![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divsclw | Structured version Visualization version GIF version |
Description: Weak division closure law. (Contributed by Scott Fenton, 12-Mar-2025.) |
Ref | Expression |
---|---|
divsclw | โข (((๐ด โ No โง ๐ต โ No โง ๐ต โ 0s ) โง โ๐ฅ โ No (๐ต ยทs ๐ฅ) = 1s ) โ (๐ด /su ๐ต) โ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divsval 27626 | . . 3 โข ((๐ด โ No โง ๐ต โ No โง ๐ต โ 0s ) โ (๐ด /su ๐ต) = (โฉ๐ฆ โ No (๐ต ยทs ๐ฆ) = ๐ด)) | |
2 | 1 | adantr 481 | . 2 โข (((๐ด โ No โง ๐ต โ No โง ๐ต โ 0s ) โง โ๐ฅ โ No (๐ต ยทs ๐ฅ) = 1s ) โ (๐ด /su ๐ต) = (โฉ๐ฆ โ No (๐ต ยทs ๐ฆ) = ๐ด)) |
3 | 3anrot 1100 | . . . 4 โข ((๐ด โ No โง ๐ต โ No โง ๐ต โ 0s ) โ (๐ต โ No โง ๐ต โ 0s โง ๐ด โ No )) | |
4 | noreceuw 27628 | . . . 4 โข (((๐ต โ No โง ๐ต โ 0s โง ๐ด โ No ) โง โ๐ฅ โ No (๐ต ยทs ๐ฅ) = 1s ) โ โ!๐ฆ โ No (๐ต ยทs ๐ฆ) = ๐ด) | |
5 | 3, 4 | sylanb 581 | . . 3 โข (((๐ด โ No โง ๐ต โ No โง ๐ต โ 0s ) โง โ๐ฅ โ No (๐ต ยทs ๐ฅ) = 1s ) โ โ!๐ฆ โ No (๐ต ยทs ๐ฆ) = ๐ด) |
6 | riotacl 7379 | . . 3 โข (โ!๐ฆ โ No (๐ต ยทs ๐ฆ) = ๐ด โ (โฉ๐ฆ โ No (๐ต ยทs ๐ฆ) = ๐ด) โ No ) | |
7 | 5, 6 | syl 17 | . 2 โข (((๐ด โ No โง ๐ต โ No โง ๐ต โ 0s ) โง โ๐ฅ โ No (๐ต ยทs ๐ฅ) = 1s ) โ (โฉ๐ฆ โ No (๐ต ยทs ๐ฆ) = ๐ด) โ No ) |
8 | 2, 7 | eqeltrd 2833 | 1 โข (((๐ด โ No โง ๐ต โ No โง ๐ต โ 0s ) โง โ๐ฅ โ No (๐ต ยทs ๐ฅ) = 1s ) โ (๐ด /su ๐ต) โ No ) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 396 โง w3a 1087 = wceq 1541 โ wcel 2106 โ wne 2940 โwrex 3070 โ!wreu 3374 โฉcrio 7360 (class class class)co 7405 No csur 27132 0s c0s 27312 1s c1s 27313 ยทs cmuls 27551 /su cdivs 27624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-ot 4636 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-1o 8462 df-2o 8463 df-nadd 8661 df-no 27135 df-slt 27136 df-bday 27137 df-sle 27237 df-sslt 27272 df-scut 27274 df-0s 27314 df-1s 27315 df-made 27331 df-old 27332 df-left 27334 df-right 27335 df-norec 27411 df-norec2 27422 df-adds 27433 df-negs 27485 df-subs 27486 df-muls 27552 df-divs 27625 |
This theorem is referenced by: divsclwd 27632 divscl 27658 |
Copyright terms: Public domain | W3C validator |