MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r111 Structured version   Visualization version   GIF version

Theorem r111 9000
Description: The cumulative hierarchy is a one-to-one function. (Contributed by Mario Carneiro, 19-Apr-2013.)
Assertion
Ref Expression
r111 𝑅1:On–1-1→V

Proof of Theorem r111
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1fnon 8992 . . 3 𝑅1 Fn On
2 dffn2 6348 . . 3 (𝑅1 Fn On ↔ 𝑅1:On⟶V)
31, 2mpbi 222 . 2 𝑅1:On⟶V
4 eloni 6041 . . . . 5 (𝑥 ∈ On → Ord 𝑥)
5 eloni 6041 . . . . 5 (𝑦 ∈ On → Ord 𝑦)
6 ordtri3or 6063 . . . . 5 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
74, 5, 6syl2an 586 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
8 sdomirr 8452 . . . . . . . . 9 ¬ (𝑅1𝑦) ≺ (𝑅1𝑦)
9 r1sdom 8999 . . . . . . . . . 10 ((𝑦 ∈ On ∧ 𝑥𝑦) → (𝑅1𝑥) ≺ (𝑅1𝑦))
10 breq1 4933 . . . . . . . . . 10 ((𝑅1𝑥) = (𝑅1𝑦) → ((𝑅1𝑥) ≺ (𝑅1𝑦) ↔ (𝑅1𝑦) ≺ (𝑅1𝑦)))
119, 10syl5ibcom 237 . . . . . . . . 9 ((𝑦 ∈ On ∧ 𝑥𝑦) → ((𝑅1𝑥) = (𝑅1𝑦) → (𝑅1𝑦) ≺ (𝑅1𝑦)))
128, 11mtoi 191 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑥𝑦) → ¬ (𝑅1𝑥) = (𝑅1𝑦))
13123adant1 1110 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → ¬ (𝑅1𝑥) = (𝑅1𝑦))
1413pm2.21d 119 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦))
15143expia 1101 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦 → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)))
16 ax-1 6 . . . . . 6 (𝑥 = 𝑦 → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦))
1716a1i 11 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 = 𝑦 → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)))
18 r1sdom 8999 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑅1𝑦) ≺ (𝑅1𝑥))
19 breq2 4934 . . . . . . . . . 10 ((𝑅1𝑥) = (𝑅1𝑦) → ((𝑅1𝑦) ≺ (𝑅1𝑥) ↔ (𝑅1𝑦) ≺ (𝑅1𝑦)))
2018, 19syl5ibcom 237 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑦𝑥) → ((𝑅1𝑥) = (𝑅1𝑦) → (𝑅1𝑦) ≺ (𝑅1𝑦)))
218, 20mtoi 191 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝑅1𝑥) = (𝑅1𝑦))
22213adant2 1111 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑦𝑥) → ¬ (𝑅1𝑥) = (𝑅1𝑦))
2322pm2.21d 119 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑦𝑥) → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦))
24233expia 1101 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦𝑥 → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)))
2515, 17, 243jaod 1408 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)))
267, 25mpd 15 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦))
2726rgen2a 3176 . 2 𝑥 ∈ On ∀𝑦 ∈ On ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)
28 dff13 6840 . 2 (𝑅1:On–1-1→V ↔ (𝑅1:On⟶V ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)))
293, 27, 28mpbir2an 698 1 𝑅1:On–1-1→V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  w3o 1067  w3a 1068   = wceq 1507  wcel 2050  wral 3088  Vcvv 3415   class class class wbr 4930  Ord word 6030  Oncon0 6031   Fn wfn 6185  wf 6186  1-1wf1 6187  cfv 6190  csdm 8307  𝑅1cr1 8987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-r1 8989
This theorem is referenced by:  tskinf  9991  grothomex  10051  rankeq1o  33153  elhf  33156  hfninf  33168
  Copyright terms: Public domain W3C validator