| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcoconst | Structured version Visualization version GIF version | ||
| Description: Composition with a constant function. (Contributed by Stefan O'Rear, 11-Mar-2015.) |
| Ref | Expression |
|---|---|
| fcoconst | ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝐼 × {(𝐹‘𝑌)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . . 3 ⊢ (((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) → 𝑌 ∈ 𝑋) | |
| 2 | fconstmpt 5685 | . . . 4 ⊢ (𝐼 × {𝑌}) = (𝑥 ∈ 𝐼 ↦ 𝑌) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → (𝐼 × {𝑌}) = (𝑥 ∈ 𝐼 ↦ 𝑌)) |
| 4 | simpl 482 | . . . . 5 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → 𝐹 Fn 𝑋) | |
| 5 | dffn2 6658 | . . . . 5 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋⟶V) | |
| 6 | 4, 5 | sylib 218 | . . . 4 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → 𝐹:𝑋⟶V) |
| 7 | 6 | feqmptd 6895 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → 𝐹 = (𝑦 ∈ 𝑋 ↦ (𝐹‘𝑦))) |
| 8 | fveq2 6826 | . . 3 ⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) | |
| 9 | 1, 3, 7, 8 | fmptco 7067 | . 2 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑌))) |
| 10 | fconstmpt 5685 | . 2 ⊢ (𝐼 × {(𝐹‘𝑌)}) = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑌)) | |
| 11 | 9, 10 | eqtr4di 2782 | 1 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝐼 × {(𝐹‘𝑌)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 {csn 4579 ↦ cmpt 5176 × cxp 5621 ∘ ccom 5627 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 |
| This theorem is referenced by: f1ofvswap 7247 s1co 14758 setcmon 18012 pwsco2mhm 18725 smndex1igid 18796 pws1 20228 pwsmgp 20230 rhmply1vsca 22291 imasdsf1olem 24277 cvmliftphtlem 35289 cvmlift3lem9 35299 |
| Copyright terms: Public domain | W3C validator |