MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r111 Structured version   Visualization version   GIF version

Theorem r111 9207
Description: The cumulative hierarchy is a one-to-one function. (Contributed by Mario Carneiro, 19-Apr-2013.)
Assertion
Ref Expression
r111 𝑅1:On–1-1→V

Proof of Theorem r111
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1fnon 9199 . . 3 𝑅1 Fn On
2 dffn2 6519 . . 3 (𝑅1 Fn On ↔ 𝑅1:On⟶V)
31, 2mpbi 232 . 2 𝑅1:On⟶V
4 eloni 6204 . . . . 5 (𝑥 ∈ On → Ord 𝑥)
5 eloni 6204 . . . . 5 (𝑦 ∈ On → Ord 𝑦)
6 ordtri3or 6226 . . . . 5 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
74, 5, 6syl2an 597 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
8 sdomirr 8657 . . . . . . . . 9 ¬ (𝑅1𝑦) ≺ (𝑅1𝑦)
9 r1sdom 9206 . . . . . . . . . 10 ((𝑦 ∈ On ∧ 𝑥𝑦) → (𝑅1𝑥) ≺ (𝑅1𝑦))
10 breq1 5072 . . . . . . . . . 10 ((𝑅1𝑥) = (𝑅1𝑦) → ((𝑅1𝑥) ≺ (𝑅1𝑦) ↔ (𝑅1𝑦) ≺ (𝑅1𝑦)))
119, 10syl5ibcom 247 . . . . . . . . 9 ((𝑦 ∈ On ∧ 𝑥𝑦) → ((𝑅1𝑥) = (𝑅1𝑦) → (𝑅1𝑦) ≺ (𝑅1𝑦)))
128, 11mtoi 201 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑥𝑦) → ¬ (𝑅1𝑥) = (𝑅1𝑦))
13123adant1 1126 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → ¬ (𝑅1𝑥) = (𝑅1𝑦))
1413pm2.21d 121 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦))
15143expia 1117 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦 → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)))
16 ax-1 6 . . . . . 6 (𝑥 = 𝑦 → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦))
1716a1i 11 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 = 𝑦 → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)))
18 r1sdom 9206 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑅1𝑦) ≺ (𝑅1𝑥))
19 breq2 5073 . . . . . . . . . 10 ((𝑅1𝑥) = (𝑅1𝑦) → ((𝑅1𝑦) ≺ (𝑅1𝑥) ↔ (𝑅1𝑦) ≺ (𝑅1𝑦)))
2018, 19syl5ibcom 247 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑦𝑥) → ((𝑅1𝑥) = (𝑅1𝑦) → (𝑅1𝑦) ≺ (𝑅1𝑦)))
218, 20mtoi 201 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝑅1𝑥) = (𝑅1𝑦))
22213adant2 1127 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑦𝑥) → ¬ (𝑅1𝑥) = (𝑅1𝑦))
2322pm2.21d 121 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑦𝑥) → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦))
24233expia 1117 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦𝑥 → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)))
2515, 17, 243jaod 1424 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)))
267, 25mpd 15 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦))
2726rgen2 3206 . 2 𝑥 ∈ On ∀𝑦 ∈ On ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)
28 dff13 7016 . 2 (𝑅1:On–1-1→V ↔ (𝑅1:On⟶V ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On ((𝑅1𝑥) = (𝑅1𝑦) → 𝑥 = 𝑦)))
293, 27, 28mpbir2an 709 1 𝑅1:On–1-1→V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3o 1082  w3a 1083   = wceq 1536  wcel 2113  wral 3141  Vcvv 3497   class class class wbr 5069  Ord word 6193  Oncon0 6194   Fn wfn 6353  wf 6354  1-1wf1 6355  cfv 6358  csdm 8511  𝑅1cr1 9194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-r1 9196
This theorem is referenced by:  tskinf  10194  grothomex  10254  rankeq1o  33636  elhf  33639  hfninf  33651
  Copyright terms: Public domain W3C validator