| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsn | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two singletons is the singleton consisting in the associated ordered pair. (Contributed by NM, 4-Nov-2006.) |
| Ref | Expression |
|---|---|
| xpsn.1 | ⊢ 𝐴 ∈ V |
| xpsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| xpsn | ⊢ ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | xpsn.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | xpsng 7081 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4577 〈cop 4583 × cxp 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 |
| This theorem is referenced by: dfmpt 7086 fpar 8055 mapsnconst 8826 ixpsnf1o 8872 dju1dif 10075 infdju1 10092 s1co 14747 mat1f1o 22413 txdis 23567 pt1hmeo 23741 utop2nei 24185 utop3cls 24186 imasdsf1olem 24308 ex-xp 30437 elrgspnlem4 33255 poimirlem3 37736 poimirlem4 37737 poimirlem9 37742 poimirlem28 37761 grposnOLD 37995 dib0 41336 imaf1hom 49269 setc1ocofval 49655 diag1f1olem 49694 |
| Copyright terms: Public domain | W3C validator |