MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r111 Structured version   Visualization version   GIF version

Theorem r111 9789
Description: The cumulative hierarchy is a one-to-one function. (Contributed by Mario Carneiro, 19-Apr-2013.)
Assertion
Ref Expression
r111 𝑅1:On–1-1→V

Proof of Theorem r111
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1fnon 9781 . . 3 𝑅1 Fn On
2 dffn2 6708 . . 3 (𝑅1 Fn On ↔ 𝑅1:On⟶V)
31, 2mpbi 230 . 2 𝑅1:On⟶V
4 eloni 6362 . . . . 5 (𝑥 ∈ On → Ord 𝑥)
5 eloni 6362 . . . . 5 (𝑦 ∈ On → Ord 𝑦)
6 ordtri3or 6384 . . . . 5 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
74, 5, 6syl2an 596 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
8 sdomirr 9128 . . . . . . . . 9 ¬ (𝑅1𝑦) ≺ (𝑅1𝑦)
9 r1sdom 9788 . . . . . . . . . 10 ((𝑦 ∈ On ∧ 𝑥𝑦) → (𝑅1𝑥) ≺ (𝑅1𝑦))
10 breq1 5122 . . . . . . . . . 10 ((𝑅1𝑥) = (𝑅1𝑦) → ((𝑅1𝑥) ≺ (𝑅1𝑦) ↔ (𝑅1𝑦) ≺ (𝑅1𝑦)))
119, 10syl5ibcom 245 . . . . . . . . 9 ((𝑦 ∈ On ∧ 𝑥𝑦) → ((𝑅1𝑥) = (𝑅1𝑦) → (𝑅1𝑦) ≺ (𝑅1𝑦)))
128, 11mtoi 199 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑥𝑦) → ¬ (𝑅1𝑥) = (𝑅1𝑦))
13123adant1 1130 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → ¬ (𝑅1𝑥) = (𝑅1𝑦))
1413pm2.21d 121 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦))
15143expia 1121 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦 → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)))
16 ax-1 6 . . . . . 6 (𝑥 = 𝑦 → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦))
1716a1i 11 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 = 𝑦 → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)))
18 r1sdom 9788 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑅1𝑦) ≺ (𝑅1𝑥))
19 breq2 5123 . . . . . . . . . 10 ((𝑅1𝑥) = (𝑅1𝑦) → ((𝑅1𝑦) ≺ (𝑅1𝑥) ↔ (𝑅1𝑦) ≺ (𝑅1𝑦)))
2018, 19syl5ibcom 245 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑦𝑥) → ((𝑅1𝑥) = (𝑅1𝑦) → (𝑅1𝑦) ≺ (𝑅1𝑦)))
218, 20mtoi 199 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝑅1𝑥) = (𝑅1𝑦))
22213adant2 1131 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑦𝑥) → ¬ (𝑅1𝑥) = (𝑅1𝑦))
2322pm2.21d 121 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑦𝑥) → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦))
24233expia 1121 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦𝑥 → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)))
2515, 17, 243jaod 1431 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)))
267, 25mpd 15 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦))
2726rgen2 3184 . 2 𝑥 ∈ On ∀𝑦 ∈ On ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)
28 dff13 7247 . 2 (𝑅1:On–1-1→V ↔ (𝑅1:On⟶V ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)))
293, 27, 28mpbir2an 711 1 𝑅1:On–1-1→V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459   class class class wbr 5119  Ord word 6351  Oncon0 6352   Fn wfn 6526  wf 6527  1-1wf1 6528  cfv 6531  csdm 8958  𝑅1cr1 9776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-r1 9778
This theorem is referenced by:  tskinf  10783  grothomex  10843  rankeq1o  36189  elhf  36192  hfninf  36204
  Copyright terms: Public domain W3C validator