![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fcoconst | Structured version Visualization version GIF version |
Description: Composition with a constant function. (Contributed by Stefan O'Rear, 11-Mar-2015.) |
Ref | Expression |
---|---|
fcoconst | ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝐼 × {(𝐹‘𝑌)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 769 | . . 3 ⊢ (((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) → 𝑌 ∈ 𝑋) | |
2 | fconstmpt 5750 | . . . 4 ⊢ (𝐼 × {𝑌}) = (𝑥 ∈ 𝐼 ↦ 𝑌) | |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → (𝐼 × {𝑌}) = (𝑥 ∈ 𝐼 ↦ 𝑌)) |
4 | simpl 482 | . . . . 5 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → 𝐹 Fn 𝑋) | |
5 | dffn2 6738 | . . . . 5 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋⟶V) | |
6 | 4, 5 | sylib 218 | . . . 4 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → 𝐹:𝑋⟶V) |
7 | 6 | feqmptd 6976 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → 𝐹 = (𝑦 ∈ 𝑋 ↦ (𝐹‘𝑦))) |
8 | fveq2 6906 | . . 3 ⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) | |
9 | 1, 3, 7, 8 | fmptco 7148 | . 2 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑌))) |
10 | fconstmpt 5750 | . 2 ⊢ (𝐼 × {(𝐹‘𝑌)}) = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑌)) | |
11 | 9, 10 | eqtr4di 2792 | 1 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝐼 × {(𝐹‘𝑌)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 {csn 4630 ↦ cmpt 5230 × cxp 5686 ∘ ccom 5692 Fn wfn 6557 ⟶wf 6558 ‘cfv 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 |
This theorem is referenced by: f1ofvswap 7325 s1co 14868 setcmon 18140 pwsco2mhm 18858 smndex1igid 18929 pws1 20338 pwsmgp 20340 rhmply1vsca 22407 imasdsf1olem 24398 cvmliftphtlem 35301 cvmlift3lem9 35311 |
Copyright terms: Public domain | W3C validator |