MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  norecdiv Structured version   Visualization version   GIF version

Theorem norecdiv 28234
Description: If a surreal has a reciprocal, then it has any division. (Contributed by Scott Fenton, 12-Mar-2025.)
Assertion
Ref Expression
norecdiv (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑥 No (𝐴 ·s 𝑥) = 1s ) → ∃𝑦 No (𝐴 ·s 𝑦) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem norecdiv
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝑤 No )
2 simpl3 1193 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝐵 No )
31, 2mulscld 28179 . . . . 5 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → (𝑤 ·s 𝐵) ∈ No )
4 oveq1 7455 . . . . . . . 8 ((𝐴 ·s 𝑤) = 1s → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵))
54adantl 481 . . . . . . 7 ((𝑤 No ∧ (𝐴 ·s 𝑤) = 1s ) → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵))
65adantl 481 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵))
7 simpl1 1191 . . . . . . 7 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝐴 No )
87, 1, 2mulsassd 28211 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → ((𝐴 ·s 𝑤) ·s 𝐵) = (𝐴 ·s (𝑤 ·s 𝐵)))
92mulslidd 28187 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → ( 1s ·s 𝐵) = 𝐵)
106, 8, 93eqtr3d 2788 . . . . 5 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵)
11 oveq2 7456 . . . . . . 7 (𝑧 = (𝑤 ·s 𝐵) → (𝐴 ·s 𝑧) = (𝐴 ·s (𝑤 ·s 𝐵)))
1211eqeq1d 2742 . . . . . 6 (𝑧 = (𝑤 ·s 𝐵) → ((𝐴 ·s 𝑧) = 𝐵 ↔ (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵))
1312rspcev 3635 . . . . 5 (((𝑤 ·s 𝐵) ∈ No ∧ (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵) → ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵)
143, 10, 13syl2anc 583 . . . 4 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵)
1514rexlimdvaa 3162 . . 3 ((𝐴 No 𝐴 ≠ 0s𝐵 No ) → (∃𝑤 No (𝐴 ·s 𝑤) = 1s → ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵))
1615imp 406 . 2 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑤 No (𝐴 ·s 𝑤) = 1s ) → ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵)
17 oveq2 7456 . . . . 5 (𝑥 = 𝑤 → (𝐴 ·s 𝑥) = (𝐴 ·s 𝑤))
1817eqeq1d 2742 . . . 4 (𝑥 = 𝑤 → ((𝐴 ·s 𝑥) = 1s ↔ (𝐴 ·s 𝑤) = 1s ))
1918cbvrexvw 3244 . . 3 (∃𝑥 No (𝐴 ·s 𝑥) = 1s ↔ ∃𝑤 No (𝐴 ·s 𝑤) = 1s )
2019anbi2i 622 . 2 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑥 No (𝐴 ·s 𝑥) = 1s ) ↔ ((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑤 No (𝐴 ·s 𝑤) = 1s ))
21 oveq2 7456 . . . 4 (𝑦 = 𝑧 → (𝐴 ·s 𝑦) = (𝐴 ·s 𝑧))
2221eqeq1d 2742 . . 3 (𝑦 = 𝑧 → ((𝐴 ·s 𝑦) = 𝐵 ↔ (𝐴 ·s 𝑧) = 𝐵))
2322cbvrexvw 3244 . 2 (∃𝑦 No (𝐴 ·s 𝑦) = 𝐵 ↔ ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵)
2416, 20, 233imtr4i 292 1 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑥 No (𝐴 ·s 𝑥) = 1s ) → ∃𝑦 No (𝐴 ·s 𝑦) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  (class class class)co 7448   No csur 27702   0s c0s 27885   1s c1s 27886   ·s cmuls 28150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-muls 28151
This theorem is referenced by:  noreceuw  28235
  Copyright terms: Public domain W3C validator