| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divsmulw | Structured version Visualization version GIF version | ||
| Description: Relationship between surreal division and multiplication. Weak version that does not assume reciprocals. Later, when we prove precsex 28242, we can eliminate the existence hypothesis (see divsmul 28245). (Contributed by Scott Fenton, 12-Mar-2025.) |
| Ref | Expression |
|---|---|
| divsmulw | ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divsval 28215 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝐶 ∈ No ∧ 𝐶 ≠ 0s ) → (𝐴 /su 𝐶) = (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴)) | |
| 2 | 1 | eqeq1d 2739 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐶 ∈ No ∧ 𝐶 ≠ 0s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 3 | 2 | 3expb 1121 | . . . 4 ⊢ ((𝐴 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → ((𝐴 /su 𝐶) = 𝐵 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 4 | 3 | 3adant2 1132 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → ((𝐴 /su 𝐶) = 𝐵 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 5 | 4 | adantr 480 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 6 | simpl2 1193 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → 𝐵 ∈ No ) | |
| 7 | simp3l 1202 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → 𝐶 ∈ No ) | |
| 8 | simp3r 1203 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → 𝐶 ≠ 0s ) | |
| 9 | simp1 1137 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → 𝐴 ∈ No ) | |
| 10 | 7, 8, 9 | 3jca 1129 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → (𝐶 ∈ No ∧ 𝐶 ≠ 0s ∧ 𝐴 ∈ No )) |
| 11 | noreceuw 28217 | . . . 4 ⊢ (((𝐶 ∈ No ∧ 𝐶 ≠ 0s ∧ 𝐴 ∈ No ) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ∃!𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) | |
| 12 | 10, 11 | sylan 580 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ∃!𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) |
| 13 | oveq2 7439 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐶 ·s 𝑦) = (𝐶 ·s 𝐵)) | |
| 14 | 13 | eqeq1d 2739 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐶 ·s 𝑦) = 𝐴 ↔ (𝐶 ·s 𝐵) = 𝐴)) |
| 15 | 14 | riota2 7413 | . . 3 ⊢ ((𝐵 ∈ No ∧ ∃!𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) → ((𝐶 ·s 𝐵) = 𝐴 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 16 | 6, 12, 15 | syl2anc 584 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ((𝐶 ·s 𝐵) = 𝐴 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 17 | 5, 16 | bitr4d 282 | 1 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 ∃!wreu 3378 ℩crio 7387 (class class class)co 7431 No csur 27684 0s c0s 27867 1s c1s 27868 ·s cmuls 28132 /su cdivs 28213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-ot 4635 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-1o 8506 df-2o 8507 df-nadd 8704 df-no 27687 df-slt 27688 df-bday 27689 df-sle 27790 df-sslt 27826 df-scut 27828 df-0s 27869 df-1s 27870 df-made 27886 df-old 27887 df-left 27889 df-right 27890 df-norec 27971 df-norec2 27982 df-adds 27993 df-negs 28053 df-subs 28054 df-muls 28133 df-divs 28214 |
| This theorem is referenced by: divsmulwd 28219 divs1 28229 divsmul 28245 nohalf 28407 |
| Copyright terms: Public domain | W3C validator |