| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funiun | Structured version Visualization version GIF version | ||
| Description: A function is a union of singletons of ordered pairs indexed by its domain. (Contributed by AV, 18-Sep-2020.) |
| Ref | Expression |
|---|---|
| funiun | ⊢ (Fun 𝐹 → 𝐹 = ∪ 𝑥 ∈ dom 𝐹{〈𝑥, (𝐹‘𝑥)〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 6512 | . . 3 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
| 2 | dffn5 6881 | . . 3 ⊢ (𝐹 Fn dom 𝐹 ↔ 𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥))) | |
| 3 | 1, 2 | sylbb 219 | . 2 ⊢ (Fun 𝐹 → 𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥))) |
| 4 | fvex 6835 | . . 3 ⊢ (𝐹‘𝑥) ∈ V | |
| 5 | 4 | dfmpt 7078 | . 2 ⊢ (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) = ∪ 𝑥 ∈ dom 𝐹{〈𝑥, (𝐹‘𝑥)〉} |
| 6 | 3, 5 | eqtrdi 2780 | 1 ⊢ (Fun 𝐹 → 𝐹 = ∪ 𝑥 ∈ dom 𝐹{〈𝑥, (𝐹‘𝑥)〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {csn 4577 〈cop 4583 ∪ ciun 4941 ↦ cmpt 5173 dom cdm 5619 Fun wfun 6476 Fn wfn 6477 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 |
| This theorem is referenced by: funopsn 7082 |
| Copyright terms: Public domain | W3C validator |