| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmatmat | Structured version Visualization version GIF version | ||
| Description: An 𝑁 x 𝑁 diagonal matrix over (the ring) 𝑅 is an 𝑁 x 𝑁 matrix over (the ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
| Ref | Expression |
|---|---|
| dmatval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| dmatval.b | ⊢ 𝐵 = (Base‘𝐴) |
| dmatval.0 | ⊢ 0 = (0g‘𝑅) |
| dmatval.d | ⊢ 𝐷 = (𝑁 DMat 𝑅) |
| Ref | Expression |
|---|---|
| dmatmat | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝐷 → 𝑀 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmatval.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | dmatval.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | dmatval.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 4 | dmatval.d | . . 3 ⊢ 𝐷 = (𝑁 DMat 𝑅) | |
| 5 | 1, 2, 3, 4 | dmatel 22356 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝐷 ↔ (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )))) |
| 6 | simpl 482 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → 𝑀 ∈ 𝐵) | |
| 7 | 5, 6 | biimtrdi 253 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝐷 → 𝑀 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ‘cfv 6499 (class class class)co 7369 Fincfn 8895 Basecbs 17155 0gc0g 17378 Mat cmat 22270 DMat cdmat 22351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-dmat 22353 |
| This theorem is referenced by: dmatmul 22360 dmatsubcl 22361 dmatsgrp 22362 dmatmulcl 22363 dmatcrng 22365 dmatscmcl 22366 |
| Copyright terms: Public domain | W3C validator |