| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funiun | Structured version Visualization version GIF version | ||
| Description: A function is a union of singletons of ordered pairs indexed by its domain. (Contributed by AV, 18-Sep-2020.) |
| Ref | Expression |
|---|---|
| funiun | ⊢ (Fun 𝐹 → 𝐹 = ∪ 𝑥 ∈ dom 𝐹{〈𝑥, (𝐹‘𝑥)〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 6577 | . . 3 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
| 2 | dffn5 6948 | . . 3 ⊢ (𝐹 Fn dom 𝐹 ↔ 𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥))) | |
| 3 | 1, 2 | sylbb 219 | . 2 ⊢ (Fun 𝐹 → 𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥))) |
| 4 | fvex 6900 | . . 3 ⊢ (𝐹‘𝑥) ∈ V | |
| 5 | 4 | dfmpt 7145 | . 2 ⊢ (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) = ∪ 𝑥 ∈ dom 𝐹{〈𝑥, (𝐹‘𝑥)〉} |
| 6 | 3, 5 | eqtrdi 2785 | 1 ⊢ (Fun 𝐹 → 𝐹 = ∪ 𝑥 ∈ dom 𝐹{〈𝑥, (𝐹‘𝑥)〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 {csn 4608 〈cop 4614 ∪ ciun 4973 ↦ cmpt 5207 dom cdm 5667 Fun wfun 6536 Fn wfn 6537 ‘cfv 6542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 |
| This theorem is referenced by: funopsn 7149 |
| Copyright terms: Public domain | W3C validator |