| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsn | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two singletons is the singleton consisting in the associated ordered pair. (Contributed by NM, 4-Nov-2006.) |
| Ref | Expression |
|---|---|
| xpsn.1 | ⊢ 𝐴 ∈ V |
| xpsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| xpsn | ⊢ ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | xpsn.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | xpsng 7114 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 〈cop 4598 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 |
| This theorem is referenced by: dfmpt 7119 fpar 8098 mapsnconst 8868 ixpsnf1o 8914 dju1dif 10133 infdju1 10150 s1co 14806 mat1f1o 22372 txdis 23526 pt1hmeo 23700 utop2nei 24145 utop3cls 24146 imasdsf1olem 24268 ex-xp 30372 elrgspnlem4 33203 poimirlem3 37624 poimirlem4 37625 poimirlem9 37630 poimirlem28 37649 grposnOLD 37883 dib0 41165 imaf1hom 49101 setc1ocofval 49487 diag1f1olem 49526 |
| Copyright terms: Public domain | W3C validator |