MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsn Structured version   Visualization version   GIF version

Theorem xpsn 7079
Description: The Cartesian product of two singletons is the singleton consisting in the associated ordered pair. (Contributed by NM, 4-Nov-2006.)
Hypotheses
Ref Expression
xpsn.1 𝐴 ∈ V
xpsn.2 𝐵 ∈ V
Assertion
Ref Expression
xpsn ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩}

Proof of Theorem xpsn
StepHypRef Expression
1 xpsn.1 . 2 𝐴 ∈ V
2 xpsn.2 . 2 𝐵 ∈ V
3 xpsng 7077 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
41, 2, 3mp2an 692 1 ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3438  {csn 4579  cop 4585   × cxp 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493
This theorem is referenced by:  dfmpt  7082  fpar  8056  mapsnconst  8826  ixpsnf1o  8872  dju1dif  10086  infdju1  10103  s1co  14759  mat1f1o  22382  txdis  23536  pt1hmeo  23710  utop2nei  24155  utop3cls  24156  imasdsf1olem  24278  ex-xp  30399  elrgspnlem4  33204  poimirlem3  37622  poimirlem4  37623  poimirlem9  37628  poimirlem28  37647  grposnOLD  37881  dib0  41163  imaf1hom  49113  setc1ocofval  49499  diag1f1olem  49538
  Copyright terms: Public domain W3C validator