MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  norecdiv Structured version   Visualization version   GIF version

Theorem norecdiv 28129
Description: If a surreal has a reciprocal, then it has any division. (Contributed by Scott Fenton, 12-Mar-2025.)
Assertion
Ref Expression
norecdiv (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑥 No (𝐴 ·s 𝑥) = 1s ) → ∃𝑦 No (𝐴 ·s 𝑦) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem norecdiv
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝑤 No )
2 simpl3 1194 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝐵 No )
31, 2mulscld 28074 . . . . 5 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → (𝑤 ·s 𝐵) ∈ No )
4 oveq1 7353 . . . . . . . 8 ((𝐴 ·s 𝑤) = 1s → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵))
54adantl 481 . . . . . . 7 ((𝑤 No ∧ (𝐴 ·s 𝑤) = 1s ) → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵))
65adantl 481 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵))
7 simpl1 1192 . . . . . . 7 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝐴 No )
87, 1, 2mulsassd 28106 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → ((𝐴 ·s 𝑤) ·s 𝐵) = (𝐴 ·s (𝑤 ·s 𝐵)))
92mulslidd 28082 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → ( 1s ·s 𝐵) = 𝐵)
106, 8, 93eqtr3d 2774 . . . . 5 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵)
11 oveq2 7354 . . . . . . 7 (𝑧 = (𝑤 ·s 𝐵) → (𝐴 ·s 𝑧) = (𝐴 ·s (𝑤 ·s 𝐵)))
1211eqeq1d 2733 . . . . . 6 (𝑧 = (𝑤 ·s 𝐵) → ((𝐴 ·s 𝑧) = 𝐵 ↔ (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵))
1312rspcev 3572 . . . . 5 (((𝑤 ·s 𝐵) ∈ No ∧ (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵) → ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵)
143, 10, 13syl2anc 584 . . . 4 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵)
1514rexlimdvaa 3134 . . 3 ((𝐴 No 𝐴 ≠ 0s𝐵 No ) → (∃𝑤 No (𝐴 ·s 𝑤) = 1s → ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵))
1615imp 406 . 2 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑤 No (𝐴 ·s 𝑤) = 1s ) → ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵)
17 oveq2 7354 . . . . 5 (𝑥 = 𝑤 → (𝐴 ·s 𝑥) = (𝐴 ·s 𝑤))
1817eqeq1d 2733 . . . 4 (𝑥 = 𝑤 → ((𝐴 ·s 𝑥) = 1s ↔ (𝐴 ·s 𝑤) = 1s ))
1918cbvrexvw 3211 . . 3 (∃𝑥 No (𝐴 ·s 𝑥) = 1s ↔ ∃𝑤 No (𝐴 ·s 𝑤) = 1s )
2019anbi2i 623 . 2 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑥 No (𝐴 ·s 𝑥) = 1s ) ↔ ((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑤 No (𝐴 ·s 𝑤) = 1s ))
21 oveq2 7354 . . . 4 (𝑦 = 𝑧 → (𝐴 ·s 𝑦) = (𝐴 ·s 𝑧))
2221eqeq1d 2733 . . 3 (𝑦 = 𝑧 → ((𝐴 ·s 𝑦) = 𝐵 ↔ (𝐴 ·s 𝑧) = 𝐵))
2322cbvrexvw 3211 . 2 (∃𝑦 No (𝐴 ·s 𝑦) = 𝐵 ↔ ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵)
2416, 20, 233imtr4i 292 1 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑥 No (𝐴 ·s 𝑥) = 1s ) → ∃𝑦 No (𝐴 ·s 𝑦) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  (class class class)co 7346   No csur 27578   0s c0s 27766   1s c1s 27767   ·s cmuls 28045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-1s 27769  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec 27881  df-norec2 27892  df-adds 27903  df-negs 27963  df-subs 27964  df-muls 28046
This theorem is referenced by:  noreceuw  28130
  Copyright terms: Public domain W3C validator