MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatmat Structured version   Visualization version   GIF version

Theorem dmatmat 21643
Description: An 𝑁 x 𝑁 diagonal matrix over (the ring) 𝑅 is an 𝑁 x 𝑁 matrix over (the ring) 𝑅. (Contributed by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatval.a 𝐴 = (𝑁 Mat 𝑅)
dmatval.b 𝐵 = (Base‘𝐴)
dmatval.0 0 = (0g𝑅)
dmatval.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatmat ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝐷𝑀𝐵))

Proof of Theorem dmatmat
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmatval.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 dmatval.b . . 3 𝐵 = (Base‘𝐴)
3 dmatval.0 . . 3 0 = (0g𝑅)
4 dmatval.d . . 3 𝐷 = (𝑁 DMat 𝑅)
51, 2, 3, 4dmatel 21642 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝐷 ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ))))
6 simpl 483 . 2 ((𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → 𝑀𝐵)
75, 6syl6bi 252 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝐷𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  cfv 6433  (class class class)co 7275  Fincfn 8733  Basecbs 16912  0gc0g 17150   Mat cmat 21554   DMat cdmat 21637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-dmat 21639
This theorem is referenced by:  dmatmul  21646  dmatsubcl  21647  dmatsgrp  21648  dmatmulcl  21649  dmatcrng  21651  dmatscmcl  21652
  Copyright terms: Public domain W3C validator