MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsmulw Structured version   Visualization version   GIF version

Theorem divsmulw 28119
Description: Relationship between surreal division and multiplication. Weak version that does not assume reciprocals. Later, when we prove precsex 28143, we can eliminate the existence hypothesis (see divsmul 28146). (Contributed by Scott Fenton, 12-Mar-2025.)
Assertion
Ref Expression
divsmulw (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem divsmulw
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 divsval 28115 . . . . . 6 ((𝐴 No 𝐶 No 𝐶 ≠ 0s ) → (𝐴 /su 𝐶) = (𝑦 No (𝐶 ·s 𝑦) = 𝐴))
21eqeq1d 2731 . . . . 5 ((𝐴 No 𝐶 No 𝐶 ≠ 0s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
323expb 1120 . . . 4 ((𝐴 No ∧ (𝐶 No 𝐶 ≠ 0s )) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
433adant2 1131 . . 3 ((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
54adantr 480 . 2 (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
6 simpl2 1193 . . 3 (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → 𝐵 No )
7 simp3l 1202 . . . . 5 ((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) → 𝐶 No )
8 simp3r 1203 . . . . 5 ((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) → 𝐶 ≠ 0s )
9 simp1 1136 . . . . 5 ((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) → 𝐴 No )
107, 8, 93jca 1128 . . . 4 ((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) → (𝐶 No 𝐶 ≠ 0s𝐴 No ))
11 noreceuw 28117 . . . 4 (((𝐶 No 𝐶 ≠ 0s𝐴 No ) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ∃!𝑦 No (𝐶 ·s 𝑦) = 𝐴)
1210, 11sylan 580 . . 3 (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ∃!𝑦 No (𝐶 ·s 𝑦) = 𝐴)
13 oveq2 7361 . . . . 5 (𝑦 = 𝐵 → (𝐶 ·s 𝑦) = (𝐶 ·s 𝐵))
1413eqeq1d 2731 . . . 4 (𝑦 = 𝐵 → ((𝐶 ·s 𝑦) = 𝐴 ↔ (𝐶 ·s 𝐵) = 𝐴))
1514riota2 7335 . . 3 ((𝐵 No ∧ ∃!𝑦 No (𝐶 ·s 𝑦) = 𝐴) → ((𝐶 ·s 𝐵) = 𝐴 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
166, 12, 15syl2anc 584 . 2 (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ((𝐶 ·s 𝐵) = 𝐴 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
175, 16bitr4d 282 1 (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  ∃!wreu 3343  crio 7309  (class class class)co 7353   No csur 27567   0s c0s 27754   1s c1s 27755   ·s cmuls 28032   /su cdivs 28113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-1o 8395  df-2o 8396  df-nadd 8591  df-no 27570  df-slt 27571  df-bday 27572  df-sle 27673  df-sslt 27710  df-scut 27712  df-0s 27756  df-1s 27757  df-made 27775  df-old 27776  df-left 27778  df-right 27779  df-norec 27868  df-norec2 27879  df-adds 27890  df-negs 27950  df-subs 27951  df-muls 28033  df-divs 28114
This theorem is referenced by:  divsmulwd  28120  divs1  28130  divsmul  28146
  Copyright terms: Public domain W3C validator