Step | Hyp | Ref
| Expression |
1 | | dmatid.a |
. . . 4
⊢ 𝐴 = (𝑁 Mat 𝑅) |
2 | | eqid 2778 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
3 | | dmatid.b |
. . . 4
⊢ 𝐵 = (Base‘𝐴) |
4 | | simpll 757 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 𝑁 ∈ Fin) |
5 | | simplr 759 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 𝑅 ∈ Ring) |
6 | 5 | 3ad2ant1 1124 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑅 ∈ Ring) |
7 | | eqid 2778 |
. . . . . . 7
⊢
(Base‘𝐴) =
(Base‘𝐴) |
8 | | simp2 1128 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑥 ∈ 𝑁) |
9 | | simp3 1129 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑦 ∈ 𝑁) |
10 | | dmatid.0 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑅) |
11 | | dmatid.d |
. . . . . . . . . . 11
⊢ 𝐷 = (𝑁 DMat 𝑅) |
12 | 1, 7, 10, 11 | dmatmat 20709 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 ∈ 𝐷 → 𝑋 ∈ (Base‘𝐴))) |
13 | 12 | imp 397 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋 ∈ 𝐷) → 𝑋 ∈ (Base‘𝐴)) |
14 | 13 | adantrr 707 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 𝑋 ∈ (Base‘𝐴)) |
15 | 14 | 3ad2ant1 1124 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑋 ∈ (Base‘𝐴)) |
16 | 1, 2, 7, 8, 9, 15 | matecld 20640 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥𝑋𝑦) ∈ (Base‘𝑅)) |
17 | 1, 7, 10, 11 | dmatmat 20709 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌 ∈ 𝐷 → 𝑌 ∈ (Base‘𝐴))) |
18 | 17 | imp 397 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌 ∈ 𝐷) → 𝑌 ∈ (Base‘𝐴)) |
19 | 18 | adantrl 706 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 𝑌 ∈ (Base‘𝐴)) |
20 | 19 | 3ad2ant1 1124 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑌 ∈ (Base‘𝐴)) |
21 | 1, 2, 7, 8, 9, 20 | matecld 20640 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥𝑌𝑦) ∈ (Base‘𝑅)) |
22 | | eqid 2778 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
23 | 2, 22 | ringcl 18952 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑥𝑋𝑦) ∈ (Base‘𝑅) ∧ (𝑥𝑌𝑦) ∈ (Base‘𝑅)) → ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅)) |
24 | 6, 16, 21, 23 | syl3anc 1439 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅)) |
25 | 2, 10 | ring0cl 18960 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 0 ∈
(Base‘𝑅)) |
26 | 25 | adantl 475 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 ∈
(Base‘𝑅)) |
27 | 26 | adantr 474 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 0 ∈ (Base‘𝑅)) |
28 | 27 | 3ad2ant1 1124 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 0 ∈ (Base‘𝑅)) |
29 | 24, 28 | ifcld 4352 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ) ∈ (Base‘𝑅)) |
30 | 1, 2, 3, 4, 5, 29 | matbas2d 20637 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 )) ∈ 𝐵) |
31 | | eqidd 2779 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 )) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))) |
32 | | eqeq12 2791 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑥 = 𝑦 ↔ 𝑖 = 𝑗)) |
33 | | oveq12 6933 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑥𝑋𝑦) = (𝑖𝑋𝑗)) |
34 | | oveq12 6933 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑥𝑌𝑦) = (𝑖𝑌𝑗)) |
35 | 33, 34 | oveq12d 6942 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)) = ((𝑖𝑋𝑗)(.r‘𝑅)(𝑖𝑌𝑗))) |
36 | 32, 35 | ifbieq1d 4330 |
. . . . . . . 8
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ) = if(𝑖 = 𝑗, ((𝑖𝑋𝑗)(.r‘𝑅)(𝑖𝑌𝑗)), 0 )) |
37 | 36 | adantl 475 |
. . . . . . 7
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) ∧ (𝑥 = 𝑖 ∧ 𝑦 = 𝑗)) → if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ) = if(𝑖 = 𝑗, ((𝑖𝑋𝑗)(.r‘𝑅)(𝑖𝑌𝑗)), 0 )) |
38 | | simplrl 767 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → 𝑖 ∈ 𝑁) |
39 | | simplrr 768 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → 𝑗 ∈ 𝑁) |
40 | | ovex 6956 |
. . . . . . . . 9
⊢ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑖𝑌𝑗)) ∈ V |
41 | 10 | fvexi 6462 |
. . . . . . . . 9
⊢ 0 ∈
V |
42 | 40, 41 | ifex 4355 |
. . . . . . . 8
⊢ if(𝑖 = 𝑗, ((𝑖𝑋𝑗)(.r‘𝑅)(𝑖𝑌𝑗)), 0 ) ∈
V |
43 | 42 | a1i 11 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → if(𝑖 = 𝑗, ((𝑖𝑋𝑗)(.r‘𝑅)(𝑖𝑌𝑗)), 0 ) ∈
V) |
44 | 31, 37, 38, 39, 43 | ovmpt2d 7067 |
. . . . . 6
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))𝑗) = if(𝑖 = 𝑗, ((𝑖𝑋𝑗)(.r‘𝑅)(𝑖𝑌𝑗)), 0 )) |
45 | | ifnefalse 4319 |
. . . . . . 7
⊢ (𝑖 ≠ 𝑗 → if(𝑖 = 𝑗, ((𝑖𝑋𝑗)(.r‘𝑅)(𝑖𝑌𝑗)), 0 ) = 0 ) |
46 | 45 | adantl 475 |
. . . . . 6
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → if(𝑖 = 𝑗, ((𝑖𝑋𝑗)(.r‘𝑅)(𝑖𝑌𝑗)), 0 ) = 0 ) |
47 | 44, 46 | eqtrd 2814 |
. . . . 5
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))𝑗) = 0 ) |
48 | 47 | ex 403 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖 ≠ 𝑗 → (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))𝑗) = 0 )) |
49 | 48 | ralrimivva 3153 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))𝑗) = 0 )) |
50 | | oveq 6930 |
. . . . . . 7
⊢ (𝑚 = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 )) → (𝑖𝑚𝑗) = (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))𝑗)) |
51 | 50 | eqeq1d 2780 |
. . . . . 6
⊢ (𝑚 = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 )) → ((𝑖𝑚𝑗) = 0 ↔ (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))𝑗) = 0 )) |
52 | 51 | imbi2d 332 |
. . . . 5
⊢ (𝑚 = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 )) → ((𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 ) ↔ (𝑖 ≠ 𝑗 → (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))𝑗) = 0 ))) |
53 | 52 | 2ralbidv 3171 |
. . . 4
⊢ (𝑚 = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 )) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 ) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))𝑗) = 0 ))) |
54 | 53 | elrab 3572 |
. . 3
⊢ ((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 )) ∈ {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ↔ ((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 )) ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))𝑗) = 0 ))) |
55 | 30, 49, 54 | sylanbrc 578 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 )) ∈ {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
56 | 1, 3, 10, 11 | dmatmul 20712 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑋(.r‘𝐴)𝑌) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))) |
57 | 1, 3, 10, 11 | dmatval 20707 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐷 = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
58 | 57 | adantr 474 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 𝐷 = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
59 | 55, 56, 58 | 3eltr4d 2874 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑋(.r‘𝐴)𝑌) ∈ 𝐷) |