![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmatid | Structured version Visualization version GIF version |
Description: The identity matrix is a diagonal matrix. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
Ref | Expression |
---|---|
dmatid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
dmatid.b | ⊢ 𝐵 = (Base‘𝐴) |
dmatid.0 | ⊢ 0 = (0g‘𝑅) |
dmatid.d | ⊢ 𝐷 = (𝑁 DMat 𝑅) |
Ref | Expression |
---|---|
dmatid | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmatid.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | 1 | matring 22338 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
3 | dmatid.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
4 | eqid 2728 | . . . 4 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
5 | 3, 4 | ringidcl 20195 | . . 3 ⊢ (𝐴 ∈ Ring → (1r‘𝐴) ∈ 𝐵) |
6 | 2, 5 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝐵) |
7 | eqid 2728 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
8 | dmatid.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
9 | simpl 482 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin) | |
10 | 9 | adantr 480 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑁 ∈ Fin) |
11 | simpr 484 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring) | |
12 | 11 | adantr 480 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑅 ∈ Ring) |
13 | simpl 482 | . . . . . . 7 ⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) | |
14 | 13 | adantl 481 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) |
15 | simpr 484 | . . . . . . 7 ⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | |
16 | 15 | adantl 481 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) |
17 | 1, 7, 8, 10, 12, 14, 16, 4 | mat1ov 22343 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(1r‘𝐴)𝑗) = if(𝑖 = 𝑗, (1r‘𝑅), 0 )) |
18 | ifnefalse 4536 | . . . . 5 ⊢ (𝑖 ≠ 𝑗 → if(𝑖 = 𝑗, (1r‘𝑅), 0 ) = 0 ) | |
19 | 17, 18 | sylan9eq 2788 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → (𝑖(1r‘𝐴)𝑗) = 0 ) |
20 | 19 | ex 412 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖 ≠ 𝑗 → (𝑖(1r‘𝐴)𝑗) = 0 )) |
21 | 20 | ralrimivva 3196 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖(1r‘𝐴)𝑗) = 0 )) |
22 | dmatid.d | . . 3 ⊢ 𝐷 = (𝑁 DMat 𝑅) | |
23 | 1, 3, 8, 22 | dmatel 22388 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((1r‘𝐴) ∈ 𝐷 ↔ ((1r‘𝐴) ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖(1r‘𝐴)𝑗) = 0 )))) |
24 | 6, 21, 23 | mpbir2and 712 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ∀wral 3057 ifcif 4524 ‘cfv 6542 (class class class)co 7414 Fincfn 8957 Basecbs 17173 0gc0g 17414 1rcur 20114 Ringcrg 20166 Mat cmat 22300 DMat cdmat 22383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-ot 4633 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-sup 9459 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-fz 13511 df-fzo 13654 df-seq 13993 df-hash 14316 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-hom 17250 df-cco 17251 df-0g 17416 df-gsum 17417 df-prds 17422 df-pws 17424 df-mre 17559 df-mrc 17560 df-acs 17562 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-mhm 18733 df-submnd 18734 df-grp 18886 df-minusg 18887 df-sbg 18888 df-mulg 19017 df-subg 19071 df-ghm 19161 df-cntz 19261 df-cmn 19730 df-abl 19731 df-mgp 20068 df-rng 20086 df-ur 20115 df-ring 20168 df-subrg 20501 df-lmod 20738 df-lss 20809 df-sra 21051 df-rgmod 21052 df-dsmm 21659 df-frlm 21674 df-mamu 22279 df-mat 22301 df-dmat 22385 |
This theorem is referenced by: dmatsgrp 22394 dmatsrng 22396 scmatscmiddistr 22403 |
Copyright terms: Public domain | W3C validator |