| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funiun | Structured version Visualization version GIF version | ||
| Description: A function is a union of singletons of ordered pairs indexed by its domain. (Contributed by AV, 18-Sep-2020.) |
| Ref | Expression |
|---|---|
| funiun | ⊢ (Fun 𝐹 → 𝐹 = ∪ 𝑥 ∈ dom 𝐹{〈𝑥, (𝐹‘𝑥)〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 6511 | . . 3 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
| 2 | dffn5 6880 | . . 3 ⊢ (𝐹 Fn dom 𝐹 ↔ 𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥))) | |
| 3 | 1, 2 | sylbb 219 | . 2 ⊢ (Fun 𝐹 → 𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥))) |
| 4 | fvex 6835 | . . 3 ⊢ (𝐹‘𝑥) ∈ V | |
| 5 | 4 | dfmpt 7077 | . 2 ⊢ (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) = ∪ 𝑥 ∈ dom 𝐹{〈𝑥, (𝐹‘𝑥)〉} |
| 6 | 3, 5 | eqtrdi 2782 | 1 ⊢ (Fun 𝐹 → 𝐹 = ∪ 𝑥 ∈ dom 𝐹{〈𝑥, (𝐹‘𝑥)〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 {csn 4573 〈cop 4579 ∪ ciun 4939 ↦ cmpt 5170 dom cdm 5614 Fun wfun 6475 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 |
| This theorem is referenced by: funopsn 7081 |
| Copyright terms: Public domain | W3C validator |