| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > norecdiv | Structured version Visualization version GIF version | ||
| Description: If a surreal has a reciprocal, then it has any division. (Contributed by Scott Fenton, 12-Mar-2025.) |
| Ref | Expression |
|---|---|
| norecdiv | ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) → ∃𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝑤 ∈ No ) | |
| 2 | simpl3 1194 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝐵 ∈ No ) | |
| 3 | 1, 2 | mulscld 28078 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → (𝑤 ·s 𝐵) ∈ No ) |
| 4 | oveq1 7376 | . . . . . . . 8 ⊢ ((𝐴 ·s 𝑤) = 1s → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵)) | |
| 5 | 4 | adantl 481 | . . . . . . 7 ⊢ ((𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s ) → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵)) |
| 6 | 5 | adantl 481 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵)) |
| 7 | simpl1 1192 | . . . . . . 7 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝐴 ∈ No ) | |
| 8 | 7, 1, 2 | mulsassd 28110 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → ((𝐴 ·s 𝑤) ·s 𝐵) = (𝐴 ·s (𝑤 ·s 𝐵))) |
| 9 | 2 | mulslidd 28086 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → ( 1s ·s 𝐵) = 𝐵) |
| 10 | 6, 8, 9 | 3eqtr3d 2772 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵) |
| 11 | oveq2 7377 | . . . . . . 7 ⊢ (𝑧 = (𝑤 ·s 𝐵) → (𝐴 ·s 𝑧) = (𝐴 ·s (𝑤 ·s 𝐵))) | |
| 12 | 11 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑧 = (𝑤 ·s 𝐵) → ((𝐴 ·s 𝑧) = 𝐵 ↔ (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵)) |
| 13 | 12 | rspcev 3585 | . . . . 5 ⊢ (((𝑤 ·s 𝐵) ∈ No ∧ (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵) → ∃𝑧 ∈ No (𝐴 ·s 𝑧) = 𝐵) |
| 14 | 3, 10, 13 | syl2anc 584 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → ∃𝑧 ∈ No (𝐴 ·s 𝑧) = 𝐵) |
| 15 | 14 | rexlimdvaa 3135 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) → (∃𝑤 ∈ No (𝐴 ·s 𝑤) = 1s → ∃𝑧 ∈ No (𝐴 ·s 𝑧) = 𝐵)) |
| 16 | 15 | imp 406 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑤 ∈ No (𝐴 ·s 𝑤) = 1s ) → ∃𝑧 ∈ No (𝐴 ·s 𝑧) = 𝐵) |
| 17 | oveq2 7377 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝐴 ·s 𝑥) = (𝐴 ·s 𝑤)) | |
| 18 | 17 | eqeq1d 2731 | . . . 4 ⊢ (𝑥 = 𝑤 → ((𝐴 ·s 𝑥) = 1s ↔ (𝐴 ·s 𝑤) = 1s )) |
| 19 | 18 | cbvrexvw 3214 | . . 3 ⊢ (∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ↔ ∃𝑤 ∈ No (𝐴 ·s 𝑤) = 1s ) |
| 20 | 19 | anbi2i 623 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) ↔ ((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑤 ∈ No (𝐴 ·s 𝑤) = 1s )) |
| 21 | oveq2 7377 | . . . 4 ⊢ (𝑦 = 𝑧 → (𝐴 ·s 𝑦) = (𝐴 ·s 𝑧)) | |
| 22 | 21 | eqeq1d 2731 | . . 3 ⊢ (𝑦 = 𝑧 → ((𝐴 ·s 𝑦) = 𝐵 ↔ (𝐴 ·s 𝑧) = 𝐵)) |
| 23 | 22 | cbvrexvw 3214 | . 2 ⊢ (∃𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵 ↔ ∃𝑧 ∈ No (𝐴 ·s 𝑧) = 𝐵) |
| 24 | 16, 20, 23 | 3imtr4i 292 | 1 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) → ∃𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 (class class class)co 7369 No csur 27584 0s c0s 27771 1s c1s 27772 ·s cmuls 28049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-1o 8411 df-2o 8412 df-nadd 8607 df-no 27587 df-slt 27588 df-bday 27589 df-sle 27690 df-sslt 27727 df-scut 27729 df-0s 27773 df-1s 27774 df-made 27792 df-old 27793 df-left 27795 df-right 27796 df-norec 27885 df-norec2 27896 df-adds 27907 df-negs 27967 df-subs 27968 df-muls 28050 |
| This theorem is referenced by: noreceuw 28134 |
| Copyright terms: Public domain | W3C validator |