Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpsn | Structured version Visualization version GIF version |
Description: The Cartesian product of two singletons is the singleton consisting in the associated ordered pair. (Contributed by NM, 4-Nov-2006.) |
Ref | Expression |
---|---|
xpsn.1 | ⊢ 𝐴 ∈ V |
xpsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
xpsn | ⊢ ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | xpsn.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | xpsng 7011 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 〈cop 4567 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 |
This theorem is referenced by: dfmpt 7016 fpar 7956 mapsnconst 8680 ixpsnf1o 8726 dju1dif 9928 infdju1 9945 s1co 14546 mat1f1o 21627 txdis 22783 pt1hmeo 22957 utop2nei 23402 utop3cls 23403 imasdsf1olem 23526 ex-xp 28800 poimirlem3 35780 poimirlem4 35781 poimirlem9 35786 poimirlem28 35805 grposnOLD 36040 dib0 39178 |
Copyright terms: Public domain | W3C validator |