![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divsmulw | Structured version Visualization version GIF version |
Description: Relationship between surreal division and multiplication. Weak version that does not assume reciprocals. Later, when we prove precsex 27904, we can eliminate the existence hypothesis (see divsmul 27907). (Contributed by Scott Fenton, 12-Mar-2025.) |
Ref | Expression |
---|---|
divsmulw | ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divsval 27877 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝐶 ∈ No ∧ 𝐶 ≠ 0s ) → (𝐴 /su 𝐶) = (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴)) | |
2 | 1 | eqeq1d 2733 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐶 ∈ No ∧ 𝐶 ≠ 0s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
3 | 2 | 3expb 1119 | . . . 4 ⊢ ((𝐴 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → ((𝐴 /su 𝐶) = 𝐵 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
4 | 3 | 3adant2 1130 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → ((𝐴 /su 𝐶) = 𝐵 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
5 | 4 | adantr 480 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
6 | simpl2 1191 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → 𝐵 ∈ No ) | |
7 | simp3l 1200 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → 𝐶 ∈ No ) | |
8 | simp3r 1201 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → 𝐶 ≠ 0s ) | |
9 | simp1 1135 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → 𝐴 ∈ No ) | |
10 | 7, 8, 9 | 3jca 1127 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → (𝐶 ∈ No ∧ 𝐶 ≠ 0s ∧ 𝐴 ∈ No )) |
11 | noreceuw 27879 | . . . 4 ⊢ (((𝐶 ∈ No ∧ 𝐶 ≠ 0s ∧ 𝐴 ∈ No ) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ∃!𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) | |
12 | 10, 11 | sylan 579 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ∃!𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) |
13 | oveq2 7420 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐶 ·s 𝑦) = (𝐶 ·s 𝐵)) | |
14 | 13 | eqeq1d 2733 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐶 ·s 𝑦) = 𝐴 ↔ (𝐶 ·s 𝐵) = 𝐴)) |
15 | 14 | riota2 7394 | . . 3 ⊢ ((𝐵 ∈ No ∧ ∃!𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) → ((𝐶 ·s 𝐵) = 𝐴 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
16 | 6, 12, 15 | syl2anc 583 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ((𝐶 ·s 𝐵) = 𝐴 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
17 | 5, 16 | bitr4d 282 | 1 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∃wrex 3069 ∃!wreu 3373 ℩crio 7367 (class class class)co 7412 No csur 27380 0s c0s 27561 1s c1s 27562 ·s cmuls 27802 /su cdivs 27875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-1o 8470 df-2o 8471 df-nadd 8669 df-no 27383 df-slt 27384 df-bday 27385 df-sle 27485 df-sslt 27520 df-scut 27522 df-0s 27563 df-1s 27564 df-made 27580 df-old 27581 df-left 27583 df-right 27584 df-norec 27661 df-norec2 27672 df-adds 27683 df-negs 27736 df-subs 27737 df-muls 27803 df-divs 27876 |
This theorem is referenced by: divsmulwd 27881 divs1 27891 divsmul 27907 |
Copyright terms: Public domain | W3C validator |