MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  norecdiv Structured version   Visualization version   GIF version

Theorem norecdiv 28069
Description: If a surreal has a reciprocal, then it has any division. (Contributed by Scott Fenton, 12-Mar-2025.)
Assertion
Ref Expression
norecdiv (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑥 No (𝐴 ·s 𝑥) = 1s ) → ∃𝑦 No (𝐴 ·s 𝑦) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem norecdiv
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝑤 No )
2 simpl3 1194 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝐵 No )
31, 2mulscld 28014 . . . . 5 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → (𝑤 ·s 𝐵) ∈ No )
4 oveq1 7376 . . . . . . . 8 ((𝐴 ·s 𝑤) = 1s → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵))
54adantl 481 . . . . . . 7 ((𝑤 No ∧ (𝐴 ·s 𝑤) = 1s ) → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵))
65adantl 481 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵))
7 simpl1 1192 . . . . . . 7 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝐴 No )
87, 1, 2mulsassd 28046 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → ((𝐴 ·s 𝑤) ·s 𝐵) = (𝐴 ·s (𝑤 ·s 𝐵)))
92mulslidd 28022 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → ( 1s ·s 𝐵) = 𝐵)
106, 8, 93eqtr3d 2772 . . . . 5 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵)
11 oveq2 7377 . . . . . . 7 (𝑧 = (𝑤 ·s 𝐵) → (𝐴 ·s 𝑧) = (𝐴 ·s (𝑤 ·s 𝐵)))
1211eqeq1d 2731 . . . . . 6 (𝑧 = (𝑤 ·s 𝐵) → ((𝐴 ·s 𝑧) = 𝐵 ↔ (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵))
1312rspcev 3585 . . . . 5 (((𝑤 ·s 𝐵) ∈ No ∧ (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵) → ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵)
143, 10, 13syl2anc 584 . . . 4 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵)
1514rexlimdvaa 3135 . . 3 ((𝐴 No 𝐴 ≠ 0s𝐵 No ) → (∃𝑤 No (𝐴 ·s 𝑤) = 1s → ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵))
1615imp 406 . 2 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑤 No (𝐴 ·s 𝑤) = 1s ) → ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵)
17 oveq2 7377 . . . . 5 (𝑥 = 𝑤 → (𝐴 ·s 𝑥) = (𝐴 ·s 𝑤))
1817eqeq1d 2731 . . . 4 (𝑥 = 𝑤 → ((𝐴 ·s 𝑥) = 1s ↔ (𝐴 ·s 𝑤) = 1s ))
1918cbvrexvw 3214 . . 3 (∃𝑥 No (𝐴 ·s 𝑥) = 1s ↔ ∃𝑤 No (𝐴 ·s 𝑤) = 1s )
2019anbi2i 623 . 2 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑥 No (𝐴 ·s 𝑥) = 1s ) ↔ ((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑤 No (𝐴 ·s 𝑤) = 1s ))
21 oveq2 7377 . . . 4 (𝑦 = 𝑧 → (𝐴 ·s 𝑦) = (𝐴 ·s 𝑧))
2221eqeq1d 2731 . . 3 (𝑦 = 𝑧 → ((𝐴 ·s 𝑦) = 𝐵 ↔ (𝐴 ·s 𝑧) = 𝐵))
2322cbvrexvw 3214 . 2 (∃𝑦 No (𝐴 ·s 𝑦) = 𝐵 ↔ ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵)
2416, 20, 233imtr4i 292 1 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑥 No (𝐴 ·s 𝑥) = 1s ) → ∃𝑦 No (𝐴 ·s 𝑦) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  (class class class)co 7369   No csur 27527   0s c0s 27710   1s c1s 27711   ·s cmuls 27985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-1o 8411  df-2o 8412  df-nadd 8607  df-no 27530  df-slt 27531  df-bday 27532  df-sle 27633  df-sslt 27669  df-scut 27671  df-0s 27712  df-1s 27713  df-made 27731  df-old 27732  df-left 27734  df-right 27735  df-norec 27821  df-norec2 27832  df-adds 27843  df-negs 27903  df-subs 27904  df-muls 27986
This theorem is referenced by:  noreceuw  28070
  Copyright terms: Public domain W3C validator