MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatel Structured version   Visualization version   GIF version

Theorem dmatel 21642
Description: A 𝑁 x 𝑁 diagonal matrix over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatval.a 𝐴 = (𝑁 Mat 𝑅)
dmatval.b 𝐵 = (Base‘𝐴)
dmatval.0 0 = (0g𝑅)
dmatval.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatel ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝐷 ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   𝑖,𝑀,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)   𝐷(𝑖,𝑗)   𝑉(𝑖,𝑗)   0 (𝑖,𝑗)

Proof of Theorem dmatel
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dmatval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 dmatval.b . . . 4 𝐵 = (Base‘𝐴)
3 dmatval.0 . . . 4 0 = (0g𝑅)
4 dmatval.d . . . 4 𝐷 = (𝑁 DMat 𝑅)
51, 2, 3, 4dmatval 21641 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐷 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
65eleq2d 2824 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝐷𝑀 ∈ {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )}))
7 oveq 7281 . . . . . 6 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
87eqeq1d 2740 . . . . 5 (𝑚 = 𝑀 → ((𝑖𝑚𝑗) = 0 ↔ (𝑖𝑀𝑗) = 0 ))
98imbi2d 341 . . . 4 (𝑚 = 𝑀 → ((𝑖𝑗 → (𝑖𝑚𝑗) = 0 ) ↔ (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )))
1092ralbidv 3129 . . 3 (𝑚 = 𝑀 → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 ) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )))
1110elrab 3624 . 2 (𝑀 ∈ {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )))
126, 11bitrdi 287 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝐷 ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  cfv 6433  (class class class)co 7275  Fincfn 8733  Basecbs 16912  0gc0g 17150   Mat cmat 21554   DMat cdmat 21637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-dmat 21639
This theorem is referenced by:  dmatmat  21643  dmatid  21644  dmatelnd  21645  dmatsubcl  21647  dmatscmcl  21652
  Copyright terms: Public domain W3C validator