MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucidcl Structured version   Visualization version   GIF version

Theorem fucidcl 17599
Description: The identity natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fucidcl.q 𝑄 = (𝐶 FuncCat 𝐷)
fucidcl.n 𝑁 = (𝐶 Nat 𝐷)
fucidcl.x 1 = (Id‘𝐷)
fucidcl.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
Assertion
Ref Expression
fucidcl (𝜑 → ( 1 ∘ (1st𝐹)) ∈ (𝐹𝑁𝐹))

Proof of Theorem fucidcl
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucidcl.f . . . . . . . 8 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
2 funcrcl 17494 . . . . . . . 8 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
31, 2syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
43simprd 495 . . . . . 6 (𝜑𝐷 ∈ Cat)
5 eqid 2738 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
6 fucidcl.x . . . . . . 7 1 = (Id‘𝐷)
75, 6cidfn 17305 . . . . . 6 (𝐷 ∈ Cat → 1 Fn (Base‘𝐷))
84, 7syl 17 . . . . 5 (𝜑1 Fn (Base‘𝐷))
9 dffn2 6586 . . . . 5 ( 1 Fn (Base‘𝐷) ↔ 1 :(Base‘𝐷)⟶V)
108, 9sylib 217 . . . 4 (𝜑1 :(Base‘𝐷)⟶V)
11 eqid 2738 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
12 relfunc 17493 . . . . . 6 Rel (𝐶 Func 𝐷)
13 1st2ndbr 7856 . . . . . 6 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1412, 1, 13sylancr 586 . . . . 5 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1511, 5, 14funcf1 17497 . . . 4 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
16 fcompt 6987 . . . 4 (( 1 :(Base‘𝐷)⟶V ∧ (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷)) → ( 1 ∘ (1st𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))))
1710, 15, 16syl2anc 583 . . 3 (𝜑 → ( 1 ∘ (1st𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))))
18 eqid 2738 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
194adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
2015ffvelrnda 6943 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
215, 18, 6, 19, 20catidcl 17308 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ( 1 ‘((1st𝐹)‘𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2221ralrimiva 3107 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)( 1 ‘((1st𝐹)‘𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
23 fvex 6769 . . . . 5 (Base‘𝐶) ∈ V
24 mptelixpg 8681 . . . . 5 ((Base‘𝐶) ∈ V → ((𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐶)( 1 ‘((1st𝐹)‘𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥))))
2523, 24ax-mp 5 . . . 4 ((𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐶)( 1 ‘((1st𝐹)‘𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2622, 25sylibr 233 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2717, 26eqeltrd 2839 . 2 (𝜑 → ( 1 ∘ (1st𝐹)) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
284adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝐷 ∈ Cat)
29 simpr1 1192 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑥 ∈ (Base‘𝐶))
3029, 20syldan 590 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
31 eqid 2738 . . . . . 6 (comp‘𝐷) = (comp‘𝐷)
3215adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
33 simpr2 1193 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑦 ∈ (Base‘𝐶))
3432, 33ffvelrnd 6944 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
35 eqid 2738 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
3614adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3711, 35, 18, 36, 29, 33funcf2 17499 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
38 simpr3 1194 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
3937, 38ffvelrnd 6944 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
405, 18, 6, 28, 30, 31, 34, 39catlid 17309 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ‘((1st𝐹)‘𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = ((𝑥(2nd𝐹)𝑦)‘𝑓))
415, 18, 6, 28, 30, 31, 34, 39catrid 17310 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))( 1 ‘((1st𝐹)‘𝑥))) = ((𝑥(2nd𝐹)𝑦)‘𝑓))
4240, 41eqtr4d 2781 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ‘((1st𝐹)‘𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))( 1 ‘((1st𝐹)‘𝑥))))
43 fvco3 6849 . . . . . 6 (((1st𝐹):(Base‘𝐶)⟶(Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐶)) → (( 1 ∘ (1st𝐹))‘𝑦) = ( 1 ‘((1st𝐹)‘𝑦)))
4432, 33, 43syl2anc 583 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ∘ (1st𝐹))‘𝑦) = ( 1 ‘((1st𝐹)‘𝑦)))
4544oveq1d 7270 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((( 1 ∘ (1st𝐹))‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (( 1 ‘((1st𝐹)‘𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)))
46 fvco3 6849 . . . . . 6 (((1st𝐹):(Base‘𝐶)⟶(Base‘𝐷) ∧ 𝑥 ∈ (Base‘𝐶)) → (( 1 ∘ (1st𝐹))‘𝑥) = ( 1 ‘((1st𝐹)‘𝑥)))
4732, 29, 46syl2anc 583 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ∘ (1st𝐹))‘𝑥) = ( 1 ‘((1st𝐹)‘𝑥)))
4847oveq2d 7271 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))(( 1 ∘ (1st𝐹))‘𝑥)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))( 1 ‘((1st𝐹)‘𝑥))))
4942, 45, 483eqtr4d 2788 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((( 1 ∘ (1st𝐹))‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))(( 1 ∘ (1st𝐹))‘𝑥)))
5049ralrimivvva 3115 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)((( 1 ∘ (1st𝐹))‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))(( 1 ∘ (1st𝐹))‘𝑥)))
51 fucidcl.n . . 3 𝑁 = (𝐶 Nat 𝐷)
5251, 11, 35, 18, 31, 1, 1isnat2 17580 . 2 (𝜑 → (( 1 ∘ (1st𝐹)) ∈ (𝐹𝑁𝐹) ↔ (( 1 ∘ (1st𝐹)) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)((( 1 ∘ (1st𝐹))‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))(( 1 ∘ (1st𝐹))‘𝑥)))))
5327, 50, 52mpbir2and 709 1 (𝜑 → ( 1 ∘ (1st𝐹)) ∈ (𝐹𝑁𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cop 4564   class class class wbr 5070  cmpt 5153  ccom 5584  Rel wrel 5585   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  Xcixp 8643  Basecbs 16840  Hom chom 16899  compcco 16900  Catccat 17290  Idccid 17291   Func cfunc 17485   Nat cnat 17573   FuncCat cfuc 17574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-ixp 8644  df-cat 17294  df-cid 17295  df-func 17489  df-nat 17575
This theorem is referenced by:  fuclid  17600  fucrid  17601  fuccatid  17603
  Copyright terms: Public domain W3C validator