| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsn | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two singletons is the singleton consisting in the associated ordered pair. (Contributed by NM, 4-Nov-2006.) |
| Ref | Expression |
|---|---|
| xpsn.1 | ⊢ 𝐴 ∈ V |
| xpsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| xpsn | ⊢ ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | xpsn.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | xpsng 7067 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4571 〈cop 4577 × cxp 5609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 |
| This theorem is referenced by: dfmpt 7072 fpar 8041 mapsnconst 8811 ixpsnf1o 8857 dju1dif 10059 infdju1 10076 s1co 14735 mat1f1o 22388 txdis 23542 pt1hmeo 23716 utop2nei 24160 utop3cls 24161 imasdsf1olem 24283 ex-xp 30408 elrgspnlem4 33204 poimirlem3 37663 poimirlem4 37664 poimirlem9 37669 poimirlem28 37688 grposnOLD 37922 dib0 41203 imaf1hom 49140 setc1ocofval 49526 diag1f1olem 49565 |
| Copyright terms: Public domain | W3C validator |