![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsn | Structured version Visualization version GIF version |
Description: The Cartesian product of two singletons is the singleton consisting in the associated ordered pair. (Contributed by NM, 4-Nov-2006.) |
Ref | Expression |
---|---|
xpsn.1 | ⊢ 𝐴 ∈ V |
xpsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
xpsn | ⊢ ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | xpsn.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | xpsng 7050 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 Vcvv 3441 {csn 4571 〈cop 4577 × cxp 5605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 |
This theorem is referenced by: dfmpt 7055 fpar 8001 mapsnconst 8728 ixpsnf1o 8774 dju1dif 10001 infdju1 10018 s1co 14618 mat1f1o 21699 txdis 22855 pt1hmeo 23029 utop2nei 23474 utop3cls 23475 imasdsf1olem 23598 ex-xp 28909 poimirlem3 35836 poimirlem4 35837 poimirlem9 35842 poimirlem28 35861 grposnOLD 36096 dib0 39383 |
Copyright terms: Public domain | W3C validator |