![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmatid | Structured version Visualization version GIF version |
Description: The identity matrix is a diagonal matrix. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
Ref | Expression |
---|---|
dmatid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
dmatid.b | ⊢ 𝐵 = (Base‘𝐴) |
dmatid.0 | ⊢ 0 = (0g‘𝑅) |
dmatid.d | ⊢ 𝐷 = (𝑁 DMat 𝑅) |
Ref | Expression |
---|---|
dmatid | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmatid.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | 1 | matring 21945 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
3 | dmatid.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
4 | eqid 2733 | . . . 4 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
5 | 3, 4 | ringidcl 20083 | . . 3 ⊢ (𝐴 ∈ Ring → (1r‘𝐴) ∈ 𝐵) |
6 | 2, 5 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝐵) |
7 | eqid 2733 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
8 | dmatid.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
9 | simpl 484 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin) | |
10 | 9 | adantr 482 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑁 ∈ Fin) |
11 | simpr 486 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring) | |
12 | 11 | adantr 482 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑅 ∈ Ring) |
13 | simpl 484 | . . . . . . 7 ⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) | |
14 | 13 | adantl 483 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) |
15 | simpr 486 | . . . . . . 7 ⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | |
16 | 15 | adantl 483 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) |
17 | 1, 7, 8, 10, 12, 14, 16, 4 | mat1ov 21950 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(1r‘𝐴)𝑗) = if(𝑖 = 𝑗, (1r‘𝑅), 0 )) |
18 | ifnefalse 4541 | . . . . 5 ⊢ (𝑖 ≠ 𝑗 → if(𝑖 = 𝑗, (1r‘𝑅), 0 ) = 0 ) | |
19 | 17, 18 | sylan9eq 2793 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → (𝑖(1r‘𝐴)𝑗) = 0 ) |
20 | 19 | ex 414 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖 ≠ 𝑗 → (𝑖(1r‘𝐴)𝑗) = 0 )) |
21 | 20 | ralrimivva 3201 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖(1r‘𝐴)𝑗) = 0 )) |
22 | dmatid.d | . . 3 ⊢ 𝐷 = (𝑁 DMat 𝑅) | |
23 | 1, 3, 8, 22 | dmatel 21995 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((1r‘𝐴) ∈ 𝐷 ↔ ((1r‘𝐴) ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖(1r‘𝐴)𝑗) = 0 )))) |
24 | 6, 21, 23 | mpbir2and 712 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 ifcif 4529 ‘cfv 6544 (class class class)co 7409 Fincfn 8939 Basecbs 17144 0gc0g 17385 1rcur 20004 Ringcrg 20056 Mat cmat 21907 DMat cdmat 21990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-ot 4638 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-sup 9437 df-oi 9505 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-fzo 13628 df-seq 13967 df-hash 14291 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-hom 17221 df-cco 17222 df-0g 17387 df-gsum 17388 df-prds 17393 df-pws 17395 df-mre 17530 df-mrc 17531 df-acs 17533 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-mhm 18671 df-submnd 18672 df-grp 18822 df-minusg 18823 df-sbg 18824 df-mulg 18951 df-subg 19003 df-ghm 19090 df-cntz 19181 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-ring 20058 df-subrg 20317 df-lmod 20473 df-lss 20543 df-sra 20785 df-rgmod 20786 df-dsmm 21287 df-frlm 21302 df-mamu 21886 df-mat 21908 df-dmat 21992 |
This theorem is referenced by: dmatsgrp 22001 dmatsrng 22003 scmatscmiddistr 22010 |
Copyright terms: Public domain | W3C validator |