![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fcoconst | Structured version Visualization version GIF version |
Description: Composition with a constant function. (Contributed by Stefan O'Rear, 11-Mar-2015.) |
Ref | Expression |
---|---|
fcoconst | ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝐼 × {(𝐹‘𝑌)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 768 | . . 3 ⊢ (((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) → 𝑌 ∈ 𝑋) | |
2 | fconstmpt 5762 | . . . 4 ⊢ (𝐼 × {𝑌}) = (𝑥 ∈ 𝐼 ↦ 𝑌) | |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → (𝐼 × {𝑌}) = (𝑥 ∈ 𝐼 ↦ 𝑌)) |
4 | simpl 482 | . . . . 5 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → 𝐹 Fn 𝑋) | |
5 | dffn2 6749 | . . . . 5 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋⟶V) | |
6 | 4, 5 | sylib 218 | . . . 4 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → 𝐹:𝑋⟶V) |
7 | 6 | feqmptd 6990 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → 𝐹 = (𝑦 ∈ 𝑋 ↦ (𝐹‘𝑦))) |
8 | fveq2 6920 | . . 3 ⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) | |
9 | 1, 3, 7, 8 | fmptco 7163 | . 2 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑌))) |
10 | fconstmpt 5762 | . 2 ⊢ (𝐼 × {(𝐹‘𝑌)}) = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑌)) | |
11 | 9, 10 | eqtr4di 2798 | 1 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝐼 × {(𝐹‘𝑌)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 ↦ cmpt 5249 × cxp 5698 ∘ ccom 5704 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 |
This theorem is referenced by: f1ofvswap 7342 s1co 14882 setcmon 18154 pwsco2mhm 18868 smndex1igid 18939 pws1 20348 pwsmgp 20350 rhmply1vsca 22413 imasdsf1olem 24404 cvmliftphtlem 35285 cvmlift3lem9 35295 |
Copyright terms: Public domain | W3C validator |