Step | Hyp | Ref
| Expression |
1 | | oveq 7261 |
. . . . . 6
⊢ (𝑚 = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 )) → (𝑖𝑚𝑗) = (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))𝑗)) |
2 | 1 | eqeq1d 2740 |
. . . . 5
⊢ (𝑚 = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 )) → ((𝑖𝑚𝑗) = 0 ↔ (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))𝑗) = 0 )) |
3 | 2 | imbi2d 340 |
. . . 4
⊢ (𝑚 = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 )) → ((𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 ) ↔ (𝑖 ≠ 𝑗 → (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))𝑗) = 0 ))) |
4 | 3 | 2ralbidv 3122 |
. . 3
⊢ (𝑚 = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 )) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 ) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))𝑗) = 0 ))) |
5 | | dmatid.a |
. . . 4
⊢ 𝐴 = (𝑁 Mat 𝑅) |
6 | | eqid 2738 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
7 | | dmatid.b |
. . . 4
⊢ 𝐵 = (Base‘𝐴) |
8 | | simpll 763 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 𝑁 ∈ Fin) |
9 | | simplr 765 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 𝑅 ∈ Ring) |
10 | 9 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑅 ∈ Ring) |
11 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐴) =
(Base‘𝐴) |
12 | | simp2 1135 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑥 ∈ 𝑁) |
13 | | simp3 1136 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑦 ∈ 𝑁) |
14 | | dmatid.0 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑅) |
15 | | dmatid.d |
. . . . . . . . . . 11
⊢ 𝐷 = (𝑁 DMat 𝑅) |
16 | 5, 11, 14, 15 | dmatmat 21551 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 ∈ 𝐷 → 𝑋 ∈ (Base‘𝐴))) |
17 | 16 | imp 406 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋 ∈ 𝐷) → 𝑋 ∈ (Base‘𝐴)) |
18 | 17 | adantrr 713 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 𝑋 ∈ (Base‘𝐴)) |
19 | 18 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑋 ∈ (Base‘𝐴)) |
20 | 5, 6, 11, 12, 13, 19 | matecld 21483 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥𝑋𝑦) ∈ (Base‘𝑅)) |
21 | 5, 11, 14, 15 | dmatmat 21551 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌 ∈ 𝐷 → 𝑌 ∈ (Base‘𝐴))) |
22 | 21 | imp 406 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌 ∈ 𝐷) → 𝑌 ∈ (Base‘𝐴)) |
23 | 22 | adantrl 712 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 𝑌 ∈ (Base‘𝐴)) |
24 | 23 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑌 ∈ (Base‘𝐴)) |
25 | 5, 6, 11, 12, 13, 24 | matecld 21483 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥𝑌𝑦) ∈ (Base‘𝑅)) |
26 | | eqid 2738 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
27 | 6, 26 | ringcl 19715 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑥𝑋𝑦) ∈ (Base‘𝑅) ∧ (𝑥𝑌𝑦) ∈ (Base‘𝑅)) → ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅)) |
28 | 10, 20, 25, 27 | syl3anc 1369 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅)) |
29 | 6, 14 | ring0cl 19723 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 0 ∈
(Base‘𝑅)) |
30 | 29 | adantl 481 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 ∈
(Base‘𝑅)) |
31 | 30 | adantr 480 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 0 ∈ (Base‘𝑅)) |
32 | 31 | 3ad2ant1 1131 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 0 ∈ (Base‘𝑅)) |
33 | 28, 32 | ifcld 4502 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ) ∈ (Base‘𝑅)) |
34 | 5, 6, 7, 8, 9, 33 | matbas2d 21480 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 )) ∈ 𝐵) |
35 | | eqidd 2739 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 )) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))) |
36 | | eqeq12 2755 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑥 = 𝑦 ↔ 𝑖 = 𝑗)) |
37 | | oveq12 7264 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑥𝑋𝑦) = (𝑖𝑋𝑗)) |
38 | | oveq12 7264 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑥𝑌𝑦) = (𝑖𝑌𝑗)) |
39 | 37, 38 | oveq12d 7273 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)) = ((𝑖𝑋𝑗)(.r‘𝑅)(𝑖𝑌𝑗))) |
40 | 36, 39 | ifbieq1d 4480 |
. . . . . . . 8
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ) = if(𝑖 = 𝑗, ((𝑖𝑋𝑗)(.r‘𝑅)(𝑖𝑌𝑗)), 0 )) |
41 | 40 | adantl 481 |
. . . . . . 7
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) ∧ (𝑥 = 𝑖 ∧ 𝑦 = 𝑗)) → if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ) = if(𝑖 = 𝑗, ((𝑖𝑋𝑗)(.r‘𝑅)(𝑖𝑌𝑗)), 0 )) |
42 | | simplrl 773 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → 𝑖 ∈ 𝑁) |
43 | | simplrr 774 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → 𝑗 ∈ 𝑁) |
44 | | ovex 7288 |
. . . . . . . . 9
⊢ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑖𝑌𝑗)) ∈ V |
45 | 14 | fvexi 6770 |
. . . . . . . . 9
⊢ 0 ∈
V |
46 | 44, 45 | ifex 4506 |
. . . . . . . 8
⊢ if(𝑖 = 𝑗, ((𝑖𝑋𝑗)(.r‘𝑅)(𝑖𝑌𝑗)), 0 ) ∈
V |
47 | 46 | a1i 11 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → if(𝑖 = 𝑗, ((𝑖𝑋𝑗)(.r‘𝑅)(𝑖𝑌𝑗)), 0 ) ∈
V) |
48 | 35, 41, 42, 43, 47 | ovmpod 7403 |
. . . . . 6
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))𝑗) = if(𝑖 = 𝑗, ((𝑖𝑋𝑗)(.r‘𝑅)(𝑖𝑌𝑗)), 0 )) |
49 | | ifnefalse 4468 |
. . . . . . 7
⊢ (𝑖 ≠ 𝑗 → if(𝑖 = 𝑗, ((𝑖𝑋𝑗)(.r‘𝑅)(𝑖𝑌𝑗)), 0 ) = 0 ) |
50 | 49 | adantl 481 |
. . . . . 6
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → if(𝑖 = 𝑗, ((𝑖𝑋𝑗)(.r‘𝑅)(𝑖𝑌𝑗)), 0 ) = 0 ) |
51 | 48, 50 | eqtrd 2778 |
. . . . 5
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))𝑗) = 0 ) |
52 | 51 | ex 412 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖 ≠ 𝑗 → (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))𝑗) = 0 )) |
53 | 52 | ralrimivva 3114 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))𝑗) = 0 )) |
54 | 4, 34, 53 | elrabd 3619 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 )) ∈ {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
55 | 5, 7, 14, 15 | dmatmul 21554 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑋(.r‘𝐴)𝑌) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))) |
56 | 5, 7, 14, 15 | dmatval 21549 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐷 = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
57 | 56 | adantr 480 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 𝐷 = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
58 | 54, 55, 57 | 3eltr4d 2854 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑋(.r‘𝐴)𝑌) ∈ 𝐷) |