![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmatel | Structured version Visualization version GIF version |
Description: A 𝑁 x 𝑁 diagonal matrix over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
Ref | Expression |
---|---|
dmatval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
dmatval.b | ⊢ 𝐵 = (Base‘𝐴) |
dmatval.0 | ⊢ 0 = (0g‘𝑅) |
dmatval.d | ⊢ 𝐷 = (𝑁 DMat 𝑅) |
Ref | Expression |
---|---|
dmatel | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝐷 ↔ (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmatval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | dmatval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
3 | dmatval.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
4 | dmatval.d | . . . 4 ⊢ 𝐷 = (𝑁 DMat 𝑅) | |
5 | 1, 2, 3, 4 | dmatval 22514 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐷 = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
6 | 5 | eleq2d 2825 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝐷 ↔ 𝑀 ∈ {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )})) |
7 | oveq 7437 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) | |
8 | 7 | eqeq1d 2737 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝑖𝑚𝑗) = 0 ↔ (𝑖𝑀𝑗) = 0 )) |
9 | 8 | imbi2d 340 | . . . 4 ⊢ (𝑚 = 𝑀 → ((𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 ) ↔ (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 ))) |
10 | 9 | 2ralbidv 3219 | . . 3 ⊢ (𝑚 = 𝑀 → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 ) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 ))) |
11 | 10 | elrab 3695 | . 2 ⊢ (𝑀 ∈ {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ↔ (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 ))) |
12 | 6, 11 | bitrdi 287 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝐷 ↔ (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 {crab 3433 ‘cfv 6563 (class class class)co 7431 Fincfn 8984 Basecbs 17245 0gc0g 17486 Mat cmat 22427 DMat cdmat 22510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-dmat 22512 |
This theorem is referenced by: dmatmat 22516 dmatid 22517 dmatelnd 22518 dmatsubcl 22520 dmatscmcl 22525 |
Copyright terms: Public domain | W3C validator |