![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihord6b | Structured version Visualization version GIF version |
Description: Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014.) |
Ref | Expression |
---|---|
dihord3.b | ⊢ 𝐵 = (Base‘𝐾) |
dihord3.l | ⊢ ≤ = (le‘𝐾) |
dihord3.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihord3.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dihord6b | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) → (𝐼‘𝑋) ⊆ (𝐼‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2r 1197 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ¬ 𝑋 ≤ 𝑊) | |
2 | simp3r 1199 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝑌 ≤ 𝑊) | |
3 | simp1l 1194 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝐾 ∈ HL) | |
4 | 3 | hllatd 38966 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝐾 ∈ Lat) |
5 | simp2l 1196 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝑋 ∈ 𝐵) | |
6 | simp3l 1198 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝑌 ∈ 𝐵) | |
7 | simp1r 1195 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝑊 ∈ 𝐻) | |
8 | dihord3.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐾) | |
9 | dihord3.h | . . . . . . . 8 ⊢ 𝐻 = (LHyp‘𝐾) | |
10 | 8, 9 | lhpbase 39601 | . . . . . . 7 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
11 | 7, 10 | syl 17 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝑊 ∈ 𝐵) |
12 | dihord3.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
13 | 8, 12 | lattr 18439 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑊) → 𝑋 ≤ 𝑊)) |
14 | 4, 5, 6, 11, 13 | syl13anc 1369 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑊) → 𝑋 ≤ 𝑊)) |
15 | 2, 14 | mpan2d 692 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝑋 ≤ 𝑌 → 𝑋 ≤ 𝑊)) |
16 | 1, 15 | mtod 197 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ¬ 𝑋 ≤ 𝑌) |
17 | 16 | pm2.21d 121 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝑋 ≤ 𝑌 → (𝐼‘𝑋) ⊆ (𝐼‘𝑌))) |
18 | 17 | imp 405 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) → (𝐼‘𝑋) ⊆ (𝐼‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ⊆ wss 3944 class class class wbr 5149 ‘cfv 6549 Basecbs 17183 lecple 17243 Latclat 18426 HLchlt 38952 LHypclh 39587 DIsoHcdih 40831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6501 df-fun 6551 df-fv 6557 df-ov 7422 df-poset 18308 df-lat 18427 df-atl 38900 df-cvlat 38924 df-hlat 38953 df-lhyp 39591 |
This theorem is referenced by: dihord 40867 |
Copyright terms: Public domain | W3C validator |