| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divsmulw | Structured version Visualization version GIF version | ||
| Description: Relationship between surreal division and multiplication. Weak version that does not assume reciprocals. Later, when we prove precsex 28143, we can eliminate the existence hypothesis (see divsmul 28146). (Contributed by Scott Fenton, 12-Mar-2025.) |
| Ref | Expression |
|---|---|
| divsmulw | ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divsval 28115 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝐶 ∈ No ∧ 𝐶 ≠ 0s ) → (𝐴 /su 𝐶) = (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴)) | |
| 2 | 1 | eqeq1d 2731 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐶 ∈ No ∧ 𝐶 ≠ 0s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 3 | 2 | 3expb 1120 | . . . 4 ⊢ ((𝐴 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → ((𝐴 /su 𝐶) = 𝐵 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 4 | 3 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → ((𝐴 /su 𝐶) = 𝐵 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 5 | 4 | adantr 480 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 6 | simpl2 1193 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → 𝐵 ∈ No ) | |
| 7 | simp3l 1202 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → 𝐶 ∈ No ) | |
| 8 | simp3r 1203 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → 𝐶 ≠ 0s ) | |
| 9 | simp1 1136 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → 𝐴 ∈ No ) | |
| 10 | 7, 8, 9 | 3jca 1128 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → (𝐶 ∈ No ∧ 𝐶 ≠ 0s ∧ 𝐴 ∈ No )) |
| 11 | noreceuw 28117 | . . . 4 ⊢ (((𝐶 ∈ No ∧ 𝐶 ≠ 0s ∧ 𝐴 ∈ No ) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ∃!𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) | |
| 12 | 10, 11 | sylan 580 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ∃!𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) |
| 13 | oveq2 7361 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐶 ·s 𝑦) = (𝐶 ·s 𝐵)) | |
| 14 | 13 | eqeq1d 2731 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐶 ·s 𝑦) = 𝐴 ↔ (𝐶 ·s 𝐵) = 𝐴)) |
| 15 | 14 | riota2 7335 | . . 3 ⊢ ((𝐵 ∈ No ∧ ∃!𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) → ((𝐶 ·s 𝐵) = 𝐴 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 16 | 6, 12, 15 | syl2anc 584 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ((𝐶 ·s 𝐵) = 𝐴 ↔ (℩𝑦 ∈ No (𝐶 ·s 𝑦) = 𝐴) = 𝐵)) |
| 17 | 5, 16 | bitr4d 282 | 1 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ∃!wreu 3343 ℩crio 7309 (class class class)co 7353 No csur 27567 0s c0s 27754 1s c1s 27755 ·s cmuls 28032 /su cdivs 28113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-1o 8395 df-2o 8396 df-nadd 8591 df-no 27570 df-slt 27571 df-bday 27572 df-sle 27673 df-sslt 27710 df-scut 27712 df-0s 27756 df-1s 27757 df-made 27775 df-old 27776 df-left 27778 df-right 27779 df-norec 27868 df-norec2 27879 df-adds 27890 df-negs 27950 df-subs 27951 df-muls 28033 df-divs 28114 |
| This theorem is referenced by: divsmulwd 28120 divs1 28130 divsmul 28146 |
| Copyright terms: Public domain | W3C validator |