MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatmat Structured version   Visualization version   GIF version

Theorem dmatmat 22409
Description: An 𝑁 x 𝑁 diagonal matrix over (the ring) 𝑅 is an 𝑁 x 𝑁 matrix over (the ring) 𝑅. (Contributed by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatval.a 𝐴 = (𝑁 Mat 𝑅)
dmatval.b 𝐵 = (Base‘𝐴)
dmatval.0 0 = (0g𝑅)
dmatval.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatmat ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝐷𝑀𝐵))

Proof of Theorem dmatmat
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmatval.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 dmatval.b . . 3 𝐵 = (Base‘𝐴)
3 dmatval.0 . . 3 0 = (0g𝑅)
4 dmatval.d . . 3 𝐷 = (𝑁 DMat 𝑅)
51, 2, 3, 4dmatel 22408 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝐷 ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ))))
6 simpl 482 . 2 ((𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → 𝑀𝐵)
75, 6biimtrdi 253 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝐷𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  cfv 6481  (class class class)co 7346  Fincfn 8869  Basecbs 17120  0gc0g 17343   Mat cmat 22322   DMat cdmat 22403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-dmat 22405
This theorem is referenced by:  dmatmul  22412  dmatsubcl  22413  dmatsgrp  22414  dmatmulcl  22415  dmatcrng  22417  dmatscmcl  22418
  Copyright terms: Public domain W3C validator