MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  norecdiv Structured version   Visualization version   GIF version

Theorem norecdiv 28231
Description: If a surreal has a reciprocal, then it has any division. (Contributed by Scott Fenton, 12-Mar-2025.)
Assertion
Ref Expression
norecdiv (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑥 No (𝐴 ·s 𝑥) = 1s ) → ∃𝑦 No (𝐴 ·s 𝑦) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem norecdiv
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 771 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝑤 No )
2 simpl3 1192 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝐵 No )
31, 2mulscld 28176 . . . . 5 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → (𝑤 ·s 𝐵) ∈ No )
4 oveq1 7438 . . . . . . . 8 ((𝐴 ·s 𝑤) = 1s → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵))
54adantl 481 . . . . . . 7 ((𝑤 No ∧ (𝐴 ·s 𝑤) = 1s ) → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵))
65adantl 481 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵))
7 simpl1 1190 . . . . . . 7 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝐴 No )
87, 1, 2mulsassd 28208 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → ((𝐴 ·s 𝑤) ·s 𝐵) = (𝐴 ·s (𝑤 ·s 𝐵)))
92mulslidd 28184 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → ( 1s ·s 𝐵) = 𝐵)
106, 8, 93eqtr3d 2783 . . . . 5 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵)
11 oveq2 7439 . . . . . . 7 (𝑧 = (𝑤 ·s 𝐵) → (𝐴 ·s 𝑧) = (𝐴 ·s (𝑤 ·s 𝐵)))
1211eqeq1d 2737 . . . . . 6 (𝑧 = (𝑤 ·s 𝐵) → ((𝐴 ·s 𝑧) = 𝐵 ↔ (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵))
1312rspcev 3622 . . . . 5 (((𝑤 ·s 𝐵) ∈ No ∧ (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵) → ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵)
143, 10, 13syl2anc 584 . . . 4 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵)
1514rexlimdvaa 3154 . . 3 ((𝐴 No 𝐴 ≠ 0s𝐵 No ) → (∃𝑤 No (𝐴 ·s 𝑤) = 1s → ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵))
1615imp 406 . 2 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑤 No (𝐴 ·s 𝑤) = 1s ) → ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵)
17 oveq2 7439 . . . . 5 (𝑥 = 𝑤 → (𝐴 ·s 𝑥) = (𝐴 ·s 𝑤))
1817eqeq1d 2737 . . . 4 (𝑥 = 𝑤 → ((𝐴 ·s 𝑥) = 1s ↔ (𝐴 ·s 𝑤) = 1s ))
1918cbvrexvw 3236 . . 3 (∃𝑥 No (𝐴 ·s 𝑥) = 1s ↔ ∃𝑤 No (𝐴 ·s 𝑤) = 1s )
2019anbi2i 623 . 2 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑥 No (𝐴 ·s 𝑥) = 1s ) ↔ ((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑤 No (𝐴 ·s 𝑤) = 1s ))
21 oveq2 7439 . . . 4 (𝑦 = 𝑧 → (𝐴 ·s 𝑦) = (𝐴 ·s 𝑧))
2221eqeq1d 2737 . . 3 (𝑦 = 𝑧 → ((𝐴 ·s 𝑦) = 𝐵 ↔ (𝐴 ·s 𝑧) = 𝐵))
2322cbvrexvw 3236 . 2 (∃𝑦 No (𝐴 ·s 𝑦) = 𝐵 ↔ ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵)
2416, 20, 233imtr4i 292 1 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑥 No (𝐴 ·s 𝑥) = 1s ) → ∃𝑦 No (𝐴 ·s 𝑦) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068  (class class class)co 7431   No csur 27699   0s c0s 27882   1s c1s 27883   ·s cmuls 28147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-1o 8505  df-2o 8506  df-nadd 8703  df-no 27702  df-slt 27703  df-bday 27704  df-sle 27805  df-sslt 27841  df-scut 27843  df-0s 27884  df-1s 27885  df-made 27901  df-old 27902  df-left 27904  df-right 27905  df-norec 27986  df-norec2 27997  df-adds 28008  df-negs 28068  df-subs 28069  df-muls 28148
This theorem is referenced by:  noreceuw  28232
  Copyright terms: Public domain W3C validator