MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  norecdiv Structured version   Visualization version   GIF version

Theorem norecdiv 28098
Description: If a surreal has a reciprocal, then it has any division. (Contributed by Scott Fenton, 12-Mar-2025.)
Assertion
Ref Expression
norecdiv (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑥 No (𝐴 ·s 𝑥) = 1s ) → ∃𝑦 No (𝐴 ·s 𝑦) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem norecdiv
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝑤 No )
2 simpl3 1194 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝐵 No )
31, 2mulscld 28043 . . . . 5 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → (𝑤 ·s 𝐵) ∈ No )
4 oveq1 7356 . . . . . . . 8 ((𝐴 ·s 𝑤) = 1s → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵))
54adantl 481 . . . . . . 7 ((𝑤 No ∧ (𝐴 ·s 𝑤) = 1s ) → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵))
65adantl 481 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → ((𝐴 ·s 𝑤) ·s 𝐵) = ( 1s ·s 𝐵))
7 simpl1 1192 . . . . . . 7 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → 𝐴 No )
87, 1, 2mulsassd 28075 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → ((𝐴 ·s 𝑤) ·s 𝐵) = (𝐴 ·s (𝑤 ·s 𝐵)))
92mulslidd 28051 . . . . . 6 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → ( 1s ·s 𝐵) = 𝐵)
106, 8, 93eqtr3d 2772 . . . . 5 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵)
11 oveq2 7357 . . . . . . 7 (𝑧 = (𝑤 ·s 𝐵) → (𝐴 ·s 𝑧) = (𝐴 ·s (𝑤 ·s 𝐵)))
1211eqeq1d 2731 . . . . . 6 (𝑧 = (𝑤 ·s 𝐵) → ((𝐴 ·s 𝑧) = 𝐵 ↔ (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵))
1312rspcev 3577 . . . . 5 (((𝑤 ·s 𝐵) ∈ No ∧ (𝐴 ·s (𝑤 ·s 𝐵)) = 𝐵) → ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵)
143, 10, 13syl2anc 584 . . . 4 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ (𝑤 No ∧ (𝐴 ·s 𝑤) = 1s )) → ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵)
1514rexlimdvaa 3131 . . 3 ((𝐴 No 𝐴 ≠ 0s𝐵 No ) → (∃𝑤 No (𝐴 ·s 𝑤) = 1s → ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵))
1615imp 406 . 2 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑤 No (𝐴 ·s 𝑤) = 1s ) → ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵)
17 oveq2 7357 . . . . 5 (𝑥 = 𝑤 → (𝐴 ·s 𝑥) = (𝐴 ·s 𝑤))
1817eqeq1d 2731 . . . 4 (𝑥 = 𝑤 → ((𝐴 ·s 𝑥) = 1s ↔ (𝐴 ·s 𝑤) = 1s ))
1918cbvrexvw 3208 . . 3 (∃𝑥 No (𝐴 ·s 𝑥) = 1s ↔ ∃𝑤 No (𝐴 ·s 𝑤) = 1s )
2019anbi2i 623 . 2 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑥 No (𝐴 ·s 𝑥) = 1s ) ↔ ((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑤 No (𝐴 ·s 𝑤) = 1s ))
21 oveq2 7357 . . . 4 (𝑦 = 𝑧 → (𝐴 ·s 𝑦) = (𝐴 ·s 𝑧))
2221eqeq1d 2731 . . 3 (𝑦 = 𝑧 → ((𝐴 ·s 𝑦) = 𝐵 ↔ (𝐴 ·s 𝑧) = 𝐵))
2322cbvrexvw 3208 . 2 (∃𝑦 No (𝐴 ·s 𝑦) = 𝐵 ↔ ∃𝑧 No (𝐴 ·s 𝑧) = 𝐵)
2416, 20, 233imtr4i 292 1 (((𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃𝑥 No (𝐴 ·s 𝑥) = 1s ) → ∃𝑦 No (𝐴 ·s 𝑦) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  (class class class)co 7349   No csur 27549   0s c0s 27736   1s c1s 27737   ·s cmuls 28014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-1o 8388  df-2o 8389  df-nadd 8584  df-no 27552  df-slt 27553  df-bday 27554  df-sle 27655  df-sslt 27692  df-scut 27694  df-0s 27738  df-1s 27739  df-made 27757  df-old 27758  df-left 27760  df-right 27761  df-norec 27850  df-norec2 27861  df-adds 27872  df-negs 27932  df-subs 27933  df-muls 28015
This theorem is referenced by:  noreceuw  28099
  Copyright terms: Public domain W3C validator