MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r111 Structured version   Visualization version   GIF version

Theorem r111 9844
Description: The cumulative hierarchy is a one-to-one function. (Contributed by Mario Carneiro, 19-Apr-2013.)
Assertion
Ref Expression
r111 𝑅1:On–1-1→V

Proof of Theorem r111
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1fnon 9836 . . 3 𝑅1 Fn On
2 dffn2 6749 . . 3 (𝑅1 Fn On ↔ 𝑅1:On⟶V)
31, 2mpbi 230 . 2 𝑅1:On⟶V
4 eloni 6405 . . . . 5 (𝑥 ∈ On → Ord 𝑥)
5 eloni 6405 . . . . 5 (𝑦 ∈ On → Ord 𝑦)
6 ordtri3or 6427 . . . . 5 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
74, 5, 6syl2an 595 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
8 sdomirr 9180 . . . . . . . . 9 ¬ (𝑅1𝑦) ≺ (𝑅1𝑦)
9 r1sdom 9843 . . . . . . . . . 10 ((𝑦 ∈ On ∧ 𝑥𝑦) → (𝑅1𝑥) ≺ (𝑅1𝑦))
10 breq1 5169 . . . . . . . . . 10 ((𝑅1𝑥) = (𝑅1𝑦) → ((𝑅1𝑥) ≺ (𝑅1𝑦) ↔ (𝑅1𝑦) ≺ (𝑅1𝑦)))
119, 10syl5ibcom 245 . . . . . . . . 9 ((𝑦 ∈ On ∧ 𝑥𝑦) → ((𝑅1𝑥) = (𝑅1𝑦) → (𝑅1𝑦) ≺ (𝑅1𝑦)))
128, 11mtoi 199 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑥𝑦) → ¬ (𝑅1𝑥) = (𝑅1𝑦))
13123adant1 1130 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → ¬ (𝑅1𝑥) = (𝑅1𝑦))
1413pm2.21d 121 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦))
15143expia 1121 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦 → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)))
16 ax-1 6 . . . . . 6 (𝑥 = 𝑦 → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦))
1716a1i 11 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 = 𝑦 → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)))
18 r1sdom 9843 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑅1𝑦) ≺ (𝑅1𝑥))
19 breq2 5170 . . . . . . . . . 10 ((𝑅1𝑥) = (𝑅1𝑦) → ((𝑅1𝑦) ≺ (𝑅1𝑥) ↔ (𝑅1𝑦) ≺ (𝑅1𝑦)))
2018, 19syl5ibcom 245 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑦𝑥) → ((𝑅1𝑥) = (𝑅1𝑦) → (𝑅1𝑦) ≺ (𝑅1𝑦)))
218, 20mtoi 199 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝑅1𝑥) = (𝑅1𝑦))
22213adant2 1131 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑦𝑥) → ¬ (𝑅1𝑥) = (𝑅1𝑦))
2322pm2.21d 121 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑦𝑥) → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦))
24233expia 1121 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦𝑥 → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)))
2515, 17, 243jaod 1429 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)))
267, 25mpd 15 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦))
2726rgen2 3205 . 2 𝑥 ∈ On ∀𝑦 ∈ On ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)
28 dff13 7292 . 2 (𝑅1:On–1-1→V ↔ (𝑅1:On⟶V ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)))
293, 27, 28mpbir2an 710 1 𝑅1:On–1-1→V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3o 1086  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488   class class class wbr 5166  Ord word 6394  Oncon0 6395   Fn wfn 6568  wf 6569  1-1wf1 6570  cfv 6573  csdm 9002  𝑅1cr1 9831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-r1 9833
This theorem is referenced by:  tskinf  10838  grothomex  10898  rankeq1o  36135  elhf  36138  hfninf  36150
  Copyright terms: Public domain W3C validator