MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsmulw Structured version   Visualization version   GIF version

Theorem divsmulw 27880
Description: Relationship between surreal division and multiplication. Weak version that does not assume reciprocals. Later, when we prove precsex 27904, we can eliminate the existence hypothesis (see divsmul 27907). (Contributed by Scott Fenton, 12-Mar-2025.)
Assertion
Ref Expression
divsmulw (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem divsmulw
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 divsval 27877 . . . . . 6 ((𝐴 No 𝐶 No 𝐶 ≠ 0s ) → (𝐴 /su 𝐶) = (𝑦 No (𝐶 ·s 𝑦) = 𝐴))
21eqeq1d 2733 . . . . 5 ((𝐴 No 𝐶 No 𝐶 ≠ 0s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
323expb 1119 . . . 4 ((𝐴 No ∧ (𝐶 No 𝐶 ≠ 0s )) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
433adant2 1130 . . 3 ((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
54adantr 480 . 2 (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
6 simpl2 1191 . . 3 (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → 𝐵 No )
7 simp3l 1200 . . . . 5 ((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) → 𝐶 No )
8 simp3r 1201 . . . . 5 ((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) → 𝐶 ≠ 0s )
9 simp1 1135 . . . . 5 ((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) → 𝐴 No )
107, 8, 93jca 1127 . . . 4 ((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) → (𝐶 No 𝐶 ≠ 0s𝐴 No ))
11 noreceuw 27879 . . . 4 (((𝐶 No 𝐶 ≠ 0s𝐴 No ) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ∃!𝑦 No (𝐶 ·s 𝑦) = 𝐴)
1210, 11sylan 579 . . 3 (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ∃!𝑦 No (𝐶 ·s 𝑦) = 𝐴)
13 oveq2 7420 . . . . 5 (𝑦 = 𝐵 → (𝐶 ·s 𝑦) = (𝐶 ·s 𝐵))
1413eqeq1d 2733 . . . 4 (𝑦 = 𝐵 → ((𝐶 ·s 𝑦) = 𝐴 ↔ (𝐶 ·s 𝐵) = 𝐴))
1514riota2 7394 . . 3 ((𝐵 No ∧ ∃!𝑦 No (𝐶 ·s 𝑦) = 𝐴) → ((𝐶 ·s 𝐵) = 𝐴 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
166, 12, 15syl2anc 583 . 2 (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ((𝐶 ·s 𝐵) = 𝐴 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
175, 16bitr4d 282 1 (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939  wrex 3069  ∃!wreu 3373  crio 7367  (class class class)co 7412   No csur 27380   0s c0s 27561   1s c1s 27562   ·s cmuls 27802   /su cdivs 27875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-1o 8470  df-2o 8471  df-nadd 8669  df-no 27383  df-slt 27384  df-bday 27385  df-sle 27485  df-sslt 27520  df-scut 27522  df-0s 27563  df-1s 27564  df-made 27580  df-old 27581  df-left 27583  df-right 27584  df-norec 27661  df-norec2 27672  df-adds 27683  df-negs 27736  df-subs 27737  df-muls 27803  df-divs 27876
This theorem is referenced by:  divsmulwd  27881  divs1  27891  divsmul  27907
  Copyright terms: Public domain W3C validator