Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihord6b Structured version   Visualization version   GIF version

Theorem dihord6b 40733
Description: Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014.)
Hypotheses
Ref Expression
dihord3.b 𝐡 = (Baseβ€˜πΎ)
dihord3.l ≀ = (leβ€˜πΎ)
dihord3.h 𝐻 = (LHypβ€˜πΎ)
dihord3.i 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dihord6b ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) ∧ 𝑋 ≀ π‘Œ) β†’ (πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ))

Proof of Theorem dihord6b
StepHypRef Expression
1 simp2r 1198 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ Β¬ 𝑋 ≀ π‘Š)
2 simp3r 1200 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ π‘Œ ≀ π‘Š)
3 simp1l 1195 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ 𝐾 ∈ HL)
43hllatd 38836 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ 𝐾 ∈ Lat)
5 simp2l 1197 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ 𝑋 ∈ 𝐡)
6 simp3l 1199 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ π‘Œ ∈ 𝐡)
7 simp1r 1196 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ π‘Š ∈ 𝐻)
8 dihord3.b . . . . . . . 8 𝐡 = (Baseβ€˜πΎ)
9 dihord3.h . . . . . . . 8 𝐻 = (LHypβ€˜πΎ)
108, 9lhpbase 39471 . . . . . . 7 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ 𝐡)
117, 10syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ π‘Š ∈ 𝐡)
12 dihord3.l . . . . . . 7 ≀ = (leβ€˜πΎ)
138, 12lattr 18435 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ π‘Š) β†’ 𝑋 ≀ π‘Š))
144, 5, 6, 11, 13syl13anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ π‘Š) β†’ 𝑋 ≀ π‘Š))
152, 14mpan2d 693 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ (𝑋 ≀ π‘Œ β†’ 𝑋 ≀ π‘Š))
161, 15mtod 197 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ Β¬ 𝑋 ≀ π‘Œ)
1716pm2.21d 121 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ (𝑋 ≀ π‘Œ β†’ (πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ)))
1817imp 406 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) ∧ 𝑋 ≀ π‘Œ) β†’ (πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099   βŠ† wss 3947   class class class wbr 5148  β€˜cfv 6548  Basecbs 17179  lecple 17239  Latclat 18422  HLchlt 38822  LHypclh 39457  DIsoHcdih 40701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6500  df-fun 6550  df-fv 6556  df-ov 7423  df-poset 18304  df-lat 18423  df-atl 38770  df-cvlat 38794  df-hlat 38823  df-lhyp 39461
This theorem is referenced by:  dihord  40737
  Copyright terms: Public domain W3C validator