Step | Hyp | Ref
| Expression |
1 | | r1fnon 9573 |
. . 3
⊢
𝑅1 Fn On |
2 | | dffn2 6632 |
. . 3
⊢
(𝑅1 Fn On ↔
𝑅1:On⟶V) |
3 | 1, 2 | mpbi 229 |
. 2
⊢
𝑅1:On⟶V |
4 | | eloni 6291 |
. . . . 5
⊢ (𝑥 ∈ On → Ord 𝑥) |
5 | | eloni 6291 |
. . . . 5
⊢ (𝑦 ∈ On → Ord 𝑦) |
6 | | ordtri3or 6313 |
. . . . 5
⊢ ((Ord
𝑥 ∧ Ord 𝑦) → (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
7 | 4, 5, 6 | syl2an 597 |
. . . 4
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
8 | | sdomirr 8939 |
. . . . . . . . 9
⊢ ¬
(𝑅1‘𝑦) ≺ (𝑅1‘𝑦) |
9 | | r1sdom 9580 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ 𝑦) → (𝑅1‘𝑥) ≺
(𝑅1‘𝑦)) |
10 | | breq1 5084 |
. . . . . . . . . 10
⊢
((𝑅1‘𝑥) = (𝑅1‘𝑦) →
((𝑅1‘𝑥) ≺ (𝑅1‘𝑦) ↔
(𝑅1‘𝑦) ≺ (𝑅1‘𝑦))) |
11 | 9, 10 | syl5ibcom 245 |
. . . . . . . . 9
⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ 𝑦) → ((𝑅1‘𝑥) =
(𝑅1‘𝑦) → (𝑅1‘𝑦) ≺
(𝑅1‘𝑦))) |
12 | 8, 11 | mtoi 198 |
. . . . . . . 8
⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ 𝑦) → ¬
(𝑅1‘𝑥) = (𝑅1‘𝑦)) |
13 | 12 | 3adant1 1130 |
. . . . . . 7
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ∈ 𝑦) → ¬
(𝑅1‘𝑥) = (𝑅1‘𝑦)) |
14 | 13 | pm2.21d 121 |
. . . . . 6
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ∈ 𝑦) → ((𝑅1‘𝑥) =
(𝑅1‘𝑦) → 𝑥 = 𝑦)) |
15 | 14 | 3expia 1121 |
. . . . 5
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ∈ 𝑦 → ((𝑅1‘𝑥) =
(𝑅1‘𝑦) → 𝑥 = 𝑦))) |
16 | | ax-1 6 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑅1‘𝑥) =
(𝑅1‘𝑦) → 𝑥 = 𝑦)) |
17 | 16 | a1i 11 |
. . . . 5
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 = 𝑦 → ((𝑅1‘𝑥) =
(𝑅1‘𝑦) → 𝑥 = 𝑦))) |
18 | | r1sdom 9580 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → (𝑅1‘𝑦) ≺
(𝑅1‘𝑥)) |
19 | | breq2 5085 |
. . . . . . . . . 10
⊢
((𝑅1‘𝑥) = (𝑅1‘𝑦) →
((𝑅1‘𝑦) ≺ (𝑅1‘𝑥) ↔
(𝑅1‘𝑦) ≺ (𝑅1‘𝑦))) |
20 | 18, 19 | syl5ibcom 245 |
. . . . . . . . 9
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → ((𝑅1‘𝑥) =
(𝑅1‘𝑦) → (𝑅1‘𝑦) ≺
(𝑅1‘𝑦))) |
21 | 8, 20 | mtoi 198 |
. . . . . . . 8
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → ¬
(𝑅1‘𝑥) = (𝑅1‘𝑦)) |
22 | 21 | 3adant2 1131 |
. . . . . . 7
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑦 ∈ 𝑥) → ¬
(𝑅1‘𝑥) = (𝑅1‘𝑦)) |
23 | 22 | pm2.21d 121 |
. . . . . 6
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑦 ∈ 𝑥) → ((𝑅1‘𝑥) =
(𝑅1‘𝑦) → 𝑥 = 𝑦)) |
24 | 23 | 3expia 1121 |
. . . . 5
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦 ∈ 𝑥 → ((𝑅1‘𝑥) =
(𝑅1‘𝑦) → 𝑥 = 𝑦))) |
25 | 15, 17, 24 | 3jaod 1428 |
. . . 4
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ((𝑅1‘𝑥) =
(𝑅1‘𝑦) → 𝑥 = 𝑦))) |
26 | 7, 25 | mpd 15 |
. . 3
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) →
((𝑅1‘𝑥) = (𝑅1‘𝑦) → 𝑥 = 𝑦)) |
27 | 26 | rgen2 3190 |
. 2
⊢
∀𝑥 ∈ On
∀𝑦 ∈ On
((𝑅1‘𝑥) = (𝑅1‘𝑦) → 𝑥 = 𝑦) |
28 | | dff13 7160 |
. 2
⊢
(𝑅1:On–1-1→V ↔ (𝑅1:On⟶V
∧ ∀𝑥 ∈ On
∀𝑦 ∈ On
((𝑅1‘𝑥) = (𝑅1‘𝑦) → 𝑥 = 𝑦))) |
29 | 3, 27, 28 | mpbir2an 709 |
1
⊢
𝑅1:On–1-1→V |