 61fmpt2d 7125 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
63 eqid 2731 . . . . . . . . . 10 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
6463, 2, 6xpcbas 18140 . . . . . . . . 9 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘(𝐶 ×c 𝐷))
65 eqid 2731 . . . . . . . . 9 (Id‘(𝐶 ×c 𝐷)) = (Id‘(𝐶 ×c 𝐷))
66 eqid 2731 . . . . . . . . 9 (Id‘𝐸) = (Id‘𝐸)
67 relfunc 17819 . . . . . . . . . . 11 Rel ((𝐶 ×c 𝐷) Func 𝐸)
68 1st2ndbr 8032 . . . . . . . . . . 11 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
6967, 5, 68sylancr 586 . . . . . . . . . 10 (𝜑 → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
7069ad2antrr 723 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
71 opelxpi 5713 . . . . . . . . . 10 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
7271adantll 711 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
7364, 65, 66, 70, 72funcid 17827 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑥, 𝑦⟩)) = ((Id‘𝐸)‘((1st𝐹)‘⟨𝑥, 𝑦⟩)))
743ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat)
754ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
7637adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶))
77 simpr 484 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐷))
7863, 74, 75, 2, 6, 8, 10, 65, 76, 77xpcid 18151 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((Id‘(𝐶 ×c 𝐷))‘⟨𝑥, 𝑦⟩) = ⟨((Id‘𝐶)‘𝑥), ((Id‘𝐷)‘𝑦)⟩)
7978fveq2d 6895 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑥, 𝑦⟩)) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)‘⟨((Id‘𝐶)‘𝑥), ((Id‘𝐷)‘𝑦)⟩))
80 df-ov 7415 . . . . . . . . 9 (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦)) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)‘⟨((Id‘𝐶)‘𝑥), ((Id‘𝐷)‘𝑦)⟩)
8179, 80eqtr4di 2789 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑥, 𝑦⟩)) = (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦)))
825ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
831, 2, 74, 75, 82, 6, 76, 38, 77curf11 18189 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑥))‘𝑦) = (𝑥(1st𝐹)𝑦))
84 df-ov 7415 . . . . . . . . . 10 (𝑥(1st𝐹)𝑦) = ((1st𝐹)‘⟨𝑥, 𝑦⟩)
8583, 84eqtr2di 2788 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st𝐹)‘⟨𝑥, 𝑦⟩) = ((1st ‘((1st𝐺)‘𝑥))‘𝑦))
8685fveq2d 6895 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((Id‘𝐸)‘((1st𝐹)‘⟨𝑥, 𝑦⟩)) = ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑦)))
8773, 81, 863eqtr3d 2779 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦)) = ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑦)))
8887mpteq2dva 5248 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦))) = (𝑦 ∈ (Base‘𝐷) ↦ ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑦))))
8930adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
90 eqid 2731 . . . . . . . . . 10 (Base‘𝐸) = (Base‘𝐸)
9190, 66cidfn 17630 . . . . . . . . 9 (𝐸 ∈ Cat → (Id‘𝐸) Fn (Base‘𝐸))
9289, 91syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (Id‘𝐸) Fn (Base‘𝐸))
93 dffn2 6719 . . . . . . . 8 ((Id‘𝐸) Fn (Base‘𝐸) ↔ (Id‘𝐸):(Base‘𝐸)⟶V)
9492, 93sylib 217 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (Id‘𝐸):(Base‘𝐸)⟶V)
95 relfunc 17819 . . . . . . . . 9 Rel (𝐷 Func 𝐸)
96 1st2ndbr 8032 . . . . . . . . 9 ((Rel (𝐷 Func 𝐸) ∧ ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸)) → (1st ‘((1st𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑥)))
9795, 39, 96sylancr 586 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st ‘((1st𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑥)))
986, 90, 97funcf1 17823 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st ‘((1st𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸))
99 fcompt 7133 . . . . . . 7 (((Id‘𝐸):(Base‘𝐸)⟶V ∧ (1st ‘((1st𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸)) → ((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥))) = (𝑦 ∈ (Base‘𝐷) ↦ ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑦))))
10094, 98, 99syl2anc 583 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥))) = (𝑦 ∈ (Base‘𝐷) ↦ ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑦))))
10188, 100eqtr4d 2774 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦))) = ((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥))))
1022, 9, 8, 34, 37catidcl 17633 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
103 eqid 2731 . . . . . 6 ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥))
1041, 2, 34, 35, 36, 6, 9, 10, 37, 37, 102, 103curf2 18192 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = (𝑦 ∈ (Base‘𝐷) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦))))
10521, 25, 66, 39fucid 17934 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑄)‘((1st𝐺)‘𝑥)) = ((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥))))
106101, 104, 1053eqtr4d 2781 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝑄)‘((1st𝐺)‘𝑥)))
10733ad2ant1 1132 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐶 ∈ Cat)
108107adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat)
10943ad2ant1 1132 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐷 ∈ Cat)
110109adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
11153ad2ant1 1132 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
112111adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
113 simp21 1205 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥 ∈ (Base‘𝐶))
114113adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶))
115 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑤 ∈ (Base‘𝐷))
1161, 2, 108, 110, 112, 6, 114, 38, 115curf11 18189 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑥))‘𝑤) = (𝑥(1st𝐹)𝑤))
117 df-ov 7415 . . . . . . . . . . 11 (𝑥(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑥, 𝑤⟩)
118116, 117eqtrdi 2787 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑥))‘𝑤) = ((1st𝐹)‘⟨𝑥, 𝑤⟩))
119 simp22 1206 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦 ∈ (Base‘𝐶))
120119adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐶))
121 eqid 2731 . . . . . . . . . . . 12 ((1st𝐺)‘𝑦) = ((1st𝐺)‘𝑦)
1221, 2, 108, 110, 112, 6, 120, 121, 115curf11 18189 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑦))‘𝑤) = (𝑦(1st𝐹)𝑤))
123 df-ov 7415 . . . . . . . . . . 11 (𝑦(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑦, 𝑤⟩)
124122, 123eqtrdi 2787 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑦))‘𝑤) = ((1st𝐹)‘⟨𝑦, 𝑤⟩))
125118, 124opeq12d 4881 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩ = ⟨((1st𝐹)‘⟨𝑥, 𝑤⟩), ((1st𝐹)‘⟨𝑦, 𝑤⟩)⟩)
126 simp23 1207 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧 ∈ (Base‘𝐶))
127126adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑧 ∈ (Base‘𝐶))
128 eqid 2731 . . . . . . . . . . 11 ((1st𝐺)‘𝑧) = ((1st𝐺)‘𝑧)
1291, 2, 108, 110, 112, 6, 127, 128, 115curf11 18189 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑧))‘𝑤) = (𝑧(1st𝐹)𝑤))
130 df-ov 7415 . . . . . . . . . 10 (𝑧(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑧, 𝑤⟩)
131129, 130eqtrdi 2787 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑧))‘𝑤) = ((1st𝐹)‘⟨𝑧, 𝑤⟩))
132125, 131oveq12d 7430 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤)) = (⟨((1st𝐹)‘⟨𝑥, 𝑤⟩), ((1st𝐹)‘⟨𝑦, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩)))
133 simp3r 1201 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
134133adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
135 eqid 2731 . . . . . . . . . 10 ((𝑦(2nd𝐺)𝑧)‘𝑔) = ((𝑦(2nd𝐺)𝑧)‘𝑔)
1361, 2, 108, 110, 112, 6, 9, 10, 120, 127, 134, 135, 115curf2val 18193 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤) = (𝑔(⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)))
137 df-ov 7415 . . . . . . . . 9 (𝑔(⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)) = ((⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑔, ((Id‘𝐷)‘𝑤)⟩)
138136, 137eqtrdi 2787 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤) = ((⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑔, ((Id‘𝐷)‘𝑤)⟩))
139 simp3l 1200 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
140139adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
141 eqid 2731 . . . . . . . . . 10 ((𝑥(2nd𝐺)𝑦)‘𝑓) = ((𝑥(2nd𝐺)𝑦)‘𝑓)
1421, 2, 108, 110, 112, 6, 9, 10, 114, 120, 140, 141, 115curf2val 18193 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤) = (𝑓(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)((Id‘𝐷)‘𝑤)))
143 df-ov 7415 . . . . . . . . 9 (𝑓(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)((Id‘𝐷)‘𝑤)) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)
144142, 143eqtrdi 2787 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩))
145132, 138, 144oveq123d 7433 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))(((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤)) = (((⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑔, ((Id‘𝐷)‘𝑤)⟩)(⟨((1st𝐹)‘⟨𝑥, 𝑤⟩), ((1st𝐹)‘⟨𝑦, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩))((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)))
146 eqid 2731 . . . . . . . 8 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
147 eqid 2731 . . . . . . . 8 (comp‘(𝐶 ×c 𝐷)) = (comp‘(𝐶 ×c 𝐷))
148 eqid 2731 . . . . . . . 8 (comp‘𝐸) = (comp‘𝐸)
14967, 112, 68sylancr 586 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
150 opelxpi 5713 . . . . . . . . 9 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
151113, 150sylan 579 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
152 opelxpi 5713 . . . . . . . . 9 ((𝑦 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑦, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
153119, 152sylan 579 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑦, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
154 opelxpi 5713 . . . . . . . . 9 ((𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑧, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
155126, 154sylan 579 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑧, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
1566, 7, 10, 110, 115catidcl 17633 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((Id‘𝐷)‘𝑤) ∈ (𝑤(Hom ‘𝐷)𝑤))
157140, 156opelxpd 5715 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑓, ((Id‘𝐷)‘𝑤)⟩ ∈ ((𝑥(Hom ‘𝐶)𝑦) × (𝑤(Hom ‘𝐷)𝑤)))
15863, 2, 6, 9, 7, 114, 115, 120, 115, 146xpchom2 18148 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (⟨𝑥, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑤⟩) = ((𝑥(Hom ‘𝐶)𝑦) × (𝑤(Hom ‘𝐷)𝑤)))
159157, 158eleqtrrd 2835 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑓, ((Id‘𝐷)‘𝑤)⟩ ∈ (⟨𝑥, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑤⟩))
160134, 156opelxpd 5715 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑔, ((Id‘𝐷)‘𝑤)⟩ ∈ ((𝑦(Hom ‘𝐶)𝑧) × (𝑤(Hom ‘𝐷)𝑤)))
16163, 2, 6, 9, 7, 120, 115, 127, 115, 146xpchom2 18148 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (⟨𝑦, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩) = ((𝑦(Hom ‘𝐶)𝑧) × (𝑤(Hom ‘𝐷)𝑤)))
162160, 161eleqtrrd 2835 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑔, ((Id‘𝐷)‘𝑤)⟩ ∈ (⟨𝑦, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩))
16364, 146, 147, 148, 149, 151, 153, 155, 159, 162funcco 17828 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑔, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑤⟩, ⟨𝑦, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)) = (((⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑔, ((Id‘𝐷)‘𝑤)⟩)(⟨((1st𝐹)‘⟨𝑥, 𝑤⟩), ((1st𝐹)‘⟨𝑦, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩))((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)))
164 eqid 2731 . . . . . . . . . . 11 (comp‘𝐷) = (comp‘𝐷)
16563, 2, 6, 9, 7, 114, 115, 120, 115, 26, 164, 147, 127, 115, 140, 156, 134, 156xpcco2 18149 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (⟨𝑔, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑤⟩, ⟨𝑦, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨𝑓, ((Id‘𝐷)‘𝑤)⟩) = ⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), (((Id‘𝐷)‘𝑤)(⟨𝑤, 𝑤⟩(comp‘𝐷)𝑤)((Id‘𝐷)‘𝑤))⟩)
1666, 7, 10, 110, 115, 164, 115, 156catlid 17634 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((Id‘𝐷)‘𝑤)(⟨𝑤, 𝑤⟩(comp‘𝐷)𝑤)((Id‘𝐷)‘𝑤)) = ((Id‘𝐷)‘𝑤))
167166opeq2d 4880 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), (((Id‘𝐷)‘𝑤)(⟨𝑤, 𝑤⟩(comp‘𝐷)𝑤)((Id‘𝐷)‘𝑤))⟩ = ⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), ((Id‘𝐷)‘𝑤)⟩)
168165, 167eqtrd 2771 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (⟨𝑔, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑤⟩, ⟨𝑦, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨𝑓, ((Id‘𝐷)‘𝑤)⟩) = ⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), ((Id‘𝐷)‘𝑤)⟩)
169168fveq2d 6895 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑔, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑤⟩, ⟨𝑦, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), ((Id‘𝐷)‘𝑤)⟩))
170 df-ov 7415 . . . . . . . 8 ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), ((Id‘𝐷)‘𝑤)⟩)
171169, 170eqtr4di 2789 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑔, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑤⟩, ⟨𝑦, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)) = ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)))
172145, 163, 1713eqtr2rd 2778 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)) = ((((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))(((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤)))
173172mpteq2dva 5248 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑤 ∈ (Base‘𝐷) ↦ ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤))) = (𝑤 ∈ (Base‘𝐷) ↦ ((((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))(((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤))))
1742, 9, 26, 107, 113, 119, 126, 139, 133catcocl 17636 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
175 eqid 2731 . . . . . 6 ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))
1761, 2, 107, 109, 111, 6, 9, 10, 113, 126, 174, 175curf2 18192 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (𝑤 ∈ (Base‘𝐷) ↦ ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤))))
1771, 2, 107, 109, 111, 6, 9, 10, 113, 119, 139, 141, 23curf2cl 18194 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐺)𝑦)‘𝑓) ∈ (((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
1781, 2, 107, 109, 111, 6, 9, 10, 119, 126, 133, 135, 23curf2cl 18194 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐺)𝑧)‘𝑔) ∈ (((1st𝐺)‘𝑦)(𝐷 Nat 𝐸)((1st𝐺)‘𝑧)))
17921, 23, 6, 148, 27, 177, 178fucco 17925 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝐺)𝑧)‘𝑔)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝑄)((1st𝐺)‘𝑧))((𝑥(2nd𝐺)𝑦)‘𝑓)) = (𝑤 ∈ (Base‘𝐷) ↦ ((((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))(((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤))))
180173, 176, 1793eqtr4d 2781 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐺)𝑧)‘𝑔)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝑄)((1st𝐺)‘𝑧))((𝑥(2nd𝐺)𝑦)‘𝑓)))
1812, 22, 9, 24, 8, 25, 26, 27, 3, 31, 40, 46, 62, 106, 180isfuncd 17822 . . 3 (𝜑 → (1st𝐺)(𝐶 Func 𝑄)(2nd𝐺))
182 df-br 5149 . . 3 ((1st𝐺)(𝐶 Func 𝑄)(2nd𝐺) ↔ ⟨(1st𝐺), (2nd𝐺)⟩ ∈ (𝐶 Func 𝑄))
183181, 182sylib 217 . 2 (𝜑 → ⟨(1st𝐺), (2nd𝐺)⟩ ∈ (𝐶 Func 𝑄))
18420, 183eqeltrd 2832 1 (𝜑𝐺 ∈ (𝐶 Func 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  Vcvv 3473  cop 4634   class class class wbr 5148  cmpt 5231   × cxp 5674  ccom 5680  Rel wrel 5681   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7412  cmpo 7414  1st c1st 7977  2nd c2nd 7978  Basecbs 17151  Hom chom 17215  compcco 17216  Catccat 17615  Idccid 17616   Func cfunc 17811   Nat cnat 17902   FuncCat cfuc 17903   ×c cxpc 18130   curryF ccurf 18173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-struct 17087  df-slot 17122  df-ndx 17134  df-base 17152  df-hom 17228  df-cco 17229  df-cat 17619  df-cid 17620  df-func 17815  df-nat 17904  df-fuc 17905  df-xpc 18134  df-curf 18177
This theorem is referenced by:  uncfcurf  18202  diagcl  18204  curf2ndf  18210  yoncl  18225
  Copyright terms: Public domain W3C validator