| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divsmulw | Structured version Visualization version GIF version | ||
| Description: Relationship between surreal division and multiplication. Weak version that does not assume reciprocals. Later, when we prove precsex 28157, we can eliminate the existence hypothesis (see divsmul 28160). (Contributed by Scott Fenton, 12-Mar-2025.) |
| Ref | Expression |
|---|---|
| divsmulw | ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divsval 28129 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝐶 ∈ No ∧ 𝐶 ≠ 0s ) → (𝐴 /su 𝐶) = (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴)) | |
| 2 | 1 | eqeq1d 2733 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐶 ∈ No ∧ 𝐶 ≠ 0s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 3 | 2 | 3expb 1120 | . . . 4 ⊢ ((𝐴 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → ((𝐴 /su 𝐶) = 𝐵 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 4 | 3 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → ((𝐴 /su 𝐶) = 𝐵 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 5 | 4 | adantr 480 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 6 | simpl2 1193 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → 𝐵 ∈ No ) | |
| 7 | simp3l 1202 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → 𝐶 ∈ No ) | |
| 8 | simp3r 1203 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → 𝐶 ≠ 0s ) | |
| 9 | simp1 1136 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → 𝐴 ∈ No ) | |
| 10 | 7, 8, 9 | 3jca 1128 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → (𝐶 ∈ No ∧ 𝐶 ≠ 0s ∧ 𝐴 ∈ No )) |
| 11 | noreceuw 28131 | . . . 4 ⊢ (((𝐶 ∈ No ∧ 𝐶 ≠ 0s ∧ 𝐴 ∈ No ) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ∃!𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) | |
| 12 | 10, 11 | sylan 580 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ∃!𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) |
| 13 | oveq2 7354 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐶 ·s 𝑦) = (𝐶 ·s 𝐵)) | |
| 14 | 13 | eqeq1d 2733 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐶 ·s 𝑦) = 𝐴 ↔ (𝐶 ·s 𝐵) = 𝐴)) |
| 15 | 14 | riota2 7328 | . . 3 ⊢ ((𝐵 ∈ No ∧ ∃!𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) → ((𝐶 ·s 𝐵) = 𝐴 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 16 | 6, 12, 15 | syl2anc 584 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ((𝐶 ·s 𝐵) = 𝐴 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 17 | 5, 16 | bitr4d 282 | 1 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ∃!wreu 3344 ℩crio 7302 (class class class)co 7346 No csur 27579 0s c0s 27767 1s c1s 27768 ·s cmuls 28046 /su cdivs 28127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-2o 8386 df-nadd 8581 df-no 27582 df-slt 27583 df-bday 27584 df-sle 27685 df-sslt 27722 df-scut 27724 df-0s 27769 df-1s 27770 df-made 27789 df-old 27790 df-left 27792 df-right 27793 df-norec 27882 df-norec2 27893 df-adds 27904 df-negs 27964 df-subs 27965 df-muls 28047 df-divs 28128 |
| This theorem is referenced by: divsmulwd 28134 divs1 28144 divsmul 28160 |
| Copyright terms: Public domain | W3C validator |