MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatel Structured version   Visualization version   GIF version

Theorem dmatel 21986
Description: A 𝑁 x 𝑁 diagonal matrix over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatval.a 𝐴 = (𝑁 Mat 𝑅)
dmatval.b 𝐵 = (Base‘𝐴)
dmatval.0 0 = (0g𝑅)
dmatval.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatel ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝐷 ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   𝑖,𝑀,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)   𝐷(𝑖,𝑗)   𝑉(𝑖,𝑗)   0 (𝑖,𝑗)

Proof of Theorem dmatel
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dmatval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 dmatval.b . . . 4 𝐵 = (Base‘𝐴)
3 dmatval.0 . . . 4 0 = (0g𝑅)
4 dmatval.d . . . 4 𝐷 = (𝑁 DMat 𝑅)
51, 2, 3, 4dmatval 21985 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐷 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
65eleq2d 2819 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝐷𝑀 ∈ {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )}))
7 oveq 7411 . . . . . 6 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
87eqeq1d 2734 . . . . 5 (𝑚 = 𝑀 → ((𝑖𝑚𝑗) = 0 ↔ (𝑖𝑀𝑗) = 0 ))
98imbi2d 340 . . . 4 (𝑚 = 𝑀 → ((𝑖𝑗 → (𝑖𝑚𝑗) = 0 ) ↔ (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )))
1092ralbidv 3218 . . 3 (𝑚 = 𝑀 → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 ) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )))
1110elrab 3682 . 2 (𝑀 ∈ {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )))
126, 11bitrdi 286 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝐷 ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940  wral 3061  {crab 3432  cfv 6540  (class class class)co 7405  Fincfn 8935  Basecbs 17140  0gc0g 17381   Mat cmat 21898   DMat cdmat 21981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-dmat 21983
This theorem is referenced by:  dmatmat  21987  dmatid  21988  dmatelnd  21989  dmatsubcl  21991  dmatscmcl  21996
  Copyright terms: Public domain W3C validator