MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsn Structured version   Visualization version   GIF version

Theorem xpsn 7160
Description: The Cartesian product of two singletons is the singleton consisting in the associated ordered pair. (Contributed by NM, 4-Nov-2006.)
Hypotheses
Ref Expression
xpsn.1 𝐴 ∈ V
xpsn.2 𝐵 ∈ V
Assertion
Ref Expression
xpsn ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩}

Proof of Theorem xpsn
StepHypRef Expression
1 xpsn.1 . 2 𝐴 ∈ V
2 xpsn.2 . 2 𝐵 ∈ V
3 xpsng 7158 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
41, 2, 3mp2an 692 1 ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  wcel 2105  Vcvv 3477  {csn 4630  cop 4636   × cxp 5686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569
This theorem is referenced by:  dfmpt  7163  fpar  8139  mapsnconst  8930  ixpsnf1o  8976  dju1dif  10210  infdju1  10227  s1co  14868  mat1f1o  22499  txdis  23655  pt1hmeo  23829  utop2nei  24274  utop3cls  24275  imasdsf1olem  24398  ex-xp  30464  elrgspnlem4  33234  poimirlem3  37609  poimirlem4  37610  poimirlem9  37615  poimirlem28  37634  grposnOLD  37868  dib0  41146
  Copyright terms: Public domain W3C validator