MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatmulcl Structured version   Visualization version   GIF version

Theorem dmatmulcl 22522
Description: The product of two diagonal matrices is a diagonal matrix. (Contributed by AV, 20-Aug-2019.) (Revised by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatid.a 𝐴 = (𝑁 Mat 𝑅)
dmatid.b 𝐵 = (Base‘𝐴)
dmatid.0 0 = (0g𝑅)
dmatid.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatmulcl (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(.r𝐴)𝑌) ∈ 𝐷)

Proof of Theorem dmatmulcl
Dummy variables 𝑖 𝑗 𝑥 𝑦 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq 7437 . . . . . 6 (𝑚 = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 )) → (𝑖𝑚𝑗) = (𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ))𝑗))
21eqeq1d 2737 . . . . 5 (𝑚 = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 )) → ((𝑖𝑚𝑗) = 0 ↔ (𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ))𝑗) = 0 ))
32imbi2d 340 . . . 4 (𝑚 = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 )) → ((𝑖𝑗 → (𝑖𝑚𝑗) = 0 ) ↔ (𝑖𝑗 → (𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ))𝑗) = 0 )))
432ralbidv 3219 . . 3 (𝑚 = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 )) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 ) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ))𝑗) = 0 )))
5 dmatid.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
6 eqid 2735 . . . 4 (Base‘𝑅) = (Base‘𝑅)
7 dmatid.b . . . 4 𝐵 = (Base‘𝐴)
8 simpll 767 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑁 ∈ Fin)
9 simplr 769 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑅 ∈ Ring)
1093ad2ant1 1132 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑅 ∈ Ring)
11 eqid 2735 . . . . . . 7 (Base‘𝐴) = (Base‘𝐴)
12 simp2 1136 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑥𝑁)
13 simp3 1137 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑦𝑁)
14 dmatid.0 . . . . . . . . . . 11 0 = (0g𝑅)
15 dmatid.d . . . . . . . . . . 11 𝐷 = (𝑁 DMat 𝑅)
165, 11, 14, 15dmatmat 22516 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐷𝑋 ∈ (Base‘𝐴)))
1716imp 406 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋𝐷) → 𝑋 ∈ (Base‘𝐴))
1817adantrr 717 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋 ∈ (Base‘𝐴))
19183ad2ant1 1132 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑋 ∈ (Base‘𝐴))
205, 6, 11, 12, 13, 19matecld 22448 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑥𝑋𝑦) ∈ (Base‘𝑅))
215, 11, 14, 15dmatmat 22516 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌𝐷𝑌 ∈ (Base‘𝐴)))
2221imp 406 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐷) → 𝑌 ∈ (Base‘𝐴))
2322adantrl 716 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑌 ∈ (Base‘𝐴))
24233ad2ant1 1132 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑌 ∈ (Base‘𝐴))
255, 6, 11, 12, 13, 24matecld 22448 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑥𝑌𝑦) ∈ (Base‘𝑅))
26 eqid 2735 . . . . . . 7 (.r𝑅) = (.r𝑅)
276, 26ringcl 20268 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥𝑋𝑦) ∈ (Base‘𝑅) ∧ (𝑥𝑌𝑦) ∈ (Base‘𝑅)) → ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅))
2810, 20, 25, 27syl3anc 1370 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅))
296, 14ring0cl 20281 . . . . . . . 8 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
3029adantl 481 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 ∈ (Base‘𝑅))
3130adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 0 ∈ (Base‘𝑅))
32313ad2ant1 1132 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 0 ∈ (Base‘𝑅))
3328, 32ifcld 4577 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ) ∈ (Base‘𝑅))
345, 6, 7, 8, 9, 33matbas2d 22445 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 )) ∈ 𝐵)
35 eqidd 2736 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 )) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 )))
36 eqeq12 2752 . . . . . . . . 9 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑥 = 𝑦𝑖 = 𝑗))
37 oveq12 7440 . . . . . . . . . 10 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑥𝑋𝑦) = (𝑖𝑋𝑗))
38 oveq12 7440 . . . . . . . . . 10 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑥𝑌𝑦) = (𝑖𝑌𝑗))
3937, 38oveq12d 7449 . . . . . . . . 9 ((𝑥 = 𝑖𝑦 = 𝑗) → ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) = ((𝑖𝑋𝑗)(.r𝑅)(𝑖𝑌𝑗)))
4036, 39ifbieq1d 4555 . . . . . . . 8 ((𝑥 = 𝑖𝑦 = 𝑗) → if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ) = if(𝑖 = 𝑗, ((𝑖𝑋𝑗)(.r𝑅)(𝑖𝑌𝑗)), 0 ))
4140adantl 481 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) ∧ (𝑥 = 𝑖𝑦 = 𝑗)) → if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ) = if(𝑖 = 𝑗, ((𝑖𝑋𝑗)(.r𝑅)(𝑖𝑌𝑗)), 0 ))
42 simplrl 777 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → 𝑖𝑁)
43 simplrr 778 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → 𝑗𝑁)
44 ovex 7464 . . . . . . . . 9 ((𝑖𝑋𝑗)(.r𝑅)(𝑖𝑌𝑗)) ∈ V
4514fvexi 6921 . . . . . . . . 9 0 ∈ V
4644, 45ifex 4581 . . . . . . . 8 if(𝑖 = 𝑗, ((𝑖𝑋𝑗)(.r𝑅)(𝑖𝑌𝑗)), 0 ) ∈ V
4746a1i 11 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → if(𝑖 = 𝑗, ((𝑖𝑋𝑗)(.r𝑅)(𝑖𝑌𝑗)), 0 ) ∈ V)
4835, 41, 42, 43, 47ovmpod 7585 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ))𝑗) = if(𝑖 = 𝑗, ((𝑖𝑋𝑗)(.r𝑅)(𝑖𝑌𝑗)), 0 ))
49 ifnefalse 4543 . . . . . . 7 (𝑖𝑗 → if(𝑖 = 𝑗, ((𝑖𝑋𝑗)(.r𝑅)(𝑖𝑌𝑗)), 0 ) = 0 )
5049adantl 481 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → if(𝑖 = 𝑗, ((𝑖𝑋𝑗)(.r𝑅)(𝑖𝑌𝑗)), 0 ) = 0 )
5148, 50eqtrd 2775 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ))𝑗) = 0 )
5251ex 412 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑗 → (𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ))𝑗) = 0 ))
5352ralrimivva 3200 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ))𝑗) = 0 ))
544, 34, 53elrabd 3697 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 )) ∈ {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
555, 7, 14, 15dmatmul 22519 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(.r𝐴)𝑌) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 )))
565, 7, 14, 15dmatval 22514 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐷 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
5756adantr 480 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝐷 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
5854, 55, 573eltr4d 2854 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(.r𝐴)𝑌) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  {crab 3433  Vcvv 3478  ifcif 4531  cfv 6563  (class class class)co 7431  cmpo 7433  Fincfn 8984  Basecbs 17245  .rcmulr 17299  0gc0g 17486  Ringcrg 20251   Mat cmat 22427   DMat cdmat 22510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-sra 21190  df-rgmod 21191  df-dsmm 21770  df-frlm 21785  df-mamu 22411  df-mat 22428  df-dmat 22512
This theorem is referenced by:  dmatsrng  22523
  Copyright terms: Public domain W3C validator