| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > norecdiv | Structured version Visualization version GIF version | ||
| Description: If a surreal has a reciprocal, then it has any division. (Contributed by Scott Fenton, 12-Mar-2025.) |
| Ref | Expression |
|---|---|
| norecdiv | ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) → ∃𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝑤 ∈ No ) | |
| 2 | simpl3 1194 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝐵 ∈ No ) | |
| 3 | 1, 2 | mulscld 28038 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → (𝑤 ·s 𝐵) ∈ No ) |
| 4 | oveq1 7394 | . . . . . . . 8 ⊢ ((𝐴 ·s 𝑤) = 1s → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵)) | |
| 5 | 4 | adantl 481 | . . . . . . 7 ⊢ ((𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s ) → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵)) |
| 6 | 5 | adantl 481 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵)) |
| 7 | simpl1 1192 | . . . . . . 7 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝐴 ∈ No ) | |
| 8 | 7, 1, 2 | mulsassd 28070 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → ((𝐴 ·s 𝑤) ·s 𝐵) = (𝐴 ·s (𝑤 ·s 𝐵))) |
| 9 | 2 | mulslidd 28046 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → ( 1s ·s 𝐵) = 𝐵) |
| 10 | 6, 8, 9 | 3eqtr3d 2772 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵) |
| 11 | oveq2 7395 | . . . . . . 7 ⊢ (𝑧 = (𝑤 ·s 𝐵) → (𝐴 ·s 𝑧) = (𝐴 ·s (𝑤 ·s 𝐵))) | |
| 12 | 11 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑧 = (𝑤 ·s 𝐵) → ((𝐴 ·s 𝑧) = 𝐵 ↔ (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵)) |
| 13 | 12 | rspcev 3588 | . . . . 5 ⊢ (((𝑤 ·s 𝐵) ∈ No ∧ (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵) → ∃𝑧 ∈ No (𝐴 ·s 𝑧) = 𝐵) |
| 14 | 3, 10, 13 | syl2anc 584 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ (𝑤 ∈ No ∧ (𝐴 ·s 𝑤) = 1s )) → ∃𝑧 ∈ No (𝐴 ·s 𝑧) = 𝐵) |
| 15 | 14 | rexlimdvaa 3135 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) → (∃𝑤 ∈ No (𝐴 ·s 𝑤) = 1s → ∃𝑧 ∈ No (𝐴 ·s 𝑧) = 𝐵)) |
| 16 | 15 | imp 406 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑤 ∈ No (𝐴 ·s 𝑤) = 1s ) → ∃𝑧 ∈ No (𝐴 ·s 𝑧) = 𝐵) |
| 17 | oveq2 7395 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝐴 ·s 𝑥) = (𝐴 ·s 𝑤)) | |
| 18 | 17 | eqeq1d 2731 | . . . 4 ⊢ (𝑥 = 𝑤 → ((𝐴 ·s 𝑥) = 1s ↔ (𝐴 ·s 𝑤) = 1s )) |
| 19 | 18 | cbvrexvw 3216 | . . 3 ⊢ (∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ↔ ∃𝑤 ∈ No (𝐴 ·s 𝑤) = 1s ) |
| 20 | 19 | anbi2i 623 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) ↔ ((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑤 ∈ No (𝐴 ·s 𝑤) = 1s )) |
| 21 | oveq2 7395 | . . . 4 ⊢ (𝑦 = 𝑧 → (𝐴 ·s 𝑦) = (𝐴 ·s 𝑧)) | |
| 22 | 21 | eqeq1d 2731 | . . 3 ⊢ (𝑦 = 𝑧 → ((𝐴 ·s 𝑦) = 𝐵 ↔ (𝐴 ·s 𝑧) = 𝐵)) |
| 23 | 22 | cbvrexvw 3216 | . 2 ⊢ (∃𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵 ↔ ∃𝑧 ∈ No (𝐴 ·s 𝑧) = 𝐵) |
| 24 | 16, 20, 23 | 3imtr4i 292 | 1 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) → ∃𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 (class class class)co 7387 No csur 27551 0s c0s 27734 1s c1s 27735 ·s cmuls 28009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-1o 8434 df-2o 8435 df-nadd 8630 df-no 27554 df-slt 27555 df-bday 27556 df-sle 27657 df-sslt 27693 df-scut 27695 df-0s 27736 df-1s 27737 df-made 27755 df-old 27756 df-left 27758 df-right 27759 df-norec 27845 df-norec2 27856 df-adds 27867 df-negs 27927 df-subs 27928 df-muls 28010 |
| This theorem is referenced by: noreceuw 28094 |
| Copyright terms: Public domain | W3C validator |