MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsmulw Structured version   Visualization version   GIF version

Theorem divsmulw 28103
Description: Relationship between surreal division and multiplication. Weak version that does not assume reciprocals. Later, when we prove precsex 28127, we can eliminate the existence hypothesis (see divsmul 28130). (Contributed by Scott Fenton, 12-Mar-2025.)
Assertion
Ref Expression
divsmulw (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem divsmulw
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 divsval 28099 . . . . . 6 ((𝐴 No 𝐶 No 𝐶 ≠ 0s ) → (𝐴 /su 𝐶) = (𝑦 No (𝐶 ·s 𝑦) = 𝐴))
21eqeq1d 2732 . . . . 5 ((𝐴 No 𝐶 No 𝐶 ≠ 0s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
323expb 1120 . . . 4 ((𝐴 No ∧ (𝐶 No 𝐶 ≠ 0s )) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
433adant2 1131 . . 3 ((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
54adantr 480 . 2 (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
6 simpl2 1193 . . 3 (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → 𝐵 No )
7 simp3l 1202 . . . . 5 ((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) → 𝐶 No )
8 simp3r 1203 . . . . 5 ((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) → 𝐶 ≠ 0s )
9 simp1 1136 . . . . 5 ((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) → 𝐴 No )
107, 8, 93jca 1128 . . . 4 ((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) → (𝐶 No 𝐶 ≠ 0s𝐴 No ))
11 noreceuw 28101 . . . 4 (((𝐶 No 𝐶 ≠ 0s𝐴 No ) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ∃!𝑦 No (𝐶 ·s 𝑦) = 𝐴)
1210, 11sylan 580 . . 3 (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ∃!𝑦 No (𝐶 ·s 𝑦) = 𝐴)
13 oveq2 7398 . . . . 5 (𝑦 = 𝐵 → (𝐶 ·s 𝑦) = (𝐶 ·s 𝐵))
1413eqeq1d 2732 . . . 4 (𝑦 = 𝐵 → ((𝐶 ·s 𝑦) = 𝐴 ↔ (𝐶 ·s 𝐵) = 𝐴))
1514riota2 7372 . . 3 ((𝐵 No ∧ ∃!𝑦 No (𝐶 ·s 𝑦) = 𝐴) → ((𝐶 ·s 𝐵) = 𝐴 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
166, 12, 15syl2anc 584 . 2 (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ((𝐶 ·s 𝐵) = 𝐴 ↔ (𝑦 No (𝐶 ·s 𝑦) = 𝐴) = 𝐵))
175, 16bitr4d 282 1 (((𝐴 No 𝐵 No ∧ (𝐶 No 𝐶 ≠ 0s )) ∧ ∃𝑥 No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  ∃!wreu 3354  crio 7346  (class class class)co 7390   No csur 27558   0s c0s 27741   1s c1s 27742   ·s cmuls 28016   /su cdivs 28097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-1o 8437  df-2o 8438  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-1s 27744  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-muls 28017  df-divs 28098
This theorem is referenced by:  divsmulwd  28104  divs1  28114  divsmul  28130
  Copyright terms: Public domain W3C validator