Step | Hyp | Ref
| Expression |
1 | | fucidcl.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
2 | | funcrcl 17494 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
3 | 1, 2 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
4 | 3 | simprd 495 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ Cat) |
5 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐷) =
(Base‘𝐷) |
6 | | fucidcl.x |
. . . . . . 7
⊢ 1 =
(Id‘𝐷) |
7 | 5, 6 | cidfn 17305 |
. . . . . 6
⊢ (𝐷 ∈ Cat → 1 Fn
(Base‘𝐷)) |
8 | 4, 7 | syl 17 |
. . . . 5
⊢ (𝜑 → 1 Fn (Base‘𝐷)) |
9 | | dffn2 6586 |
. . . . 5
⊢ ( 1 Fn
(Base‘𝐷) ↔ 1
:(Base‘𝐷)⟶V) |
10 | 8, 9 | sylib 217 |
. . . 4
⊢ (𝜑 → 1 :(Base‘𝐷)⟶V) |
11 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐶) =
(Base‘𝐶) |
12 | | relfunc 17493 |
. . . . . 6
⊢ Rel
(𝐶 Func 𝐷) |
13 | | 1st2ndbr 7856 |
. . . . . 6
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
14 | 12, 1, 13 | sylancr 586 |
. . . . 5
⊢ (𝜑 → (1st
‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
15 | 11, 5, 14 | funcf1 17497 |
. . . 4
⊢ (𝜑 → (1st
‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) |
16 | | fcompt 6987 |
. . . 4
⊢ (( 1
:(Base‘𝐷)⟶V
∧ (1st ‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) → ( 1 ∘ (1st
‘𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st
‘𝐹)‘𝑥)))) |
17 | 10, 15, 16 | syl2anc 583 |
. . 3
⊢ (𝜑 → ( 1 ∘ (1st
‘𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st
‘𝐹)‘𝑥)))) |
18 | | eqid 2738 |
. . . . . 6
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
19 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat) |
20 | 15 | ffvelrnda 6943 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐹)‘𝑥) ∈ (Base‘𝐷)) |
21 | 5, 18, 6, 19, 20 | catidcl 17308 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ( 1 ‘((1st
‘𝐹)‘𝑥)) ∈ (((1st
‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥))) |
22 | 21 | ralrimiva 3107 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)( 1 ‘((1st
‘𝐹)‘𝑥)) ∈ (((1st
‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥))) |
23 | | fvex 6769 |
. . . . 5
⊢
(Base‘𝐶)
∈ V |
24 | | mptelixpg 8681 |
. . . . 5
⊢
((Base‘𝐶)
∈ V → ((𝑥 ∈
(Base‘𝐶) ↦ (
1
‘((1st ‘𝐹)‘𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐶)( 1 ‘((1st
‘𝐹)‘𝑥)) ∈ (((1st
‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥)))) |
25 | 23, 24 | ax-mp 5 |
. . . 4
⊢ ((𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st
‘𝐹)‘𝑥))) ∈ X𝑥 ∈
(Base‘𝐶)(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐶)( 1 ‘((1st
‘𝐹)‘𝑥)) ∈ (((1st
‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥))) |
26 | 22, 25 | sylibr 233 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st
‘𝐹)‘𝑥))) ∈ X𝑥 ∈
(Base‘𝐶)(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥))) |
27 | 17, 26 | eqeltrd 2839 |
. 2
⊢ (𝜑 → ( 1 ∘ (1st
‘𝐹)) ∈ X𝑥 ∈
(Base‘𝐶)(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥))) |
28 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝐷 ∈ Cat) |
29 | | simpr1 1192 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑥 ∈ (Base‘𝐶)) |
30 | 29, 20 | syldan 590 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st ‘𝐹)‘𝑥) ∈ (Base‘𝐷)) |
31 | | eqid 2738 |
. . . . . 6
⊢
(comp‘𝐷) =
(comp‘𝐷) |
32 | 15 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st ‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) |
33 | | simpr2 1193 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑦 ∈ (Base‘𝐶)) |
34 | 32, 33 | ffvelrnd 6944 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st ‘𝐹)‘𝑦) ∈ (Base‘𝐷)) |
35 | | eqid 2738 |
. . . . . . . 8
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
36 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
37 | 11, 35, 18, 36, 29, 33 | funcf2 17499 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑥(2nd ‘𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
38 | | simpr3 1194 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
39 | 37, 38 | ffvelrnd 6944 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑥(2nd ‘𝐹)𝑦)‘𝑓) ∈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
40 | 5, 18, 6, 28, 30, 31, 34, 39 | catlid 17309 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ‘((1st
‘𝐹)‘𝑦))(〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) = ((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) |
41 | 5, 18, 6, 28, 30, 31, 34, 39 | catrid 17310 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑥(2nd ‘𝐹)𝑦)‘𝑓)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑥)〉(comp‘𝐷)((1st ‘𝐹)‘𝑦))( 1 ‘((1st
‘𝐹)‘𝑥))) = ((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) |
42 | 40, 41 | eqtr4d 2781 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ‘((1st
‘𝐹)‘𝑦))(〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) = (((𝑥(2nd ‘𝐹)𝑦)‘𝑓)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑥)〉(comp‘𝐷)((1st ‘𝐹)‘𝑦))( 1 ‘((1st
‘𝐹)‘𝑥)))) |
43 | | fvco3 6849 |
. . . . . 6
⊢
(((1st ‘𝐹):(Base‘𝐶)⟶(Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐶)) → (( 1 ∘ (1st
‘𝐹))‘𝑦) = ( 1 ‘((1st
‘𝐹)‘𝑦))) |
44 | 32, 33, 43 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ∘ (1st
‘𝐹))‘𝑦) = ( 1 ‘((1st
‘𝐹)‘𝑦))) |
45 | 44 | oveq1d 7270 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((( 1 ∘ (1st
‘𝐹))‘𝑦)(〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) = (( 1 ‘((1st
‘𝐹)‘𝑦))(〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘𝑓))) |
46 | | fvco3 6849 |
. . . . . 6
⊢
(((1st ‘𝐹):(Base‘𝐶)⟶(Base‘𝐷) ∧ 𝑥 ∈ (Base‘𝐶)) → (( 1 ∘ (1st
‘𝐹))‘𝑥) = ( 1 ‘((1st
‘𝐹)‘𝑥))) |
47 | 32, 29, 46 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ∘ (1st
‘𝐹))‘𝑥) = ( 1 ‘((1st
‘𝐹)‘𝑥))) |
48 | 47 | oveq2d 7271 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑥(2nd ‘𝐹)𝑦)‘𝑓)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑥)〉(comp‘𝐷)((1st ‘𝐹)‘𝑦))(( 1 ∘ (1st
‘𝐹))‘𝑥)) = (((𝑥(2nd ‘𝐹)𝑦)‘𝑓)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑥)〉(comp‘𝐷)((1st ‘𝐹)‘𝑦))( 1 ‘((1st
‘𝐹)‘𝑥)))) |
49 | 42, 45, 48 | 3eqtr4d 2788 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((( 1 ∘ (1st
‘𝐹))‘𝑦)(〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) = (((𝑥(2nd ‘𝐹)𝑦)‘𝑓)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑥)〉(comp‘𝐷)((1st ‘𝐹)‘𝑦))(( 1 ∘ (1st
‘𝐹))‘𝑥))) |
50 | 49 | ralrimivvva 3115 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)((( 1 ∘ (1st
‘𝐹))‘𝑦)(〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) = (((𝑥(2nd ‘𝐹)𝑦)‘𝑓)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑥)〉(comp‘𝐷)((1st ‘𝐹)‘𝑦))(( 1 ∘ (1st
‘𝐹))‘𝑥))) |
51 | | fucidcl.n |
. . 3
⊢ 𝑁 = (𝐶 Nat 𝐷) |
52 | 51, 11, 35, 18, 31, 1, 1 | isnat2 17580 |
. 2
⊢ (𝜑 → (( 1 ∘ (1st
‘𝐹)) ∈ (𝐹𝑁𝐹) ↔ (( 1 ∘ (1st
‘𝐹)) ∈ X𝑥 ∈
(Base‘𝐶)(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥)) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)((( 1 ∘ (1st
‘𝐹))‘𝑦)(〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) = (((𝑥(2nd ‘𝐹)𝑦)‘𝑓)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑥)〉(comp‘𝐷)((1st ‘𝐹)‘𝑦))(( 1 ∘ (1st
‘𝐹))‘𝑥))))) |
53 | 27, 50, 52 | mpbir2and 709 |
1
⊢ (𝜑 → ( 1 ∘ (1st
‘𝐹)) ∈ (𝐹𝑁𝐹)) |