MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsmulw Structured version   Visualization version   GIF version

Theorem divsmulw 28133
Description: Relationship between surreal division and multiplication. Weak version that does not assume reciprocals. Later, when we prove precsex 28157, we can eliminate the existence hypothesis (see divsmul 28160). (Contributed by Scott Fenton, 12-Mar-2025.)
Assertion
Ref Expression
divsmulw (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem divsmulw
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 divsval 28129 . . . . . 6 ((𝐴 No 𝐶 No 𝐶 ≠ 0s ) → (𝐴 /su 𝐶) = (𝑦 No (𝐶 ·s 𝑦) = 𝐴))
21eqeq1d 2733 . . . . 5 ((𝐴 No 𝐶 No 𝐶 ≠ 0s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
323expb 1120 . . . 4 ((𝐴 No ∧ (𝐶 No 𝐶 ≠ 0s )) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
433adant2 1131 . . 3 ((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
54adantr 480 . 2 (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
6 simpl2 1193 . . 3 (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → 𝐵 No )
7 simp3l 1202 . . . . 5 ((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) → 𝐶 No )
8 simp3r 1203 . . . . 5 ((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) → 𝐶 ≠ 0s )
9 simp1 1136 . . . . 5 ((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) → 𝐴 No )
107, 8, 93jca 1128 . . . 4 ((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) → (𝐶 No 𝐶 ≠ 0s𝐴 No ))
11 noreceuw 28131 . . . 4 (((𝐶 No 𝐶 ≠ 0s𝐴 No ) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ∃!𝑦 No (𝐶 ·s 𝑦) = 𝐴)
1210, 11sylan 580 . . 3 (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ∃!𝑦 No (𝐶 ·s 𝑦) = 𝐴)
13 oveq2 7354 . . . . 5 (𝑦 = 𝐵 → (𝐶 ·s 𝑦) = (𝐶 ·s 𝐵))
1413eqeq1d 2733 . . . 4 (𝑦 = 𝐵 → ((𝐶 ·s 𝑦) = 𝐴 ↔ (𝐶 ·s 𝐵) = 𝐴))
1514riota2 7328 . . 3 ((𝐵 No ∧ ∃!𝑦 No (𝐶 ·s 𝑦) = 𝐴) → ((𝐶 ·s 𝐵) = 𝐴 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
166, 12, 15syl2anc 584 . 2 (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ((𝐶 ·s 𝐵) = 𝐴 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
175, 16bitr4d 282 1 (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  ∃!wreu 3344  crio 7302  (class class class)co 7346   No csur 27579   0s c0s 27767   1s c1s 27768   ·s cmuls 28046   /su cdivs 28127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27582  df-slt 27583  df-bday 27584  df-sle 27685  df-sslt 27722  df-scut 27724  df-0s 27769  df-1s 27770  df-made 27789  df-old 27790  df-left 27792  df-right 27793  df-norec 27882  df-norec2 27893  df-adds 27904  df-negs 27964  df-subs 27965  df-muls 28047  df-divs 28128
This theorem is referenced by:  divsmulwd  28134  divs1  28144  divsmul  28160
  Copyright terms: Public domain W3C validator