MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucidcl Structured version   Visualization version   GIF version

Theorem fucidcl 18022
Description: The identity natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fucidcl.q 𝑄 = (𝐶 FuncCat 𝐷)
fucidcl.n 𝑁 = (𝐶 Nat 𝐷)
fucidcl.x 1 = (Id‘𝐷)
fucidcl.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
Assertion
Ref Expression
fucidcl (𝜑 → ( 1 ∘ (1st𝐹)) ∈ (𝐹𝑁𝐹))

Proof of Theorem fucidcl
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucidcl.f . . . . . . . 8 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
2 funcrcl 17914 . . . . . . . 8 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
31, 2syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
43simprd 495 . . . . . 6 (𝜑𝐷 ∈ Cat)
5 eqid 2735 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
6 fucidcl.x . . . . . . 7 1 = (Id‘𝐷)
75, 6cidfn 17724 . . . . . 6 (𝐷 ∈ Cat → 1 Fn (Base‘𝐷))
84, 7syl 17 . . . . 5 (𝜑1 Fn (Base‘𝐷))
9 dffn2 6739 . . . . 5 ( 1 Fn (Base‘𝐷) ↔ 1 :(Base‘𝐷)⟶V)
108, 9sylib 218 . . . 4 (𝜑1 :(Base‘𝐷)⟶V)
11 eqid 2735 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
12 relfunc 17913 . . . . . 6 Rel (𝐶 Func 𝐷)
13 1st2ndbr 8066 . . . . . 6 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1412, 1, 13sylancr 587 . . . . 5 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1511, 5, 14funcf1 17917 . . . 4 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
16 fcompt 7153 . . . 4 (( 1 :(Base‘𝐷)⟶V ∧ (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷)) → ( 1 ∘ (1st𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))))
1710, 15, 16syl2anc 584 . . 3 (𝜑 → ( 1 ∘ (1st𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))))
18 eqid 2735 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
194adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
2015ffvelcdmda 7104 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
215, 18, 6, 19, 20catidcl 17727 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ( 1 ‘((1st𝐹)‘𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2221ralrimiva 3144 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)( 1 ‘((1st𝐹)‘𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
23 fvex 6920 . . . . 5 (Base‘𝐶) ∈ V
24 mptelixpg 8974 . . . . 5 ((Base‘𝐶) ∈ V → ((𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐶)( 1 ‘((1st𝐹)‘𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥))))
2523, 24ax-mp 5 . . . 4 ((𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐶)( 1 ‘((1st𝐹)‘𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2622, 25sylibr 234 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2717, 26eqeltrd 2839 . 2 (𝜑 → ( 1 ∘ (1st𝐹)) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
284adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝐷 ∈ Cat)
29 simpr1 1193 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑥 ∈ (Base‘𝐶))
3029, 20syldan 591 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
31 eqid 2735 . . . . . 6 (comp‘𝐷) = (comp‘𝐷)
3215adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
33 simpr2 1194 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑦 ∈ (Base‘𝐶))
3432, 33ffvelcdmd 7105 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
35 eqid 2735 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
3614adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3711, 35, 18, 36, 29, 33funcf2 17919 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
38 simpr3 1195 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
3937, 38ffvelcdmd 7105 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
405, 18, 6, 28, 30, 31, 34, 39catlid 17728 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ‘((1st𝐹)‘𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = ((𝑥(2nd𝐹)𝑦)‘𝑓))
415, 18, 6, 28, 30, 31, 34, 39catrid 17729 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))( 1 ‘((1st𝐹)‘𝑥))) = ((𝑥(2nd𝐹)𝑦)‘𝑓))
4240, 41eqtr4d 2778 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ‘((1st𝐹)‘𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))( 1 ‘((1st𝐹)‘𝑥))))
43 fvco3 7008 . . . . . 6 (((1st𝐹):(Base‘𝐶)⟶(Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐶)) → (( 1 ∘ (1st𝐹))‘𝑦) = ( 1 ‘((1st𝐹)‘𝑦)))
4432, 33, 43syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ∘ (1st𝐹))‘𝑦) = ( 1 ‘((1st𝐹)‘𝑦)))
4544oveq1d 7446 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((( 1 ∘ (1st𝐹))‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (( 1 ‘((1st𝐹)‘𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)))
46 fvco3 7008 . . . . . 6 (((1st𝐹):(Base‘𝐶)⟶(Base‘𝐷) ∧ 𝑥 ∈ (Base‘𝐶)) → (( 1 ∘ (1st𝐹))‘𝑥) = ( 1 ‘((1st𝐹)‘𝑥)))
4732, 29, 46syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ∘ (1st𝐹))‘𝑥) = ( 1 ‘((1st𝐹)‘𝑥)))
4847oveq2d 7447 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))(( 1 ∘ (1st𝐹))‘𝑥)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))( 1 ‘((1st𝐹)‘𝑥))))
4942, 45, 483eqtr4d 2785 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((( 1 ∘ (1st𝐹))‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))(( 1 ∘ (1st𝐹))‘𝑥)))
5049ralrimivvva 3203 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)((( 1 ∘ (1st𝐹))‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))(( 1 ∘ (1st𝐹))‘𝑥)))
51 fucidcl.n . . 3 𝑁 = (𝐶 Nat 𝐷)
5251, 11, 35, 18, 31, 1, 1isnat2 18003 . 2 (𝜑 → (( 1 ∘ (1st𝐹)) ∈ (𝐹𝑁𝐹) ↔ (( 1 ∘ (1st𝐹)) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)((( 1 ∘ (1st𝐹))‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))(( 1 ∘ (1st𝐹))‘𝑥)))))
5327, 50, 52mpbir2and 713 1 (𝜑 → ( 1 ∘ (1st𝐹)) ∈ (𝐹𝑁𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  cop 4637   class class class wbr 5148  cmpt 5231  ccom 5693  Rel wrel 5694   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  1st c1st 8011  2nd c2nd 8012  Xcixp 8936  Basecbs 17245  Hom chom 17309  compcco 17310  Catccat 17709  Idccid 17710   Func cfunc 17905   Nat cnat 17996   FuncCat cfuc 17997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-map 8867  df-ixp 8937  df-cat 17713  df-cid 17714  df-func 17909  df-nat 17998
This theorem is referenced by:  fuclid  18023  fucrid  18024  fuccatid  18026
  Copyright terms: Public domain W3C validator