| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmatmat | Structured version Visualization version GIF version | ||
| Description: An 𝑁 x 𝑁 diagonal matrix over (the ring) 𝑅 is an 𝑁 x 𝑁 matrix over (the ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
| Ref | Expression |
|---|---|
| dmatval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| dmatval.b | ⊢ 𝐵 = (Base‘𝐴) |
| dmatval.0 | ⊢ 0 = (0g‘𝑅) |
| dmatval.d | ⊢ 𝐷 = (𝑁 DMat 𝑅) |
| Ref | Expression |
|---|---|
| dmatmat | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝐷 → 𝑀 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmatval.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | dmatval.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | dmatval.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 4 | dmatval.d | . . 3 ⊢ 𝐷 = (𝑁 DMat 𝑅) | |
| 5 | 1, 2, 3, 4 | dmatel 22378 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝐷 ↔ (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )))) |
| 6 | simpl 482 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → 𝑀 ∈ 𝐵) | |
| 7 | 5, 6 | biimtrdi 253 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝐷 → 𝑀 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ‘cfv 6482 (class class class)co 7349 Fincfn 8872 Basecbs 17120 0gc0g 17343 Mat cmat 22292 DMat cdmat 22373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-dmat 22375 |
| This theorem is referenced by: dmatmul 22382 dmatsubcl 22383 dmatsgrp 22384 dmatmulcl 22385 dmatcrng 22387 dmatscmcl 22388 |
| Copyright terms: Public domain | W3C validator |