![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmatmat | Structured version Visualization version GIF version |
Description: An 𝑁 x 𝑁 diagonal matrix over (the ring) 𝑅 is an 𝑁 x 𝑁 matrix over (the ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
Ref | Expression |
---|---|
dmatval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
dmatval.b | ⊢ 𝐵 = (Base‘𝐴) |
dmatval.0 | ⊢ 0 = (0g‘𝑅) |
dmatval.d | ⊢ 𝐷 = (𝑁 DMat 𝑅) |
Ref | Expression |
---|---|
dmatmat | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝐷 → 𝑀 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmatval.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | dmatval.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
3 | dmatval.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
4 | dmatval.d | . . 3 ⊢ 𝐷 = (𝑁 DMat 𝑅) | |
5 | 1, 2, 3, 4 | dmatel 20667 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝐷 ↔ (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )))) |
6 | simpl 476 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → 𝑀 ∈ 𝐵) | |
7 | 5, 6 | syl6bi 245 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝐷 → 𝑀 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ≠ wne 2999 ∀wral 3117 ‘cfv 6123 (class class class)co 6905 Fincfn 8222 Basecbs 16222 0gc0g 16453 Mat cmat 20580 DMat cdmat 20662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-iota 6086 df-fun 6125 df-fv 6131 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-dmat 20664 |
This theorem is referenced by: dmatmul 20671 dmatsubcl 20672 dmatsgrp 20673 dmatmulcl 20674 dmatcrng 20676 dmatscmcl 20677 |
Copyright terms: Public domain | W3C validator |