Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmatmat | Structured version Visualization version GIF version |
Description: An 𝑁 x 𝑁 diagonal matrix over (the ring) 𝑅 is an 𝑁 x 𝑁 matrix over (the ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
Ref | Expression |
---|---|
dmatval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
dmatval.b | ⊢ 𝐵 = (Base‘𝐴) |
dmatval.0 | ⊢ 0 = (0g‘𝑅) |
dmatval.d | ⊢ 𝐷 = (𝑁 DMat 𝑅) |
Ref | Expression |
---|---|
dmatmat | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝐷 → 𝑀 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmatval.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | dmatval.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
3 | dmatval.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
4 | dmatval.d | . . 3 ⊢ 𝐷 = (𝑁 DMat 𝑅) | |
5 | 1, 2, 3, 4 | dmatel 21642 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝐷 ↔ (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )))) |
6 | simpl 483 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → 𝑀 ∈ 𝐵) | |
7 | 5, 6 | syl6bi 252 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝐷 → 𝑀 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 Basecbs 16912 0gc0g 17150 Mat cmat 21554 DMat cdmat 21637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-dmat 21639 |
This theorem is referenced by: dmatmul 21646 dmatsubcl 21647 dmatsgrp 21648 dmatmulcl 21649 dmatcrng 21651 dmatscmcl 21652 |
Copyright terms: Public domain | W3C validator |