MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatmat Structured version   Visualization version   GIF version

Theorem dmatmat 22516
Description: An 𝑁 x 𝑁 diagonal matrix over (the ring) 𝑅 is an 𝑁 x 𝑁 matrix over (the ring) 𝑅. (Contributed by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatval.a 𝐴 = (𝑁 Mat 𝑅)
dmatval.b 𝐵 = (Base‘𝐴)
dmatval.0 0 = (0g𝑅)
dmatval.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatmat ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝐷𝑀𝐵))

Proof of Theorem dmatmat
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmatval.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 dmatval.b . . 3 𝐵 = (Base‘𝐴)
3 dmatval.0 . . 3 0 = (0g𝑅)
4 dmatval.d . . 3 𝐷 = (𝑁 DMat 𝑅)
51, 2, 3, 4dmatel 22515 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝐷 ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ))))
6 simpl 482 . 2 ((𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → 𝑀𝐵)
75, 6biimtrdi 253 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝐷𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  cfv 6563  (class class class)co 7431  Fincfn 8984  Basecbs 17245  0gc0g 17486   Mat cmat 22427   DMat cdmat 22510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-dmat 22512
This theorem is referenced by:  dmatmul  22519  dmatsubcl  22520  dmatsgrp  22521  dmatmulcl  22522  dmatcrng  22524  dmatscmcl  22525
  Copyright terms: Public domain W3C validator