| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsn | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two singletons is the singleton consisting in the associated ordered pair. (Contributed by NM, 4-Nov-2006.) |
| Ref | Expression |
|---|---|
| xpsn.1 | ⊢ 𝐴 ∈ V |
| xpsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| xpsn | ⊢ ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | xpsn.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | xpsng 7129 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 〈cop 4607 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 |
| This theorem is referenced by: dfmpt 7134 fpar 8115 mapsnconst 8906 ixpsnf1o 8952 dju1dif 10187 infdju1 10204 s1co 14852 mat1f1o 22416 txdis 23570 pt1hmeo 23744 utop2nei 24189 utop3cls 24190 imasdsf1olem 24312 ex-xp 30417 elrgspnlem4 33240 poimirlem3 37647 poimirlem4 37648 poimirlem9 37653 poimirlem28 37672 grposnOLD 37906 dib0 41183 imaf1hom 49067 setc1ocofval 49379 diag1f1olem 49418 |
| Copyright terms: Public domain | W3C validator |