| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > norecdiv | Structured version Visualization version GIF version | ||
| Description: If a surreal has a reciprocal, then it has any division. (Contributed by Scott Fenton, 12-Mar-2025.) |
| Ref | Expression |
|---|---|
| norecdiv | ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) → ∃𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝑤 ∈ No ) | |
| 2 | simpl3 1194 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝐵 ∈ No ) | |
| 3 | 1, 2 | mulscld 28074 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → (𝑤 ·s 𝐵) ∈ No ) |
| 4 | oveq1 7353 | . . . . . . . 8 ⊢ ((𝐴 ·s 𝑤) = 1s → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵)) | |
| 5 | 4 | adantl 481 | . . . . . . 7 ⊢ ((𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s ) → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵)) |
| 6 | 5 | adantl 481 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵)) |
| 7 | simpl1 1192 | . . . . . . 7 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝐴 ∈ No ) | |
| 8 | 7, 1, 2 | mulsassd 28106 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → ((𝐴 ·s 𝑤) ·s 𝐵) = (𝐴 ·s (𝑤 ·s 𝐵))) |
| 9 | 2 | mulslidd 28082 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → ( 1s ·s 𝐵) = 𝐵) |
| 10 | 6, 8, 9 | 3eqtr3d 2774 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵) |
| 11 | oveq2 7354 | . . . . . . 7 ⊢ (𝑧 = (𝑤 ·s 𝐵) → (𝐴 ·s 𝑧) = (𝐴 ·s (𝑤 ·s 𝐵))) | |
| 12 | 11 | eqeq1d 2733 | . . . . . 6 ⊢ (𝑧 = (𝑤 ·s 𝐵) → ((𝐴 ·s 𝑧) = 𝐵 ↔ (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵)) |
| 13 | 12 | rspcev 3572 | . . . . 5 ⊢ (((𝑤 ·s 𝐵) ∈ No ∧ (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵) → ∃𝑧 ∈ No (𝐴 ·s 𝑧) = 𝐵) |
| 14 | 3, 10, 13 | syl2anc 584 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → ∃𝑧 ∈ No (𝐴 ·s 𝑧) = 𝐵) |
| 15 | 14 | rexlimdvaa 3134 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) → (∃𝑤 ∈ No (𝐴 ·s 𝑤) = 1s → ∃𝑧 ∈ No (𝐴 ·s 𝑧) = 𝐵)) |
| 16 | 15 | imp 406 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑤 ∈ No (𝐴 ·s 𝑤) = 1s ) → ∃𝑧 ∈ No (𝐴 ·s 𝑧) = 𝐵) |
| 17 | oveq2 7354 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝐴 ·s 𝑥) = (𝐴 ·s 𝑤)) | |
| 18 | 17 | eqeq1d 2733 | . . . 4 ⊢ (𝑥 = 𝑤 → ((𝐴 ·s 𝑥) = 1s ↔ (𝐴 ·s 𝑤) = 1s )) |
| 19 | 18 | cbvrexvw 3211 | . . 3 ⊢ (∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ↔ ∃𝑤 ∈ No (𝐴 ·s 𝑤) = 1s ) |
| 20 | 19 | anbi2i 623 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) ↔ ((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑤 ∈ No (𝐴 ·s 𝑤) = 1s )) |
| 21 | oveq2 7354 | . . . 4 ⊢ (𝑦 = 𝑧 → (𝐴 ·s 𝑦) = (𝐴 ·s 𝑧)) | |
| 22 | 21 | eqeq1d 2733 | . . 3 ⊢ (𝑦 = 𝑧 → ((𝐴 ·s 𝑦) = 𝐵 ↔ (𝐴 ·s 𝑧) = 𝐵)) |
| 23 | 22 | cbvrexvw 3211 | . 2 ⊢ (∃𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵 ↔ ∃𝑧 ∈ No (𝐴 ·s 𝑧) = 𝐵) |
| 24 | 16, 20, 23 | 3imtr4i 292 | 1 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) → ∃𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 (class class class)co 7346 No csur 27578 0s c0s 27766 1s c1s 27767 ·s cmuls 28045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-2o 8386 df-nadd 8581 df-no 27581 df-slt 27582 df-bday 27583 df-sle 27684 df-sslt 27721 df-scut 27723 df-0s 27768 df-1s 27769 df-made 27788 df-old 27789 df-left 27791 df-right 27792 df-norec 27881 df-norec2 27892 df-adds 27903 df-negs 27963 df-subs 27964 df-muls 28046 |
| This theorem is referenced by: noreceuw 28130 |
| Copyright terms: Public domain | W3C validator |