Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihord6b Structured version   Visualization version   GIF version

Theorem dihord6b 41254
Description: Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014.)
Hypotheses
Ref Expression
dihord3.b 𝐵 = (Base‘𝐾)
dihord3.l = (le‘𝐾)
dihord3.h 𝐻 = (LHyp‘𝐾)
dihord3.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
Assertion
Ref Expression
dihord6b ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑋 𝑌) → (𝐼𝑋) ⊆ (𝐼𝑌))

Proof of Theorem dihord6b
StepHypRef Expression
1 simp2r 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ¬ 𝑋 𝑊)
2 simp3r 1203 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌 𝑊)
3 simp1l 1198 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ HL)
43hllatd 39357 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ Lat)
5 simp2l 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋𝐵)
6 simp3l 1202 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌𝐵)
7 simp1r 1199 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑊𝐻)
8 dihord3.b . . . . . . . 8 𝐵 = (Base‘𝐾)
9 dihord3.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
108, 9lhpbase 39992 . . . . . . 7 (𝑊𝐻𝑊𝐵)
117, 10syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑊𝐵)
12 dihord3.l . . . . . . 7 = (le‘𝐾)
138, 12lattr 18403 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑊𝐵)) → ((𝑋 𝑌𝑌 𝑊) → 𝑋 𝑊))
144, 5, 6, 11, 13syl13anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝑋 𝑌𝑌 𝑊) → 𝑋 𝑊))
152, 14mpan2d 694 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌𝑋 𝑊))
161, 15mtod 198 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ¬ 𝑋 𝑌)
1716pm2.21d 121 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 → (𝐼𝑋) ⊆ (𝐼𝑌)))
1817imp 406 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑋 𝑌) → (𝐼𝑋) ⊆ (𝐼𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3914   class class class wbr 5107  cfv 6511  Basecbs 17179  lecple 17227  Latclat 18390  HLchlt 39343  LHypclh 39978  DIsoHcdih 41222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-poset 18274  df-lat 18391  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-lhyp 39982
This theorem is referenced by:  dihord  41258
  Copyright terms: Public domain W3C validator