| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divsmulw | Structured version Visualization version GIF version | ||
| Description: Relationship between surreal division and multiplication. Weak version that does not assume reciprocals. Later, when we prove precsex 28172, we can eliminate the existence hypothesis (see divsmul 28175). (Contributed by Scott Fenton, 12-Mar-2025.) |
| Ref | Expression |
|---|---|
| divsmulw | ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divsval 28144 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝐶 ∈ No ∧ 𝐶 ≠ 0s ) → (𝐴 /su 𝐶) = (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴)) | |
| 2 | 1 | eqeq1d 2737 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐶 ∈ No ∧ 𝐶 ≠ 0s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 3 | 2 | 3expb 1120 | . . . 4 ⊢ ((𝐴 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → ((𝐴 /su 𝐶) = 𝐵 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 4 | 3 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → ((𝐴 /su 𝐶) = 𝐵 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 5 | 4 | adantr 480 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 6 | simpl2 1193 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → 𝐵 ∈ No ) | |
| 7 | simp3l 1202 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → 𝐶 ∈ No ) | |
| 8 | simp3r 1203 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → 𝐶 ≠ 0s ) | |
| 9 | simp1 1136 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → 𝐴 ∈ No ) | |
| 10 | 7, 8, 9 | 3jca 1128 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → (𝐶 ∈ No ∧ 𝐶 ≠ 0s ∧ 𝐴 ∈ No )) |
| 11 | noreceuw 28146 | . . . 4 ⊢ (((𝐶 ∈ No ∧ 𝐶 ≠ 0s ∧ 𝐴 ∈ No ) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ∃!𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) | |
| 12 | 10, 11 | sylan 580 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ∃!𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) |
| 13 | oveq2 7413 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐶 ·s 𝑦) = (𝐶 ·s 𝐵)) | |
| 14 | 13 | eqeq1d 2737 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐶 ·s 𝑦) = 𝐴 ↔ (𝐶 ·s 𝐵) = 𝐴)) |
| 15 | 14 | riota2 7387 | . . 3 ⊢ ((𝐵 ∈ No ∧ ∃!𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) → ((𝐶 ·s 𝐵) = 𝐴 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 16 | 6, 12, 15 | syl2anc 584 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ((𝐶 ·s 𝐵) = 𝐴 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 17 | 5, 16 | bitr4d 282 | 1 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 ∃!wreu 3357 ℩crio 7361 (class class class)co 7405 No csur 27603 0s c0s 27786 1s c1s 27787 ·s cmuls 28061 /su cdivs 28142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-1o 8480 df-2o 8481 df-nadd 8678 df-no 27606 df-slt 27607 df-bday 27608 df-sle 27709 df-sslt 27745 df-scut 27747 df-0s 27788 df-1s 27789 df-made 27807 df-old 27808 df-left 27810 df-right 27811 df-norec 27897 df-norec2 27908 df-adds 27919 df-negs 27979 df-subs 27980 df-muls 28062 df-divs 28143 |
| This theorem is referenced by: divsmulwd 28149 divs1 28159 divsmul 28175 |
| Copyright terms: Public domain | W3C validator |