![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > norecdiv | Structured version Visualization version GIF version |
Description: If a surreal has a reciprocal, then it has any division. (Contributed by Scott Fenton, 12-Mar-2025.) |
Ref | Expression |
---|---|
norecdiv | ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) → ∃𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 768 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝑤 ∈ No ) | |
2 | simpl3 1190 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝐵 ∈ No ) | |
3 | 1, 2 | mulscld 27939 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → (𝑤 ·s 𝐵) ∈ No ) |
4 | oveq1 7408 | . . . . . . . 8 ⊢ ((𝐴 ·s 𝑤) = 1s → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵)) | |
5 | 4 | adantl 481 | . . . . . . 7 ⊢ ((𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s ) → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵)) |
6 | 5 | adantl 481 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵)) |
7 | simpl1 1188 | . . . . . . 7 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝐴 ∈ No ) | |
8 | 7, 1, 2 | mulsassd 27971 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → ((𝐴 ·s 𝑤) ·s 𝐵) = (𝐴 ·s (𝑤 ·s 𝐵))) |
9 | 2 | mulslidd 27947 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → ( 1s ·s 𝐵) = 𝐵) |
10 | 6, 8, 9 | 3eqtr3d 2772 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵) |
11 | oveq2 7409 | . . . . . . 7 ⊢ (𝑧 = (𝑤 ·s 𝐵) → (𝐴 ·s 𝑧) = (𝐴 ·s (𝑤 ·s 𝐵))) | |
12 | 11 | eqeq1d 2726 | . . . . . 6 ⊢ (𝑧 = (𝑤 ·s 𝐵) → ((𝐴 ·s 𝑧) = 𝐵 ↔ (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵)) |
13 | 12 | rspcev 3604 | . . . . 5 ⊢ (((𝑤 ·s 𝐵) ∈ No ∧ (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵) → ∃𝑧 ∈ No (𝐴 ·s 𝑧) = 𝐵) |
14 | 3, 10, 13 | syl2anc 583 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → ∃𝑧 ∈ No (𝐴 ·s 𝑧) = 𝐵) |
15 | 14 | rexlimdvaa 3148 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) → (∃𝑤 ∈ No (𝐴 ·s 𝑤) = 1s → ∃𝑧 ∈ No (𝐴 ·s 𝑧) = 𝐵)) |
16 | 15 | imp 406 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑤 ∈ No (𝐴 ·s 𝑤) = 1s ) → ∃𝑧 ∈ No (𝐴 ·s 𝑧) = 𝐵) |
17 | oveq2 7409 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝐴 ·s 𝑥) = (𝐴 ·s 𝑤)) | |
18 | 17 | eqeq1d 2726 | . . . 4 ⊢ (𝑥 = 𝑤 → ((𝐴 ·s 𝑥) = 1s ↔ (𝐴 ·s 𝑤) = 1s )) |
19 | 18 | cbvrexvw 3227 | . . 3 ⊢ (∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ↔ ∃𝑤 ∈ No (𝐴 ·s 𝑤) = 1s ) |
20 | 19 | anbi2i 622 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) ↔ ((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑤 ∈ No (𝐴 ·s 𝑤) = 1s )) |
21 | oveq2 7409 | . . . 4 ⊢ (𝑦 = 𝑧 → (𝐴 ·s 𝑦) = (𝐴 ·s 𝑧)) | |
22 | 21 | eqeq1d 2726 | . . 3 ⊢ (𝑦 = 𝑧 → ((𝐴 ·s 𝑦) = 𝐵 ↔ (𝐴 ·s 𝑧) = 𝐵)) |
23 | 22 | cbvrexvw 3227 | . 2 ⊢ (∃𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵 ↔ ∃𝑧 ∈ No (𝐴 ·s 𝑧) = 𝐵) |
24 | 16, 20, 23 | 3imtr4i 292 | 1 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) → ∃𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∃wrex 3062 (class class class)co 7401 No csur 27477 0s c0s 27659 1s c1s 27660 ·s cmuls 27910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-ot 4629 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-1o 8461 df-2o 8462 df-nadd 8660 df-no 27480 df-slt 27481 df-bday 27482 df-sle 27582 df-sslt 27618 df-scut 27620 df-0s 27661 df-1s 27662 df-made 27678 df-old 27679 df-left 27681 df-right 27682 df-norec 27759 df-norec2 27770 df-adds 27781 df-negs 27838 df-subs 27839 df-muls 27911 |
This theorem is referenced by: noreceuw 27995 |
Copyright terms: Public domain | W3C validator |