MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucidcl Structured version   Visualization version   GIF version

Theorem fucidcl 17877
Description: The identity natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fucidcl.q 𝑄 = (𝐶 FuncCat 𝐷)
fucidcl.n 𝑁 = (𝐶 Nat 𝐷)
fucidcl.x 1 = (Id‘𝐷)
fucidcl.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
Assertion
Ref Expression
fucidcl (𝜑 → ( 1 ∘ (1st𝐹)) ∈ (𝐹𝑁𝐹))

Proof of Theorem fucidcl
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucidcl.f . . . . . . . 8 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
2 funcrcl 17772 . . . . . . . 8 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
31, 2syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
43simprd 495 . . . . . 6 (𝜑𝐷 ∈ Cat)
5 eqid 2733 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
6 fucidcl.x . . . . . . 7 1 = (Id‘𝐷)
75, 6cidfn 17587 . . . . . 6 (𝐷 ∈ Cat → 1 Fn (Base‘𝐷))
84, 7syl 17 . . . . 5 (𝜑1 Fn (Base‘𝐷))
9 dffn2 6658 . . . . 5 ( 1 Fn (Base‘𝐷) ↔ 1 :(Base‘𝐷)⟶V)
108, 9sylib 218 . . . 4 (𝜑1 :(Base‘𝐷)⟶V)
11 eqid 2733 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
12 relfunc 17771 . . . . . 6 Rel (𝐶 Func 𝐷)
13 1st2ndbr 7980 . . . . . 6 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1412, 1, 13sylancr 587 . . . . 5 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1511, 5, 14funcf1 17775 . . . 4 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
16 fcompt 7072 . . . 4 (( 1 :(Base‘𝐷)⟶V ∧ (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷)) → ( 1 ∘ (1st𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))))
1710, 15, 16syl2anc 584 . . 3 (𝜑 → ( 1 ∘ (1st𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))))
18 eqid 2733 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
194adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
2015ffvelcdmda 7023 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
215, 18, 6, 19, 20catidcl 17590 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ( 1 ‘((1st𝐹)‘𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2221ralrimiva 3125 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)( 1 ‘((1st𝐹)‘𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
23 fvex 6841 . . . . 5 (Base‘𝐶) ∈ V
24 mptelixpg 8865 . . . . 5 ((Base‘𝐶) ∈ V → ((𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐶)( 1 ‘((1st𝐹)‘𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥))))
2523, 24ax-mp 5 . . . 4 ((𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐶)( 1 ‘((1st𝐹)‘𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2622, 25sylibr 234 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2717, 26eqeltrd 2833 . 2 (𝜑 → ( 1 ∘ (1st𝐹)) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
284adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝐷 ∈ Cat)
29 simpr1 1195 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑥 ∈ (Base‘𝐶))
3029, 20syldan 591 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
31 eqid 2733 . . . . . 6 (comp‘𝐷) = (comp‘𝐷)
3215adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
33 simpr2 1196 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑦 ∈ (Base‘𝐶))
3432, 33ffvelcdmd 7024 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
35 eqid 2733 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
3614adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3711, 35, 18, 36, 29, 33funcf2 17777 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
38 simpr3 1197 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
3937, 38ffvelcdmd 7024 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
405, 18, 6, 28, 30, 31, 34, 39catlid 17591 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ‘((1st𝐹)‘𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = ((𝑥(2nd𝐹)𝑦)‘𝑓))
415, 18, 6, 28, 30, 31, 34, 39catrid 17592 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))( 1 ‘((1st𝐹)‘𝑥))) = ((𝑥(2nd𝐹)𝑦)‘𝑓))
4240, 41eqtr4d 2771 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ‘((1st𝐹)‘𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))( 1 ‘((1st𝐹)‘𝑥))))
43 fvco3 6927 . . . . . 6 (((1st𝐹):(Base‘𝐶)⟶(Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐶)) → (( 1 ∘ (1st𝐹))‘𝑦) = ( 1 ‘((1st𝐹)‘𝑦)))
4432, 33, 43syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ∘ (1st𝐹))‘𝑦) = ( 1 ‘((1st𝐹)‘𝑦)))
4544oveq1d 7367 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((( 1 ∘ (1st𝐹))‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (( 1 ‘((1st𝐹)‘𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)))
46 fvco3 6927 . . . . . 6 (((1st𝐹):(Base‘𝐶)⟶(Base‘𝐷) ∧ 𝑥 ∈ (Base‘𝐶)) → (( 1 ∘ (1st𝐹))‘𝑥) = ( 1 ‘((1st𝐹)‘𝑥)))
4732, 29, 46syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ∘ (1st𝐹))‘𝑥) = ( 1 ‘((1st𝐹)‘𝑥)))
4847oveq2d 7368 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))(( 1 ∘ (1st𝐹))‘𝑥)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))( 1 ‘((1st𝐹)‘𝑥))))
4942, 45, 483eqtr4d 2778 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((( 1 ∘ (1st𝐹))‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))(( 1 ∘ (1st𝐹))‘𝑥)))
5049ralrimivvva 3179 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)((( 1 ∘ (1st𝐹))‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))(( 1 ∘ (1st𝐹))‘𝑥)))
51 fucidcl.n . . 3 𝑁 = (𝐶 Nat 𝐷)
5251, 11, 35, 18, 31, 1, 1isnat2 17860 . 2 (𝜑 → (( 1 ∘ (1st𝐹)) ∈ (𝐹𝑁𝐹) ↔ (( 1 ∘ (1st𝐹)) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)((( 1 ∘ (1st𝐹))‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))(( 1 ∘ (1st𝐹))‘𝑥)))))
5327, 50, 52mpbir2and 713 1 (𝜑 → ( 1 ∘ (1st𝐹)) ∈ (𝐹𝑁𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  cop 4581   class class class wbr 5093  cmpt 5174  ccom 5623  Rel wrel 5624   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  1st c1st 7925  2nd c2nd 7926  Xcixp 8827  Basecbs 17122  Hom chom 17174  compcco 17175  Catccat 17572  Idccid 17573   Func cfunc 17763   Nat cnat 17853   FuncCat cfuc 17854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758  df-ixp 8828  df-cat 17576  df-cid 17577  df-func 17767  df-nat 17855
This theorem is referenced by:  fuclid  17878  fucrid  17879  fuccatid  17881  fucolid  49486  fucorid  49487  precofvalALT  49493  fucoppcid  49533
  Copyright terms: Public domain W3C validator