MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funiun Structured version   Visualization version   GIF version

Theorem funiun 7167
Description: A function is a union of singletons of ordered pairs indexed by its domain. (Contributed by AV, 18-Sep-2020.)
Assertion
Ref Expression
funiun (Fun 𝐹𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩})
Distinct variable group:   𝑥,𝐹

Proof of Theorem funiun
StepHypRef Expression
1 funfn 6598 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
2 dffn5 6967 . . 3 (𝐹 Fn dom 𝐹𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)))
31, 2sylbb 219 . 2 (Fun 𝐹𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)))
4 fvex 6920 . . 3 (𝐹𝑥) ∈ V
54dfmpt 7164 . 2 (𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩}
63, 5eqtrdi 2791 1 (Fun 𝐹𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  {csn 4631  cop 4637   ciun 4996  cmpt 5231  dom cdm 5689  Fun wfun 6557   Fn wfn 6558  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571
This theorem is referenced by:  funopsn  7168
  Copyright terms: Public domain W3C validator